Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Olive O/W Emulsions with Oat Bran
2.3. Protein Content
2.4. Technological Properties
2.4.1. Total Fluid Release (TFR) and pH Analysis
2.4.2. Penetration Test
2.5. Structural Characteristics
Attenuated Total Reflectance (ATR)-FTIR Spectroscopy Analysis
2.6. Statistical Analysis
3. Results
3.1. Composition and Energy Value
3.2. Technological Properties
3.2.1. Total Fluid Release (TFR) and pH Analysis
3.2.2. Penetration Test
3.3. Structural Characteristics
Attenuated Total Reflectance (ATR)-FTIR Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, K.P.; Kinsella, J.E. Stability of food emulsions: Physicochemical role of protein and nonprotein emulsifiers. In Advances in Food and Nutrition Research; Kinsella, J.E., Ed.; Academic Press, Inc.: London, UK, 1990; pp. 81–201. [Google Scholar]
- Narsimhan, G. Emulsions. In Physical Chemistry of Foods; Schwartzberg, H.G., Hartel, R.W., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 307–386. [Google Scholar]
- Alweera, A.; Kausar, J.; Rayees, U.; Kaiser, Y. Protein-based functional colloids and their potential applications in food: A review. LWT 2022, 154, 112667. [Google Scholar]
- Jimenez-Colmenero, F.; Salcedo-Sandoval, L.; Bou, R.; Cofrades, S.; Herrero, A.M.; Ruiz-Capillas, C. Novel applications of oil structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci. Technol. 2015, 44, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Colmenero, F. Healthier lipid formulation approaches in meat based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Herrero, A.M.; Ruiz-Capillas, C. Novel lipid materials based on gelling procedures as fat analogues in the development of healthier meat products. Curr. Opin. Food Sci. 2021, 39, 1–6. [Google Scholar] [CrossRef]
- Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Paglarini, C.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit. Rev. Food Sci. 2022, 62, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Q.; Huang, L.; Zhang, Y.X.; Li, H.; Zhao, D.; Cao, J.N.; Liu, X.Q. Application of emulsion gels as fat substitutes in meat products. Foods 2022, 11, 1950. [Google Scholar] [CrossRef]
- López-Miranda, J.; Pérez-Martínez, P.; Pérez-Jiménez, F. Health benefits of monounsaturated fatty acids. In Improving the Fat Content of Foods; Williams, C., Buttriss, J., Eds.; CRC Press LLC & Woodhead Publishing: Cambridge, UK, 2006; pp. 71–106. [Google Scholar]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat proteins: A perspective on functional properties. LWT 2021, 152, 112–307. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, C.; Li, X.; Chen, Z.; Wang, Y.; Zhang, Z.; Niu, X. Properties of oat proteins treated with different drying methods and effects on gel properties of myofibrillar protein. J. Food Sci. Technol. 2021, 39, 53–63. [Google Scholar]
- Robert, L.S.; Nozzolillo, C.; Cudjoe, A.; Altosaar, I. Total solubilization of groat proteins in high protein oat (Avena sativa L. cv. Hinoat): Evidence that glutelins are a minor component. Can. Inst. F Sci. Tec. J. 1983, 16, 196–200. [Google Scholar] [CrossRef]
- Xu, R. Oat fibre: Overview on their main biological properties. Eur. Food Res. Technol. 2012, 234, 563–569. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Limberger-Bayer, V.M.; de Francisco, A.; Chan, A.; Oro, T.; Ogliari, P.J.; Barreto, P.L. Barley β-glucans extraction and partial characterization. Food Chem. 2014, 154, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, M.F. Fibre and water binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Villegas, M.A.; Acosta-Osorio, A.A.; Rojas-Molina, I.; Gutiérrez-Cortéz, E.; Quiroga, M.A.; Gaytán, M.; Herrera, G.; Rodríguez-García, M.E. Study of the physicochemical and pasting properties of instant corn flour added with calcium and fibers from nopal powder. J. Food Eng. 2010, 96, 401–409. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Cordoba-Díaz, M.; Sánchez-Mata, M.C.; Marqués, C.D.; Goñi, I. The addition of cladodes (Opuntia ficus indica L. Miller) to instant maize flour improves physicochemical and nutritional properties of maize tortillas. LWT 2015, 62, 675–681. [Google Scholar] [CrossRef]
- Valoppi, F.; Wang, Y.J.; Alt, G.; Peltonen, L.J.; Mikkonen, K.S. Valorization of native soluble and insoluble oat side streams for stable suspensions and emulsions. Food Bioprocess Technol. 2021, 14, 751–764. [Google Scholar] [CrossRef]
- Mitbumrung, W.; Rungraung, N.; Muangpracha, N.; Akanitkul, P.; Winuprasith, T. Approaches for extracting nanofibrillated cellulose from oat bran and its emulsion capacity and stability. Polymers 2022, 14, 327. [Google Scholar] [CrossRef]
- Ralla, T.; Salminen, H.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Oat bran extract (Avena sativa L.) from food by-product streams as new natural emulsifier. Food Hydrocoll. 2018, 81, 253–262. [Google Scholar] [CrossRef]
- Laine, P.; Toppinen, E.; Kivela, R.; Taavitsainen, V.M.; Knuutila, O.; Sontag-Strohm, T.; Jouppila, K.; Loponen, J. Emulsion preparation with modified oat bran: Optimization of the emulsification process for microencapsulation purposes. J. Food Eng. 2011, 104, 538–547. [Google Scholar] [CrossRef]
- Pintado, T.; Herrero, A.M.; Jimenez-Colmenero, F.; Ruiz-Capillas, C. Emulsion gels as potential fat replacers delivering β-glucan and healthy lipid content for food applications. J. Food Sci. Technol. 2016, 53, 4336–4347. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, S. Protein stabilization of emulsions and foams. J. Food Sci. 2005, 70, R54–R66. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F.; Herrero, A.; Pintado, T.; Solas, M.T.; Ruiz- Capillas, C. Influence of emulsified olive oil stabilizing system used for pork backfat replacement in frankfurters. Food Res. Int. 2010, 43, 2068–2076. [Google Scholar] [CrossRef]
- Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Carmona, P.; Herrero, A.M. Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chem. 2015, 185, 470–478. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Merino-Álvarez, E.; Salvador, M.; Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Herrero, A.M. Chia (Salvia hispanica L.) a promising alternative for conventional and gelled emulsions: Technological and lipid structural characteristics. Gels 2019, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Klose, C.; Arendt, E.K. Proteins in oats; their synthesis and changes during germination: A review. Crit. Rev. Food Sci. 2012, 52, 629–639. [Google Scholar] [CrossRef]
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Regulation (EU) No 432/2012 of the European Parliament and of the Council of 16 may 2012 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health. Eur. Comm. Off. J. Eur. Union 2012, 136, 1–40. [Google Scholar]
- Tapola, N.; Karvonen, H.; Niskanen, L.; Mikola, M.; Sarkkinen, E. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr. Metab. Cardiovas. Dis. 2005, 15, 255–261. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Tosh, S.M.; Gibbs, A.L.; Brand-Miller, J.; Duncan, A.M.; Hart, V.; Lamarche, B.; Thomson, B.A.; Duss, R.; Wood, P.J. Physicochemical properties of oat beta-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am. J. Clin. Nutr. 2010, 92, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Solas, M.T.; Jimenez- Colmenero, F. Healthier lipid combination oil-in-water emulsions prepared with various protein systems: An approach for development of functional meat products. Eur. J. Lipid Sci. Technol. 2010, 112, 791–801. [Google Scholar] [CrossRef]
- Volikakis, P.; Biliaderis, C.G.; Vamvakas, C.; Zerfiridis, G.K. Effects of a commercial oat-beta-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Res. Int. 2004, 37, 83–94. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F.; Cofrades, S.; Herrero, A.M.; Fernandez-Martın, F.; Rodriguez-Salas, L.; Ruiz-Capillas, C. Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocoll. 2012, 26, 63–72. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocoll. 2003, 17, 693–712. [Google Scholar] [CrossRef]
- Vaikousi, H.; Biliaderis, C.G.; Izydorczyk, M.S. Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. J. Cereal Sci. 2004, 39, 119–137. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J Cereal Sci. 2007, 46, 101–118. [Google Scholar] [CrossRef]
- Kalinga, D.; Mishra, V.K. Rheological and physical properties of low fat cakes products by addition of cereal β-glucan concentrates. J. Food Process. Pres. 2009, 33, 384–400. [Google Scholar] [CrossRef]
- Burkus, Z.; Temelli, F. Stabilization of emulsions and foams using barley β-glucan. Food Res. Int. 2000, 33, 27–33. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- van de Voort, F.R.; Sedman, J.; Russin, T. Lipids analysis by vibrational spectroscopy. Eur. J. Lipid Sci. Technol. 2001, 103, 815–840. [Google Scholar] [CrossRef]
- Fraile, M.V.; Patrón-Gallardo, B.; López-Rodríguez, G.; Carmona, P. FT-IR study of multilamellar lipid dispersions containing cholesteryl linoleate and dipalmitoylphosphatidylcholine. Chem. Phys. Lipids 1999, 97, 119–128. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Pintado, T.; Jiménez-Colmenero, F.; Ruíz-Capillas, C. Olive oil-in-water emulsions stabilized with caseinate: Elucidation of protein-lipid interactions by infrared spectroscopy. Food Hydrocoll. 2011, 25, 12–18. [Google Scholar] [CrossRef]
- Ercili-Cura, D.; Miyamoto, A.; Paananen, A.; Yoshii, H.; Poutanen, K.; Partanen, R. Adsorption of oat proteins to air–water interface in relation to their colloidal state. Food Hydrocoll. 2015, 44, 183–190. [Google Scholar] [CrossRef]
- Dickinson, E. Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 2013, 93, 710–721. [Google Scholar] [CrossRef]
- Pintado, T.; Herrero, A.M.; Jiménez-Colmenero, F.; Pasqualin Cavalheiro, C.; Ruiz-Capillas, C. Chia and oat emulsion gels as new animal fat replacers and healthy bioactive sources in fresh sausage formulation. Meat Sci. 2018, 135, 6–13. [Google Scholar] [CrossRef]
- Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Herrero, A.M. Impact of culinary procedures on nutritional and technological properties of reduced-fat longanizas formulated with chia (Salvia hispanica L.) or Oat (Avena sativa L.) emulsion gel. Foods 2020, 9, 1847. [Google Scholar] [CrossRef]
Samples | Olive Oil (%) | Oat Bran (%) | Water (%) | Protein Content * (%) |
---|---|---|---|---|
OBE10 | 40 | 10 | 50 | 2.02 ± 0.27 d |
OBE15 | 40 | 15 | 45 | 2.91 ± 0.43 c |
OBE20 | 40 | 20 | 40 | 4.13 ± 0.51 b |
OBE30 | 40 | 30 | 30 | 5.95 ± 0.38 a |
Samples * | TFR (%) | pH | PF (N) |
---|---|---|---|
OBE10 | 12.13 ± 0.28 a | 7.11 ± 0.04 a | 0.11 ± 0.01 d |
OBE15 | 2.45 ± 0.66 b | 7.14 ± 0.07 a | 0.42 ± 0.04 c |
OBE20 | 0.27 ± 0.03 c | 7.05 ± 0.02 b | 1.09 ± 0.08 b |
OBE30 | 0.00± 0.00 d | 7.06 ± 0.02 b | 1.63 ± 0.07 a |
Samples * | Half-Bandwidth νas CH2 | Half-Bandwidth νs CH2 |
---|---|---|
Olive oil | 27.2 ± 0.2 d | 15.8 ± 0.1 a |
OB10 | 29.9 ± 0.3 a | 16.6 ± 0.9 a |
OB15 | 28.7 ± 0.1 b | 16.4 ± 0.1 a |
OB20 | 28.2 ± 0.3 c | 16.2 ± 0.1a |
OB30 | 28.0 ± 0.3 c | 16.3 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero, A.M.; Merino, E.; Muñoz-González, I.; Ruiz-Capillas, C. Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods 2023, 12, 40. https://doi.org/10.3390/foods12010040
Herrero AM, Merino E, Muñoz-González I, Ruiz-Capillas C. Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods. 2023; 12(1):40. https://doi.org/10.3390/foods12010040
Chicago/Turabian StyleHerrero, Ana M., Esther Merino, Irene Muñoz-González, and Claudia Ruiz-Capillas. 2023. "Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach" Foods 12, no. 1: 40. https://doi.org/10.3390/foods12010040
APA StyleHerrero, A. M., Merino, E., Muñoz-González, I., & Ruiz-Capillas, C. (2023). Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods, 12(1), 40. https://doi.org/10.3390/foods12010040