Preparation, Morphology and Release of Goose Liver Oil Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation Microcapsules
2.2.1. Extraction of Goose Liver Oil
2.2.2. Preparation of Emulsion
Preparation of KMG/SPI Solution
Preparation of SPI/GLO Emulsion
Preparation of KMG/SPI/GLO Emulsion
2.2.3. Freeze Drying
2.3. Experimental Design for Response Surface Methodology
2.4. Characterization of the Microcapsules
2.4.1. Analysis by Fourier Transformed Infrared Spectrometer
2.4.2. X-ray Diffraction Analysis
2.4.3. Confocal Laser Scanning Microscopy
2.4.4. Morphology of Microcapsules
2.4.5. Encapsulation Efficiency
Surface Oil Content
Total Oil Content
2.4.6. Moisture Content
2.4.7. Wettability
2.4.8. Solubility
2.4.9. Powder Flowability Experiments
2.4.10. Thermogravimetric Analysis
2.4.11. Differential Scanning Calorimetry Analysis
2.4.12. Oxidative Stability
Peroxide Value Determination
Determination of Thiobarbituric acid Reaction Substance
2.4.13. In Vitro Release Study
2.4.14. Statistical Analysis
3. Results and Discussion
3.1. Optimization of GLO Microcapsules
3.2. Fourier Transform Infrared Spectroscopy Analysis
3.3. X-ray Diffraction Analysis
3.4. Morphology of Microcapsules
3.4.1. External Structure
3.4.2. Internal Structure
3.5. Physicochemical Properties of GLOM
3.6. Thermogravimetric Analysis
3.7. Differential Scanning Calorimetry Analysis
3.8. Oxidative Stability Analysis
3.9. In Vitro Release Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christie, W.W. Lipid Analysis Oxford; Pergamon Press: Oxford, UK, 1998. [Google Scholar]
- Cheng-Ying, L.; Wang, B.W.; Qin, P.F.; Wen-Hua, G.; Zhang, M.A.; Yue, B. Enzymatic centrifugation extraction of goose fat liver oil and its quality evaluation. Food Res. Dev. 2018, 39, 72–81. [Google Scholar]
- Wang, W.W.; Wang, B.W.; Geng, X.; Wen-Hua, G.; Zhang, M.A.; Yue, B.; Wang, X.X. Study on the repair of se-enriched goose liver to hyperlipidemia in rats. Agric. Sci. China 2011, 44, 1029–1039. [Google Scholar] [CrossRef]
- Cheng-Ying, L.; Yang, H.Y.; Wang, B.W.; Wen-Hua, G.; Kong, M.; Wang, X.M.; Jing, L.Z. Study on repair of acute alcoholic liver injury in mice by goose liver powder microcapsule (oil). Chin. Poult. 2019, 7, 5. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Mobli, H.; Madadlou, A.; Rafiee, S. The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Res. Int. 2012, 49, 379–388. [Google Scholar] [CrossRef]
- Hui, L.; Wang, L.; Yang, T.; Zhang, G.; Jian, H.; Jing, S.; Huo, J. Optimization and evaluation of fish oil microcapsules. Particuology 2016, 29, 162–168. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Guazi, J.S.; Conti-Silva, A.C.; Nicoletti, V.R. Active packaging for postharvest storage of cherry tomatoes: Different strategies for application of microencapsulated essential oil. Food Packag. Shelf Life 2021, 29, 100723. [Google Scholar] [CrossRef]
- Aberkane, L.; Roudaut, G.; Saurel, R. Encapsulation and Oxidative Stability of PUFA-Rich Oil Microencapsulated by Spray Drying Using Pea Protein and Pectin. Food Bioprocess Technol. 2013, 7, 1505–1517. [Google Scholar] [CrossRef]
- Ning, Y.; Cui, B.; Yuan, C.; Zou, Y.; Pan, Y. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch. Food Hydrocoll. 2019, 100, 105342. [Google Scholar] [CrossRef]
- Gao, S.; Nishinari, K. Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules 2004, 5, 175–185. [Google Scholar] [CrossRef]
- Liu, J.; Fang, C.; Luo, Y.; Ding, Y.; Liu, S. Effects of konjac oligo-glucomannan on the physicochemical properties of frozen surimi from red gurnard (Aspitrigla cuculus). Food Hydrocoll. 2019, 89, 668–673. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Zhao, G. Fabricating a Pickering Stabilizer from Okara Dietary Fibre Particulates by Conjugating with Soy Protein Isolate via Maillard Reaction. Foods 2020, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.W.; Hou, J.; Wen-Hua, G.; Zhang, M.A.; Yue, B. A Kind of Goose Liver Oil Microcapsule. CN102871142B, 10 July 2013. [Google Scholar]
- Turasan, H.; Sahin, S.; Sumnu, G. Encapsulation of rosemary essential oil. LWT-Food Sci. Technol. 2015, 64, 112–119. [Google Scholar] [CrossRef]
- Zhou, D.; Pan, Y.; Ye, J.; Jia, J.; Ma, J.; Ge, F. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT-Food Sci. Technol. 2017, 83, 292–297. [Google Scholar] [CrossRef]
- Yan, M.; Diao, M.; Zhang, C.; Shen, X.; Zhang, T. Lactoferrin-Ginsenoside Rg3 Complex Ingredients: Study of Interaction Mechanism and Preparation of Oil-in-Water Emulsion. Food Chem. 2021, 363, 130239. [Google Scholar] [CrossRef]
- Dima, C.; Ptracu, L.; Cantaragiu, A.; Alexe, P.; Dima, T. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 2015, 195, 39–48. [Google Scholar] [CrossRef]
- Fernandes, R.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef]
- Jinapong, N.; Suphantharika, M.; Jamnong, P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng. 2008, 84, 194–205. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Chinta, D.D.; Graves, R.A.; Pamujula, S.; Praetorius, N.; Bostanian, L.A.; Mandal, T.K. Spray-dried chitosan as a direct compression tableting excipient. Drug Dev. Ind. Pharm. 2009, 35, 43. [Google Scholar] [CrossRef]
- Quispe-Condori, S.; Saldaña, M.; Temelli, F. Microencapsulation of flax oil with zein using spray and freeze drying. LWT-Food Sci. Technol. 2011, 44, 1880–1887. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, M.; Dai, S.; Song, J.; Ni, X.; Fang, Y.; Corke, H.; Jiang, F. Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydr. Polym. 2014, 101, 136–145. [Google Scholar] [CrossRef]
- Yang, X.; Gao, N.; Hu, L.; Li, J.; Sun, Y. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. J. Food Eng. 2015, 161, 87–93. [Google Scholar] [CrossRef]
- Richards, M.P.; Dettmann, M.A.; Grunwald, E.W. Pro-oxidative characteristics of trout hemoglobin and myoglobin: A role for released heme in oxidation of lipids. J. Agric. Food Chem. 2005, 53, 10231–10238. [Google Scholar] [CrossRef]
- Paşcalău, V.; Soritau, O.; Popa, F.; Pavel, C.; Coman, V.; Perhaita, I.; Borodi, G.; Dirzu, N.; Tabaran, F.; Popa, C. Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules. J. Biomater. Appl. 2016, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release Off. J. Control. Release Soc. 2011, 154, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Peppas, J. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 2007, 12, 213–220. [Google Scholar] [CrossRef]
- Joscelyne, S.M.; Tragaidh, G. Membrane emulsification—A literature review. J. Membr. Sci. 2000, 169, 107–117. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Ferrando, M.; Aceña-Muñoz, L.; Lamo-Castellví, S.; Güell, C. Fish Oil Microcapsules from O/W Emulsions Produced by Premix Membrane Emulsification. Food Bioprocess Technol. 2013, 6, 3088–3101. [Google Scholar] [CrossRef]
- Wang, M.; Yao, M.; Jian, W.; Sun, Y.; Pang, J. Molecular Dynamics Simulations of the Interactions between Konjac Glucomannan and Soy Protein Isolate. Agric. Sci. China 2010, 9, 1538–1542. [Google Scholar] [CrossRef]
- Ji, J.; Hao, S.; Liu, W.; Wu, D.; Wang, T.; Yi, X. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf. B Biointerfaces 2011, 83, 103–107. [Google Scholar] [CrossRef]
- Rodriguez, E.S.; Julio, L.M.; Henning, C.; Diehl, B.W.; Tomás, M.; Ixtaina, V.Y. Effect of natural antioxidants on the physicochemical properties and stability of freeze-dried microencapsulated chia seed oil. J. Sci. Food Agric. 2019, 99, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.H.; Kunz, B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 2011, 105, 367–378. [Google Scholar] [CrossRef]
- Ortega-Rivas, E. Handling and Processing of Food Powders and Particulates. In Encapsulated and Powdered Foods; Onwulata, C.I., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 75–144. [Google Scholar] [CrossRef]
- Bae, E.K.; Lee, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microencapsul. 2008, 25, 549. [Google Scholar] [CrossRef] [PubMed]
- Ogrodowska, D.; Tańska, M.; Brandt, W. The Influence of Drying Process Conditions on the Physical Properties, Bioactive Compounds and Stability of Encapsulated Pumpkin Seed Oil. Food Bioprocess Technol. 2017, 10, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Tonon, R.V.; Grosso, C.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011, 44, 282–289. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Konstan Ce, R.P.; Holsinger, V.H. Flow Properties of Encapsulated Milkfat Powders as Affected by Flow Agent. J. Food Sci. 2010, 61, 1211–1215. [Google Scholar] [CrossRef]
- Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Comparative Evaluation of Flow for Pharmaceutical Powders and Granules. AAPS PharmSciTech 2008, 9, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, Z.Y.; Sun, Y.E.; Zeng, Q.Z.; Yang, X.Q. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT-Food Sci. Technol. 2017, 75, 171–179. [Google Scholar] [CrossRef]
- Anitha, A.; Deepagan, V.G.; Rani, V.; Menon, D.; Nair, S.V.; Jayakumar, R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr. Polym. 2011, 84, 1158–1164. [Google Scholar] [CrossRef]
- Alavi, F.; Emam-Djomeh, Z.; Yarmand, M.S.; Salami, M.; Momen, S.; Moosavi-Movahedi, A.A. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocoll. 2018, 85, 267–280. [Google Scholar] [CrossRef]
Run | A | B (%) | C | EE (%) |
---|---|---|---|---|
1 | 3 | 4 | 4 | 54.3 ± 0.4 |
2 | 2 | 6 | 4 | 65.4 ± 0.6 |
3 | 4 | 6 | 4 | 70.8 ± 1.2 |
4 | 2 | 6 | 6 | 81.9 ± 0.4 |
5 | 3 | 8 | 4 | 55.1 ± 0.9 |
6 | 4 | 8 | 5 | 58.0 ± 0.5 |
7 | 3 | 4 | 6 | 59.2 ± 0.9 |
8 | 2 | 4 | 5 | 50.2 ± 0.3 |
9 | 3 | 6 | 5 | 78.3 ± 1.0 |
10 | 4 | 6 | 6 | 81.7 ± 0.7 |
11 | 3 | 6 | 5 | 77.0 ± 0.8 |
12 | 2 | 8 | 5 | 63.6 ± 0.6 |
13 | 3 | 8 | 6 | 69.0 ± 0.6 |
14 | 4 | 4 | 5 | 62.8 ± 0.7 |
15 | 3 | 6 | 5 | 79.2 ± 0.5 |
16 | 3 | 6 | 5 | 77.4 ± 0.3 |
17 | 3 | 6 | 5 | 79.8 ± 0.6 |
Source | Sum of | df | Mean | F Value | p-Value | |
---|---|---|---|---|---|---|
Squares | Square | Prob > F | ||||
Model | 1812.22 | 9 | 201.36 | 89.77 | <0.0001 | ** |
A: ratio of KGM to SPI | 18.61 | 1 | 18.61 | 8.29 | 0.0237 | ** |
B: wall material content | 46.08 | 1 | 46.08 | 20.54 | 0.0027 | ** |
C: ratio of wall material to core material | 266.81 | 1 | 266.81 | 118.94 | <0.0001 | ** |
AB | 82.81 | 1 | 82.81 | 36.92 | 0.0005 | ** |
AC | 7.84 | 1 | 7.84 | 3.5 | 0.1038 | ns |
BC | 20.25 | 1 | 20.25 | 9.03 | 0.0198 | ** |
A2 | 18.04 | 1 | 18.04 | 8.04 | 0.0252 | ** |
B2 | 1307.22 | 1 | 1307.22 | 582.76 | <0.0001 | ** |
C2 | 7.34 | 1 | 7.34 | 3.27 | 0.1135 | ns |
Residual | 15.7 | 7 | 2.24 | |||
Lack of fit | 10.15 | 3 | 3.38 | 2.44 | 0.2046 | ns |
Pure error | 5.55 | 4 | 1.39 | |||
Cor total | 1827.92 | 16 |
Items | Index |
---|---|
Moisture content (%) | 3.09 ± 0.08 |
Solubility (%) | 46.84 ± 0.79 |
Wettability (s) | 290 ± 8.22 |
Bulk density (g/cm3) | 0.43 ± 0.01 |
Tapped density (g/cm3) | 0.64 ± 0.02 |
Compressibility index (%) | 33.34 ± 1.17 |
Hausner ratio | 1.50 ± 0.02 |
Mathematical | SGF | SIF |
---|---|---|
Zero order | Q = 0.04348t + 6.48855 (R2 = 0.61047) | Q = 0.6294t + 9.702 (R2 = 0.87654) |
First order | ln (100 − Q) = −4.79832 × 10−4t + 4.53661 (R2 = 0.62185) | ln (100 − Q) = −0.01186t + 4.53157 (R2 = 0.91876) |
Higuchi | Q = 0.9196t1/2 + 2.63486 (R2 = 0.85244) | Q = 7.27531t1/2 − 1.51793 (R2 = 0.95439) |
Peppas | lnQ = 1.10912 + 0.30834lnt (R2 = 0.81587; n = 0.30834) | lnQ = 1.20442 + 0.67192lnt (R2 = 0.89131; n = 0.67192) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Fan, X.; Sun, Y.; Zhou, C.; Pan, D. Preparation, Morphology and Release of Goose Liver Oil Microcapsules. Foods 2022, 11, 1236. https://doi.org/10.3390/foods11091236
Li C, Fan X, Sun Y, Zhou C, Pan D. Preparation, Morphology and Release of Goose Liver Oil Microcapsules. Foods. 2022; 11(9):1236. https://doi.org/10.3390/foods11091236
Chicago/Turabian StyleLi, Chunwei, Xiankang Fan, Yangying Sun, Changyu Zhou, and Daodong Pan. 2022. "Preparation, Morphology and Release of Goose Liver Oil Microcapsules" Foods 11, no. 9: 1236. https://doi.org/10.3390/foods11091236
APA StyleLi, C., Fan, X., Sun, Y., Zhou, C., & Pan, D. (2022). Preparation, Morphology and Release of Goose Liver Oil Microcapsules. Foods, 11(9), 1236. https://doi.org/10.3390/foods11091236