Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Leaf Samples and Process Characterization
2.2. Reagents and Materials
2.3. Sensory Evaluation
2.4. Extraction of Volatiles Using HS-SPME
2.5. GC × GC–TOFMS Analysis
2.6. Compound Identification
2.7. rOAV Calculation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Changes in Aroma Profile during Shaken Black Tea Processing
3.2. Dynamic Changes in Volatile Metabolites during Shaken Black Tea Processing
3.3. Key Odor Contributors to Shaken Black Tea Infusion
3.4. Analysis of the Volatile Compounds by Multivariate Data Analysis
3.5. Effects of Shaking Process on Volatile Aroma Components
3.6. Effects of Fermentation Process on Volatile Aroma Components
3.7. Effects of Drying Process on Volatile Aroma Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, F.-F.; Zeng, W.-C.; Tong, X.; Feng, W.; Chen, Y.-Q.; Ni, D.-J. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT 2020, 117, 108646. [Google Scholar] [CrossRef]
- Pang, X.; Qin, Z.; Zhao, L.; Cheng, H.; Hu, X.; Song, H.; Wu, J. Development of regression model to differentiate quality of black tea (Dianhong): Correlate aroma properties with instrumental data using multiple linear regression analysis. Int. J. Food Sci. Technol. 2012, 47, 2372–2379. [Google Scholar] [CrossRef]
- Zhang, T.; Ni, H.; Qiu, X.-J.; Li, T.; Zhang, L.-Z.; Li, L.-J.; Jiang, Z.-D.; Li, Q.-B.; Chen, F.; Zheng, F.-P. Suppressive interaction approach for masking stale note of instant ripened pu-erh tea products. Molecules 2019, 24, 4473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, X.-L.; Yan, J.-N.; Wang, B.; Meng, Q.; Zhang, L.-Y.; Tong, H.-R. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’. Food Res. Int. 2020, 136, 109355. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xie, F.-C.; Cao, R.-R.; Qi, X.-H.; Chen, X.-H. Effect of different cover cultivations in later summer on aroma constituents of autumn tea (Camellia sinensis L.). J. Agric. Chem. Environ. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, H.; Qu, D.; Yan, F.; Jin, W.; Jiang, H.; Chen, C.; Zhang, Y.; Li, C.; Xu, Z. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Fragr. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Li, H.; Luo, L.; Ma, M.; Zeng, L. Characterization of volatile compounds and sensory analysis of jasmine scented black tea produced by different scenting processes. J. Food Sci. 2018, 83, 2718–2732. [Google Scholar] [CrossRef]
- Tao, M.; Xiao, Z.-P.; Huang, A.; Chen, J.-Y.; Yin, T.-J.; Liu, Z.-Q. Effect of 1–20 years storage on volatiles and aroma of Keemun congou black tea by solvent extraction-solid phase extraction-gas chromatography-mass spectrometry. LWT 2021, 136, 110278. [Google Scholar]
- Sun, L.; Dong, X.; Ren, Y.; Agarwal, M.; Ren, A.; Ding, Z. Profiling real-time aroma from green tea infusion during brewing. Foods 2022, 11, 684. [Google Scholar] [CrossRef]
- Wu, H.-L.; Huang, W.-J.; Chen, Z.-J.; Zhang, C.; Shi, J.-F.; Kong, Q.; Sun, S.-L.; Jiang, X.-H.; Chen, D.; Yan, S.-J. GC-MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res. Int. 2019, 120, 330–338. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Liu, P.-P.; Shi, J.; Gao, Y.; Wang, Q.-S.; Yin, J.-F. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 2018, 249, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-T.; Zhou, X.-C.; Su, X.-G.; Yang, Z.-Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Technol. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- Ren, G.; Fan, Q.; He, X.; Li, W.; Tang, X. Applicability of multifunctional preprocessing device for simultaneous estimation of spreading of green tea, withering of black tea and shaking of oolong tea. J. Sci. Food Agric. 2020, 100, 560–569. [Google Scholar] [CrossRef]
- Xue, J.-J.; Liu, P.-P.; Guo, G.-Y.; Wang, W.-W.; Zhang, J.-Y.; Wang, W.; Le, T.; Yin, J.-F.; Ni, D.-J.; Jiang, H.-Y. Profiling of dynamic changes in non-volatile metabolites of shaken black tea during the manufacturing process using targeted and non-targeted metabolomics analysis. LWT 2022, 156, 113010. [Google Scholar] [CrossRef]
- Cao, B.-B.; Yang, Y.; Zhou, X.-L.; Fu, D.-H. Study on the processing of high theaflavin fragrant black tea with Tiexiang leaves. J. Hunan Agric. Univ. (Nat. Sci.) 2018, 2, 162–166. [Google Scholar]
- Lei, P.-D.; Zhou, H.-C.; Wu, Q.; Zhang, Y.-B.; Hu, S.-G.; Xu, Y.-D.; Ding, Y.; Huang, J.-Q. Effect of green-making technique on the quality of summer Keemun black tea. Sci. Technol. Food Ind. 2017, 8, 108–112. [Google Scholar]
- Qi, D.-D.; Miao, A.-Q.; Cao, J.-X.; Wang, W.-W.; Chen, W.; Pang, S.; He, X.-G.; Ma, C.-Y. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: In comparison with natural aged and fresh white tea. Food Chem. 2018, 265, 189–199. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Z.-D.; Zhao, C.-X.; Kong, H.-W.; Lu, X.; Xu, G.-W. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and multivariate data analysis. J. Chromatogr. A 2013, 1313, 245–252. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Hua, J.-J.; Deng, Y.-L.; Jiang, Y.-W.; Qian, M.-C.; Wang, J.-J.; Li, J.; Zhang, M.-M.; Dong, C.-W.; Yuan, H.-B. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res. Int. 2020, 137, 109656. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.-P.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Zhang, Y.; Yu, F.-L.; Shao, C.-Y.; Peng, Q.-H.; Lin, Z. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. [Google Scholar] [CrossRef]
- Alasalvar, C.; Topal, B.; Serpen, A.; Bahar, B.; Pelvan, E.; Gökmen, V. Flavor characteristics of seven grades of black tea produced in Turkey. J. Agric. Food Chem. 2012, 60, 6323–6332. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.-H.; Li, Y.-F.; Li, M.; Wang, Y.-J.; Zhang, L.; Wan, X.-C.; Yang, X.-G. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhu, C.; Zhao, S.; Zhang, S.; Wang, W.; Fu, H.; Li, X.; Zhou, C.; Chen, L.; Lin, Y.; et al. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar ‘Tieguanyin’ compared with cultivar ‘Benshan’. BMC Genom. 2019, 20, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.-J.; Li, D.; Ma, Y.-X.; Zhang, W.; Lin, C.; Zheng, X.-Q.; Liang, Y.-R.; Lu, J.-L. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 2018, 269, 202–211. [Google Scholar] [CrossRef]
- Leffingwell, J.; Leffingwell, D. GRAS flavor chemicals-detection thresholds. Perfum. Flavorist 1991, 16, 2–19. [Google Scholar]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar]
- Schuh, C.; Schieberle, P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar] [CrossRef]
- Purcaro, G.; Cordero, C.; Libertob, E.; Bicchib, C.; Conte, L.S. Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2014, 1334, 101–111. [Google Scholar] [CrossRef]
- Gemert, J. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter: Huizen, The Netherlands, 2011. [Google Scholar]
- Zhu, J.-C.; Chen, F.; Wang, L.-Y.; Niu, Y.-W.; Yu, D.; Shu, C.; Chen, H.-X.; Wang, H.-L.; Xiao, Z.-B. Comparison of aroma-active volatiles in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef]
- Keith, E.S.; Powers, J.J. Determination of flavor threshold levels and sub-threshold, additive, and concentration effects. J. Food Sci. 1968, 33, 213–218. [Google Scholar] [CrossRef]
- Ho, C.-T.; Zheng, X.; Li, S.-M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-C.; Zhu, Y.; Liu, Y.-F.; Liu, Y.; Dong, C.-W.; Lin, Z.; Teng, J. Black tea aroma formation during the fermentation period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Ho, C.-T.; Schwab, W.; Wan, X.-C. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; He, J.-J.; Zhou, Y.-Z.; Li, Y.-L.; Zhou, H.-J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2022, 373, 131587. [Google Scholar] [CrossRef]
- Yu, P.; Yang, Y.-N.; Sun, J.-Y.; Jia, X.; Zheng, C.; Zhou, Q.; Huang, F.-H. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC–SCD and UPLC–MS/MS. Food Chem. 2022, 367, 130741. [Google Scholar] [CrossRef]
- Zhai, X.-T.; Granvogl, M. Characterization of the key aroma compounds in two differently dried Toona sinensis (A. juss.) Roem. by means of the molecular sensory science concept. J. Agric. Food Chem. 2019, 67, 9885–9894. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Ma, W.-J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.-P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.-P.; Zhang, Y.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Peng, Q.-H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Wang, K.; Liu, F.; Liu, Z.; Huang, J.; Xu, Z.; Li, Y.; Chen, J.; Gong, Y.; Yang, X. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. Int. J. Food Sci. Technol. 2011, 46, 1406–1412. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.-P.; Shao, C.-Y.; Kang, S.-Y.; Zhang, Y.; Guo, L.; Dai, W.-D.; Tan, J.-F.; Peng, Q.-H.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, Y.; Wang, B.; Song, H.-L.; Zou, T.-T. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis. LWT 2021, 137, 110478. [Google Scholar] [CrossRef]
- Qi, D.-D.; Miao, A.-Q.; Chen, W.; Wang, W.-W.; He, X.-G.; Ma, C.-Y. Characterization of the volatile compounds profile of the innovative broken oolong-black tea in comparison with broken oolong and broken black tea. Food Control 2021, 129, 108197. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.-H.; Zhao, X.-M.; Li, X.-L.; Shan, W.-N.; Wang, X.-X.; Wang, S.-S.; Yu, W.-Q.; Yang, Z.-B.; Yu, X.-M. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Res. Int. 2020, 128, 108778. [Google Scholar] [CrossRef]
- Gui, J.-D.; Fu, X.-M.; Zhou, Y.; Katsuno, T.; Mei, X.; Deng, R.-F.; Xu, X.-L.; Zhang, L.-Y.; Dong, F.; Watanabe, N.; et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the Oolong Tea manufacturing process? J. Agric. Food Chem. 2015, 63, 6905–6914. [Google Scholar] [CrossRef]
- Zeng, L.-T.; Wang, X.-Q.; Xiao, Y.-Y.; Gu, D.-C.; Liao, Y.-Y.; Xu, X.-L.; Jia, Y.-X.; Deng, R.-F.; Song, C.-K.; Yang, Z.-Y. Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the Oolong tea manufacturing process. J. Agric. Food Chem. 2019, 67, 6541–6550. [Google Scholar] [CrossRef]
- Shi, Y.-F.; Di, T.-M.; Yang, S.-L.; Wu, L.-Y.; Chen, Y.-Q.; Xia, T.; Zhang, X.-F. Changes in aroma components in the processing of flowery black tea. Food Sci. 2018, 39, 167–175. [Google Scholar]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Wang, H.-J.; Shen, S.; Wang, J.-J.; Jiang, Y.-W.; Li, J.; Yang, Y.-Q.; Hua, J.-J.; Yuan, H.-B. Novel insight into the effect of fermentation time on quality of Yunnan Congou black tea. LWT 2022, 155, 112939. [Google Scholar] [CrossRef]
- Ravichandran, R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem. 2002, 78, 23–28. [Google Scholar] [CrossRef]
No. | Compounds | Threshold (μg/kg) a | The Relative Odor Activity Values (rOAVs) | |||||
---|---|---|---|---|---|---|---|---|
FL | S1 | S2 | S3 | F | D | |||
235 | (E)-β-Ionone | 0.007 [25] | 316.07 | 351.81 | 424.80 | 387.76 | 583.74 | 2073.61 |
64 | (E,Z)-2,6-Nonadienal | 0.01 [25] | 74.70 | 100.04 | 105.23 | 134.88 | 684.89 | 409.65 |
208 | 1-Octen-3-one | 0.005 [25] | 196.58 | 280.05 | 241.43 | 233.60 | 191.88 | 301.46 |
67 | Decanal | 0.1 [25] | 33.07 | 47.22 | 55.08 | 52.86 | 53.02 | 108.41 |
46 | (Z)-4-Heptenal | 0.06 [27] | 31.00 | 36.75 | 33.54 | 38.39 | 22.61 | 20.76 |
61 | Nonanal | 1 [25] | 19.04 | 22.77 | 22.94 | 23.05 | 15.30 | 27.23 |
34 | 2-Methylbutanal | 1 [25] | 0.80 | 0.73 | 5.05 | 6.16 | 22.40 | 87.52 |
27 | Geraniol | 3.2 [27] | 19.97 | 18.57 | 20.57 | 19.10 | 16.91 | 22.57 |
54 | Octanal | 0.7 [25] | 15.72 | 18.59 | 24.18 | 21.48 | 9.11 | 19.77 |
215 | (E,E)-3,5-Octadien-2-one | 0.5 [28] | 4.62 | 8.01 | 6.91 | 6.80 | 16.73 | 52.60 |
39 | Hexanal | 4.5 [25] | 13.42 | 13.54 | 11.63 | 13.58 | 14.02 | 22.40 |
73 | (E,E)-2,4-Decadienal | 0.07 [25] | 1.39 | 2.92 | 3.24 | 7.07 | 25.40 | 35.84 |
65 | (E)-2-Nonenal | 0.08 [25] | 4.67 | 5.47 | 6.17 | 7.35 | 24.70 | 20.12 |
9 | 1-Octen-3-ol | 1 [25] | 10.73 | 15.60 | 13.90 | 11.26 | 5.31 | 10.84 |
68 | (E,E)-2,4-Nonadienal | 0.16 [27] | 1.47 | 3.37 | 4.55 | 5.80 | 14.67 | 17.18 |
237 | Dimethyl sulfide | 3 [25] | 0.90 | 2.63 | 1.47 | 3.02 | 10.55 | 24.55 |
45 | Heptanal | 3 [25] | 5.42 | 6.61 | 6.48 | 5.97 | 4.18 | 5.97 |
57 | Benzeneacetaldehyde | 4 [25] | 1.06 | 3.41 | 4.25 | 4.21 | 6.07 | 14.11 |
197 | 2-Pentylfuran | 6 [29] | 2.47 | 3.35 | 3.17 | 3.75 | 3.26 | 8.03 |
193 | 2-Ethylfuran | 2.3 [30] | 1.01 | 1.19 | 3.33 | 3.83 | 3.19 | 7.26 |
59 | (E)-2-Octenal | 3 [25] | 1.60 | 2.16 | 2.20 | 2.39 | 4.53 | 6.40 |
56 | (E,E)-2,4-Heptadienal | 10 [25] | 1.01 | 1.61 | 1.74 | 1.89 | 4.14 | 5.99 |
20 | cis-Linalool oxide (furanoid) | 6 [31] | 2.06 | 2.94 | 2.38 | 2.40 | 2.38 | 2.24 |
44 | 2-Hexenal | 17 [31] | 2.71 | 2.86 | 2.43 | 2.36 | 2.04 | 1.65 |
109 | Limonene | 10 [25] | 1.67 | 1.95 | 1.27 | 1.44 | 1.65 | 3.52 |
233 | α-Ionone | 0.4 [32] | 1.08 | 0.98 | 1.23 | 1.13 | 1.35 | 5.11 |
32 | 2-Methyl-propanal | 0.9 [29] | 0.32 | 0.86 | 0.88 | 0.61 | 4.38 | 3.27 |
No. | Compounds | FL vs. S1 | S1 vs. S2 | S2 vs. S3 | S3 vs. F | F vs. D | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Log2FC | VIP | Type | Log2FC | VIP | Type | Log2FC | VIP | Type | Log2FC | VIP | Type | Log2FC | VIP | Type | ||
Alcohols (13) | ||||||||||||||||
2 | 1-Penten-3-ol | 1.05 | 2.02 | Up | 1.15 | 1.72 | Up | |||||||||
4 | (Z)-2-Penten-1-ol | 1.70 | 2.22 | Up | ||||||||||||
5 | (Z)-3-Hexenol | 2.06 | 3.08 | Up | ||||||||||||
6 | 1-Hexanol | −1.06 | 1.24 | Down | ||||||||||||
7 | (E)-2-Hexen-1-ol | 1.35 | 2.36 | Up | 2.17 | 2.82 | Up | −1.40 | 1.75 | Down | ||||||
9 | 1-Octen-3-ol | −1.09 | 1.91 | Down | 1.03 | 1.30 | Up | |||||||||
10 | 2-Ethyl-1-hexanol | −1.75 | 2.03 | Down | ||||||||||||
11 | Benzyl alcohol | 2.90 | 3.21 | Up | ||||||||||||
14 | Phenylethyl alcohol | 1.40 | 2.60 | Up | ||||||||||||
16 | (E,Z)-3,6-Nonadien-1-ol | 1.87 | 1.16 | Up | ||||||||||||
22 | Linalool | 1.53 | 1.31 | Up | ||||||||||||
23 | Linalool oxide (Pyranoid) | 1.51 | 1.48 | Up | ||||||||||||
28 | Nerolidol | 1.20 | 1.85 | Up | −1.79 | 1.61 | Down | |||||||||
Aldehydes (14) | ||||||||||||||||
32 | 2-Methylpropanal | 2.85 | 1.46 | Up | ||||||||||||
34 | 2-Methylbutanal | 2.80 | 2.71 | Up | 1.86 | 3.17 | Up | 1.97 | 4.46 | Up | ||||||
36 | Pentanal | 1.83 | 3.66 | Up | −1.54 | 1.70 | Down | 3.26 | 2.52 | Up | ||||||
37 | (E)-2-Pentenal | 1.02 | 1.09 | Up | ||||||||||||
48 | (E,E)-2,4-Hexadienal | 1.73 | 1.79 | Up | −1.04 | 1.06 | Down | |||||||||
52 | Benzaldehyde | 1.42 | 3.75 | Up | 1.39 | 4.18 | Up | |||||||||
54 | Octanal | −1.24 | 2.33 | Down | 1.12 | 1.51 | Up | |||||||||
56 | (E,E)-2,4-Heptadienal | 1.13 | 3.77 | Up | ||||||||||||
57 | Benzeneacetaldehyde | 1.69 | 3.62 | Up | 1.22 | 3.11 | Up | |||||||||
64 | (E,Z)-2,6-Nonadienal | 2.34 | 1.86 | Up | ||||||||||||
67 | Decanal | 1.03 | 1.30 | Up | ||||||||||||
76 | β-Cyclocitral | 1.31 | 1.27 | Up | ||||||||||||
77 | (Z)-3,7-Dimethyl-2,6-octadienal; (Z)-Citral | 1.27 | 1.19 | Up | ||||||||||||
78 | (E)-3,7-Dimethyl-2,6-octadienal; Geranial | 1.31 | 1.96 | Up | ||||||||||||
Alkanes (1) | ||||||||||||||||
79 | 1,1-Dimethyl-cyclopropane | 6.64 | 1.58 | Up | ||||||||||||
Alkenes (4) | ||||||||||||||||
98 | Bicyclo [4.2.0]octa-1,3,5-triene | 1.18 | 2.84 | Up | ||||||||||||
102 | (E)-4,8-Dimethylnona-1,3,7-triene | 2.23 | 1.84 | Up | ||||||||||||
109 | Limonene | 1.09 | 2.36 | Up | ||||||||||||
116 | (E)-β-Farnesene | 1.55 | 1.37 | Up | ||||||||||||
Aromatics (7) | ||||||||||||||||
121 | Ethylbenzene | 1.61 | 2.56 | Up | 1.50 | 2.04 | Up | |||||||||
122 | 1,3-Dimethyl-benzene | 1.15 | 2.86 | Up | 1.34 | 2.65 | Up | |||||||||
124 | o-Xylene | 1.33 | 1.34 | Up | ||||||||||||
125 | 1-Propylbenzene | −1.36 | 1.07 | Down | 2.10 | 1.11 | Up | |||||||||
126 | 1-Ethyl-3-methyl-benzene | −1.36 | 1.23 | Down | −2.38 | 1.11 | Down | 2.16 | 1.16 | Up | ||||||
128 | 1,2,4-Trimethylbenzene | 1.66 | 1.24 | Up | ||||||||||||
129 | o-Cymene | 1.18 | 1.73 | Up | ||||||||||||
Esters (4) | ||||||||||||||||
163 | (Z)-3-hexenyl butyrate | 1.92 | 2.62 | Up | −2.50 | 2.46 | Down | |||||||||
164 | Hexyl butyrate | 1.57 | 1.35 | Up | −2.47 | 1.13 | Down | |||||||||
170 | (Z)-3-Hexenyl-α-methylbutyrate | 1.65 | 1.46 | Up | _ | _ | _ | |||||||||
182 | (Z)-Hexanoic acid, 3-hexenyl ester | 1.45 | 1.43 | Up | ||||||||||||
Furans (4) | ||||||||||||||||
193 | 2-Ethylfuran | 1.49 | 2.89 | Up | 1.19 | 1.69 | Up | |||||||||
196 | 2-Butylfuran | 1.22 | 1.39 | Up | ||||||||||||
197 | 2-Pentylfuran, | 1.30 | 2.96 | Up | ||||||||||||
198 | (E)-2-(2-Pentenyl)furan | 2.00 | 1.30 | Up | 1.05 | 1.08 | Up | |||||||||
Ketones (12) | ||||||||||||||||
203 | 1-Penten-3-one | −2.85 | 2.68 | Down | 1.94 | 1.21 | Up | 1.09 | 1.01 | Up | ||||||
205 | 3-Heptanone | 3.04 | 1.76 | Up | ||||||||||||
206 | 2-Heptanone | 1.88 | 1.38 | Up | ||||||||||||
212 | 3-Octen-2-one | 1.71 | 1.85 | Up | ||||||||||||
214 | Isophorone | 1.28 | 1.44 | Up | ||||||||||||
215 | (E,E)-3,5-Octadien-2-one | 1.30 | 1.77 | Up | 1.65 | 2.34 | Up | |||||||||
219 | 3,5-Octadien-2-one | 2.57 | 1.22 | Up | ||||||||||||
221 | 5-Methyl-2-hexanone | 2.21 | 1.07 | Up | ||||||||||||
222 | (R,S)-5-Ethyl-6-methyl-3E-hepten-2-one | 1.49 | 1.90 | Up | ||||||||||||
223 | 2-Decanone | 2.91 | 1.44 | Up | −1.01 | 1.04 | Down | |||||||||
234 | (E)-Geranylacetone | 1.42 | 1.58 | Up | ||||||||||||
235 | (E)-β-Ionone | 1.83 | 1.79 | Up | ||||||||||||
Other (2) | ||||||||||||||||
237 | Dimethyl sulfide | 1.54 | 2.68 | Up | 1.04 | 3.50 | Up | 1.81 | 3.78 | Up | 1.22 | 3.55 | Up | |||
241 | Indole | 5.14 | 2.18 | Up | 1.15 | 3.06 | Up | −3.30 | 1.91 | Down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Liu, P.; Yin, J.; Wang, W.; Zhang, J.; Wang, W.; Le, T.; Ni, D.; Jiang, H. Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis. Foods 2022, 11, 1228. https://doi.org/10.3390/foods11091228
Xue J, Liu P, Yin J, Wang W, Zhang J, Wang W, Le T, Ni D, Jiang H. Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis. Foods. 2022; 11(9):1228. https://doi.org/10.3390/foods11091228
Chicago/Turabian StyleXue, Jinjin, Panpan Liu, Junfeng Yin, Weiwei Wang, Jianyong Zhang, Wei Wang, Ting Le, Dejiang Ni, and Heyuan Jiang. 2022. "Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis" Foods 11, no. 9: 1228. https://doi.org/10.3390/foods11091228
APA StyleXue, J., Liu, P., Yin, J., Wang, W., Zhang, J., Wang, W., Le, T., Ni, D., & Jiang, H. (2022). Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC–TOFMS and Multivariate Data Analysis. Foods, 11(9), 1228. https://doi.org/10.3390/foods11091228