UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Chemicals and Reagents
2.3. Ultrasound-Assisted Extraction of Polyphenols
2.4. Hydrolysis Procedure
2.5. HPLC-DAD Analysis of Ellagic Acid
2.6. UHPLC-Triple-TOF-MS Analysis of Polyphenolic Profile
2.7. Antioxidant Activity
2.7.1. DPPH• Radical Scavenging Activity Assay
2.7.2. ABTS•+ Radical Scavenging Activity Assay
2.7.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8. Antibacterial Activity
2.9. Antiproliferative Activity
Raspberry Seed Extracts and Ellagic Acid Standard
2.10. Statistical Analysis
3. Results and Discussion
3.1. Ellagic Acid Content
3.2. Polyphenolic Profile
3.3. Antioxidant Activity
3.4. Antibacterial Activity
3.5. Antiproliferative Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathi, A.; Mishra, R.; Maurya, K.; Singh, R.; Wilson, D. Estimates for World Population and Global Food Availability for Global Health; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Nile, S.; Park, S. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Van Hoed, V.; Barbouche, I.; De Clercq, N.; Dewettinck, K.; Slah, M.; Leber, E.; Verhé, R. Influence of filtering of cold pressed berry seed oils on their antioxidant profile and quality characteristics. Food Chem. 2011, 127, 1848–1855. [Google Scholar] [CrossRef]
- Marić, B.; Abramović, B.; Ilić, N.; Krulj, J.; Kojić, J.; Perović, J.; Bodroža-Solarov, M.; Teslić, N. Valorization of red raspberry (Rubus idaeus L.) seeds as a source of health beneficial compounds: Extraction by different methods. J. Food Process. Preserv. 2022, 44, e14744. [Google Scholar] [CrossRef]
- Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.; Boggia, R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur. J. Med. Chem. 2019, 183, 111724. [Google Scholar] [CrossRef]
- Simopoulos, A. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Pavlić, B.; Pezo, L.; Marić, B.; Peić-Tukuljac, L.; Zeković, Z.; Bodroža-Solarov, M.; Teslić, N. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling. J. Supercrit. Fluids 2020, 157, 104687. [Google Scholar] [CrossRef]
- Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J. Agric. Food Chem. 2001, 49, 3651–3655. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Hogan, S.; Chung, H.; Welbaum, G.; Zhou, K. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 2010, 119, 592–599. [Google Scholar] [CrossRef]
- Četojević-Simin, D.; Velićanski, A.; Cvetković, D.; Markov, S.; Ćetković, G.; Šaponjac, V.T.; Vulić, J.; Čanadanović-Brunet, J.; Djilas, S. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts. Food Chem. 2015, 166, 407–413. [Google Scholar] [CrossRef]
- Xiang, L.; Xing, D.; Lei, F.; Wang, W.; Xu, L.; Nie, L.; Du, L. Effects of season, variety, and processing method on ellagic acid content in pomegranate leaves. Tsinghua Sci. Technol. 2008, 13, 460–465. [Google Scholar] [CrossRef]
- Lei, F.; Zhang, X.; Wang, W.; Xing, D.; Xie, W.; Su, H.; Du, L. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int. J. Obes. 2007, 31, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Erdman, J.; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.; Mazza, G.; et al. Flavonoids and heart health: Proceedings of the ILSI North America Flavonoids Workshop, May 31–June 1, 2005, Washington, DC. J. Nutr. 2007, 137, 718S–737S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Stagos, D. Antioxidant activity of polyphenolic plant extracts. Antioxidants 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Vattem, D.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005, 29, 234–266. [Google Scholar] [CrossRef]
- Seeram, N.; Adams, L.; Henning, S.; Niu, Y.; Zhang, Y.; Nair, M.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef] [Green Version]
- AOAC Official Method 950.46, AOAC. 2006. Available online: https://www.scribd.com/document/468494457/AOAC-950-46-pdf (accessed on 8 November 2022).
- Marić, B.; Pavlić, B.; Čolović, D.; Abramović, B.; Zeković, Z.; Bodroža-Solarov, M.; Ilić, N.; Teslić, N. Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. LWT 2020, 130, 109627. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.; Kamal-Eldin, A.; Törrönen, A. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 1996, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ledina, T.; Bulajić, S.; Đorđević, J. Metode za određivanje antimikrobne rezistencije kod mikroorganizama u hrani. Vet. Žurnal Repub. Srp. 2018, 18, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Četojević-Simin, D.; Čanadanović-Brunet, J.; Bogdanović, G.; Ćetković, G.; Tumbas, V.; Djilas, S. Antioxidative and antiproliferative effects of Satureja montana L. extracts. J. BUON 2004, 9, 443–449. [Google Scholar]
- Beara, I.; Lesjak, M.; Četojević-Simin, D.; Orčić, D.; Janković, T.; Anačkov, G.; Mimica-Dukić, N. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of endemic Plantago reniformis G. Beck. Food Res. Int. 2012, 49, 501–507. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.; Bokesch, H.; Kenney, S.; Boyd, M. New colorimetric cytotoxicity assay for. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Cetojevic-Simin, D.; Svircev, Z.; Baltic, V. In vitro cytotoxicity of cyanobacteria from water ecosystems of Serbia. J. BUON 2009, 14, 289–294. [Google Scholar]
- Teslić, N.; Santos, F.; Oliveira, F.; Stupar, A.; Pojić, M.; Mandić, A.; Pavlić, B.; Kljakić, A.; Duarte, A.; Paiva, A.; et al. Simultaneous hydrolysis of elagitannins and extraction of ellagic acid from defatted raspberry seeds using natural deep eutectic solvents (NADES). Antioxidants 2022, 11, 254. [Google Scholar] [CrossRef]
- Majewski, M.; Kucharczyk, E.; Kaliszan, R.; Markuszewski, M.; Fotschki, B.; Juśkiewicz, J.; Ognik, M.B.-S.K. The characterization of ground raspberry seeds and the physiological response to supplementation in hypertensive and normotensive rats. Nutrients 2020, 12, 1630. [Google Scholar] [CrossRef]
- De Ancos, B.; González, E.; Cano, M. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Huang, J.; Wong, H.; Li, J.; Zhao, D. Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro. Food Chem. 2023, 404, 134644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; García-Pérez, P.; Martinelli, E.; Giuberti, G.; Trevisan, M.; Lucini, L. Different fractions from wheat flour provide distinctive phenolic profiles and different bioaccessibility of polyphenols following in vitro digestion. Food Chem. 2023, 404, 134540. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, H.; Farzaei, M.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Barreca, D.; Trombetta, D.; Smeriglio, A.; Mandalari, G.; Romeo, O.; Felice, M.; Gattuso, G.; Nabavi, S. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci. Technol. 2021, 117, 194–204. [Google Scholar] [CrossRef]
- Yao, J.; Chen, J.; Yang, J.; Hao, Y.; Fan, Y.; Wang, C.; Li, N. Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. LWT 2021, 135, 109995. [Google Scholar] [CrossRef]
- Anantharaju, P.; Gowda, P.; Vimalambike, M.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Kay, C.; Kroon, P.; Cassidy, A. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol. Nutr. Food Res. 2009, 53, 92–101. [Google Scholar] [CrossRef]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT-Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef]
- Del Bo, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and oxidative stress markers: An overview of human intervention studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.; Wang, Y.; Cui, Y. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [Green Version]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Park, M.; Cho, H.; Jung, H.; Lee, H.; Hwang, K. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. J. Food Biochem. 2014, 38, 259–270. [Google Scholar] [CrossRef]
- Teslić, N.; Bojanić, N.; Čolović, D.; Fišteš, A.; Rakić, D.; Bodroža-Solarov, M.; Zeković, Z.; Pavlić, B. Conventional versus novel extraction techniques for wheat germ oil recovery: Multi-response optimization of supercritical fluid extraction. Sep. Sci. Technol. 2021, 56, 1546–1561. [Google Scholar] [CrossRef]
- Koca, I.; Karadeniz, B. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. (Amst.) 2009, 121, 447–450. [Google Scholar] [CrossRef]
- Antibiotic Disc Interpretative Criteria and Quality Control, Rev.13. Available online: http://www.liofilchem.net/pdf/disc/disc_interpretative_table.pdf (accessed on 14 December 2022).
- Ghudhaib, K.; Hanna, E.; Jawad, A. Effect of ellagic acid on some types of pathogenic bacteria. J. Al-Nahrain Univ. Sci. 2010, 13, 79–85. [Google Scholar] [CrossRef]
- Tomadoni, B.; Viacava, G.; Cassani, L.; Moreira, M.; Ponce, A. Novel biopreservatives to enhance the safety and quality of strawberry juice. J. Food Sci. Technol. 2016, 53, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Cvetnić, Z.; Vladimir-Knežević, S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004, 54, 243–250. [Google Scholar]
- Četojević-Simin, D. Tumor cell growth activity of fruit and pomace extracts. In Fruit and Pomace Extracts: Biological Activity, Potential Applications and Beneficial Health Effects; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015; pp. 241–253. [Google Scholar]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadi, S.; Bhat, S.; Azmi, A.; Hanif, S.; Shamim, U.; Ullah, M. Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties. Semin. Cancer Biol. 2007, 17, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, M.; Katnoria, J.; Nagpal, A. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef] [PubMed]
Variety | Free EA (mg/100 g) * | Total EA (mg/100 g) ** |
---|---|---|
Willamette | 43.05 ± 0.59 b | 859.11 ± 5.45 b |
Polka | 44.29 ± 0.17 b | 732.72 ± 7.75 c |
Meeker | 46.76 ± 1.03 a | 902.44 ± 7.12 a |
Compound | Retention Time (min) | Precursorion (m/z) | Production (m/z) | Sample | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Catechin | 25.30 | 139.0792 | 123.1212 | d | d | d | d | d | d |
Catechin dimer (Procyanidin B) | 26.32 | 289.0438 | 125.6281 | d | d | d | d | d | d |
Kaempferol | 16.32 | 487.2653 | 287.1222 | d | d | d | nd | d | d |
Kaempferol-glucuroside-diramnoside | 15.56 | 588.8521 | 215.5251 | d | d | d | d | d | d |
Kaempferol-glucuronide | 14.32 | 593.4080 | 285.3694 | d | d | nd | d | d | d |
Kaempferol-malonyl hexoside | 16.56 | 515.0803 | 274.0121 | d | d | d | d | d | d |
Kaempferol-rhamnosil dihexoside | 17.01 | 515.1379 | 325.3231 | d | d | nd | d | d | d |
Kaempferol-dihexoside | 16.44 | 518.1514 | 287.2852 | d | d | nd | d | d | d |
Kaempferol-rhamnoside | 15.32 | 575.2322 | 252.0191 | d | d | d | d | d | d |
Epicatechin | 10.32 | 289.5685 | 245.0842 | d | d | d | nd | d | d |
Fisetin | 18.65 | 213.4379 | 139.0087 | d | d | d | d | d | d |
Myricetin | 19.65 | 151.2469 | 108.3229 | d | d | d | d | d | d |
Naringenin | 21.32 | 235.4685 | 124.5924 | d | d | d | d | d | d |
Quercetin | 36.39 | 301.6185 | 151.8237 | d | d | d | d | d | d |
Quercetin-arabinoside | 36.85 | 355.3487 | 147.3417 | d | d | d | d | d | d |
Quercetin-dihexoside | 35.63 | 345.1283 | 175.1474 | d | d | d | d | d | d |
Quercetin-3-(6-o-galloylgalactoside) | 34.52 | 365.1364 | 185.3449 | d | d | d | d | d | d |
Quercetin-glucuronide | 33.32 | 385.0433 | 201.0062 | d | d | d | d | d | d |
Quercetin-hexoside | 36.35 | 355.2776 | 198.1954 | d | d | d | d | d | d |
Quercetin-malonyl-hexoside | 34.52 | 365.0222 | 187.7822 | nd | d | d | nd | d | d |
Rhamnetil-glucuronide | 45.12 | 420.1541 | 179.6961 | d | d | d | d | d | d |
Rhamnetil-malonyl-hexoside | 44.36 | 485.0097 | 198.0891 | d | d | d | d | d | d |
Compound | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Sample | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Chlorogenic acid | 15.65 | 355.2802 | 163.9814 | d | d | d | nd | nd | d |
Caffeic acid | 36.32 | 181.8385 | 163.9882 | d | d | d | d | d | d |
Coumaric acid | 16.32 | 103.0878 | 123.3232 | d | nd | nd | nd | nd | nd |
Ellagic acid | 18.63 | 165.1013 | 101.3014 | d | d | d | d | d | d |
Ferulic acid | 9.56 | 149.5521 | 139.1481 | d | d | d | d | d | d |
Gallic acid | 13.32 | 127.5114 | 109.1745 | d | d | nd | d | d | d |
Compound | Retention Time (min) | Precursorion (m/z) | Production (m/z) | Sample | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Cyanidin-3-O-glucoside | 50.25 | 449.1253 | 128.6344 | d | d | d | d | d | d |
Cyanidin-hexosil-pentoside | 32.52 | 402.0451 | 125.5948 | d | d | d | d | d | nd |
Cyanidin-rhamnetin-dihexoside | 36.32 | 356.1842 | 109.1251 | d | nd | d | d | d | d |
Pelargonidin | 23.25 | 356.0011 | 241.2268 | d | d | d | d | d | d |
Cultivar | DPPH (µmol TE/g) | ABTS (µmol TE/g) | FRAP (µmol Fe2+/g) |
---|---|---|---|
Willamette | 359.76 ± 17.56 a | 217.38 ± 3.01 b | 71.98 ± 3.0 b |
Polka | 330.76 ± 25.99 b | 434.87 ± 18.74 a | 117.12 ± 1.89 a |
Meeker | 336.38 ± 3.69 b | 430.29 ± 4.64 a | 118.30 ± 2.03 a |
Cultivar | Growth Inhibition Zone of Four Bacterial Strains (mm) | |||
---|---|---|---|---|
S. aureus | E. coli | L. monocytogenes | S. enteritidis | |
Willamette | 9.00 ± 1.63 a | 10.00 ± 0.00 a | 9.33 ± 0.47 a | 9.00 ± 0.00 a |
Meeker | 7.33 ± 0.47 a | 7.00 ± 0.00 b | 7.33 ± 0.47 b | 7.33 ± 0.47 a |
Polka | 8.67 ± 0.47 a | 7.00 ± 0.00 b | 7.33 ± 1.25 b | 8.50 ± 0.50 a |
Extraction Method | Variety | IC50 (µg/mL) | ||
---|---|---|---|---|
HeLa | MCF7 | MRC-5 | ||
UAE | Willamette | 12.12 ± 2.67 c2 | 6.47 ± 0.07 bc1,2 | 11.11 ± 1.42 c1 |
Polka | 10.29 ± 2.87 c2 | 8.19 ± 2.42 b2 | 8.98 ± 1.20 c1 | |
Meeker | 5.19 ± 0.49 d1 | 4.92 ± 0.70 c1 | 8.24 ± 1.41 c1 | |
Hydrolysis | Willamette | 31.22 ± 5.58 b1 | 9.32 ± 1.65 b1 | 22.33 ± 2.26 b1 |
Polka | 67.69 ± 7.79 a2 | 30.66 ± 7.59 a2 | 35.93 ± 10.24 a2 | |
Meeker | 69.43 ± 7.48 a2 | 32.49 ± 7.97 a2 | 26.72 ± 3.63 b1 | |
Standard | EA | 2.47 ± 0.40 d | 11.02 ± 0.75 b | 3.43 ± 0.08 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marić, B.; Abramović, B.; Ilić, N.; Bodroža-Solarov, M.; Pavlić, B.; Oczkowski, M.; Wilczak, J.; Četojević-Simin, D.; Šarić, L.; Teslić, N. UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts. Foods 2023, 12, 161. https://doi.org/10.3390/foods12010161
Marić B, Abramović B, Ilić N, Bodroža-Solarov M, Pavlić B, Oczkowski M, Wilczak J, Četojević-Simin D, Šarić L, Teslić N. UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts. Foods. 2023; 12(1):161. https://doi.org/10.3390/foods12010161
Chicago/Turabian StyleMarić, Boško, Biljana Abramović, Nebojša Ilić, Marija Bodroža-Solarov, Branimir Pavlić, Michał Oczkowski, Jacek Wilczak, Dragana Četojević-Simin, Ljubiša Šarić, and Nemanja Teslić. 2023. "UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts" Foods 12, no. 1: 161. https://doi.org/10.3390/foods12010161
APA StyleMarić, B., Abramović, B., Ilić, N., Bodroža-Solarov, M., Pavlić, B., Oczkowski, M., Wilczak, J., Četojević-Simin, D., Šarić, L., & Teslić, N. (2023). UHPLC-Triple-TOF-MS Characterization, Antioxidant, Antimicrobial and Antiproliferative Activity of Raspberry (Rubus idaeus L.) Seed Extracts. Foods, 12(1), 161. https://doi.org/10.3390/foods12010161