Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BSG Modification with Plasma Treatment
2.3. Properties of Modified BSG
2.3.1. Surface Morphology
2.3.2. Fourier-Transform Infrared Spectroscopy
2.3.3. Contact Angle
2.3.4. Color Parameters
2.3.5. Rheological Properties
Apparent Viscosity
Temperature Sweep
Time Dependency
Viscoelastic Properties
2.3.6. Surface Tension
2.4. Nanophytosome Preparation
2.5. Film Preparation
2.6. Film Characterization
2.6.1. Thickness and Density
2.6.2. Moisture Content and Solubility
2.6.3. Opacity and Color
2.6.4. Stability of Bioactive Compounds during Storage
2.7. Statistical Analysis
3. Results and Discussion
3.1. Properties of Modified BSG
3.1.1. BSG Microstructure
3.1.2. Fourier-Transform Infrared Spectroscopy
3.1.3. Contact Angle
3.1.4. Color Parameters
3.1.5. Rheological Properties
Apparent Viscosity
Effect of Temperature on Viscosity
Time Dependency
Dynamic Rheological Properties
3.1.6. Surface Tension
3.2. Film Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gahruie, H.H.; Eskandari, M.H.; Van der Meeren, P.; Hosseini, S.M.H. Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydr. Polym. 2019, 219, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naji-Tabasi, S.; Razavi, S.M.A. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll. 2017, 73, 313–325. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Gahruie, H.H.; Mostaghimi, M.; Ghiasi, F.; Tavakoli, S.; Naseri, M.; Hosseini, S.M.H. The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Int. J. Biol. Macromol. 2020, 160, 245–251. [Google Scholar] [CrossRef]
- Osano, J.P.; Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocoll. 2014, 37, 40–48. [Google Scholar] [CrossRef]
- Hosseini-Parvar, S.H.; Osano, J.P.; Matia-Merino, L. Emulsifying properties of basil seed gum: Effect of ph and ionic strength. Food Hydrocoll. 2016, 52, 838–847. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Eskandari, M.H.; Khalesi, M.; Van der Meeren, P.; Hosseini, S.M.H. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocoll. 2020, 101, 105489. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.; O’Neill, L.; Tiwari, B.; Bourke, P.; Cullen, P. Physicochemical characterization of plasma-treated sodium caseinate film. Food Res. Int. 2014, 66, 438–444. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.; O’Neill, L.; Tiwari, B.; Bourke, P.; Cullen, P. Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT-Food Sci. Technol. 2015, 63, 1076–1082. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.-D. Plasmas for medicine. Phys. Rep. 2013, 530, 291–320. [Google Scholar] [CrossRef]
- Amirabadi, S.; Milani, J.M.; Sohbatzadeh, F. Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocoll. 2020, 104, 105724. [Google Scholar] [CrossRef]
- Misra, N.; Yong, H.I.; Phalak, R.; Jo, C. Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum. Food Hydrocoll. 2018, 82, 29–33. [Google Scholar] [CrossRef]
- Bulbul, V.; Bhushette, P.R.; Zambare, R.S.; Deshmukh, R.; Annapure, U.S. Effect of cold plasma treatment on xanthan gum properties. Polym. Test. 2019, 79, 106056. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, J.; Kim, H.-J.; Jo, C. Plasma-induced degradation of quercetin associated with the enhancement of biological activities. J. Agric. Food Chem. 2017, 65, 6929–6935. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Samadi, M.; Fathi, M.; Hashemi Gahruie, H.; Niakousari, M. Study on techno-functional properties of cress seed gum-based composite films incorporated with cinnamon essential oil nanoemulsion. J. Food Meas. Charact. 2022, 1–12. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; Moosavi-Nasab, M.; Krishnaswamy, K.; Khalesi, M. Optimization of gelatin production from barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases. Food Hydrocoll. 2020, 108, 105970. [Google Scholar] [CrossRef]
- Nazari, M.; Ghanbarzadeh, B.; Kafil, H.S.; Zeinali, M.; Hamishehkar, H. Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid Interface Sci. Commun. 2019, 30, 100176. [Google Scholar] [CrossRef]
- Mahajan, K.; Kumar, S.; Bhat, Z.F.; Naqvi, Z.; Mungure, T.E.; Bekhit, A.E.-D.A. Functionalization of carrageenan based edible film using aloe vera for improved lipid oxidative and microbial stability of frozen dairy products. Food Biosci. 2021, 43, 101336. [Google Scholar] [CrossRef]
- Ghiasi, F.; Golmakani, M.-T. Innovative design of bio-functional persian gum-based edible films by incorporating crocin and cinnamaldehyde: Free versus single and double emulsion fabrication techniques. Food Hydrocoll. 2023, 135, 108164. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Tabatabaei, S.D.; Ghiasi, F.; Gahruie, H.H.; Hosseini, S.M.H. Effect of emulsified oil droplets and glycerol content on the physicochemical properties of persian gum-based edible films. Polym. Test. 2022, 106, 107427. [Google Scholar] [CrossRef]
- Aelenei, N.; Popa, M.I.; Novac, O.; Lisa, G.; Balaita, L. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J. Mater. Sci. Mater. Med. 2009, 20, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Behjati, J.; Yazdanpanah, S. Nanoemulsion and emulsion vitamin D3 fortified edible film based on quince seed gum. Carbohydr. Polym. 2021, 262, 117948. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Gao, A.; Zhao, Y.; Li, Y.-t.; Chen, Y. Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food Bioprod. Process. 2017, 106, 65–74. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.; O’Neill, L.; Jiménez, A.; Bourke, P.; Cullen, P. Surface, thermal and antimicrobial release properties of plasma-treated zein films. J. Renew. Mater. 2014, 2, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.; Bourke, P.; Cullen, P. Zein film: Effects of dielectric barrier discharge atmospheric cold plasma. J. Appl. Polym. Sci. 2014, 131, 40803. [Google Scholar] [CrossRef] [Green Version]
- Thirumdas, R.; Saragapani, C.; Ajinkya, M.; Deshmukh, R.; Annapure, U. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innov. Food Sci. Emerg. Technol. 2016, 37, 53–60. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Razavi, S.M.A.; Mohebbi, M.; Malaekeh-Nikouei, B. New studies on basil (Ocimum bacilicum L.) seed gum: Part I–fractionation, physicochemical and surface activity characterization. Food Hydrocoll. 2016, 52, 350–358. [Google Scholar] [CrossRef]
- Kang, J.; Cui, S.W.; Chen, J.; Phillips, G.O.; Wu, Y.; Wang, Q. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food Hydrocoll. 2011, 25, 1984–1990. [Google Scholar] [CrossRef]
- Li, Y.J.; Ha, Y.M.; Wang, F.; Li, Y.F. In Effect of irradiation on the molecular weight, structure and apparent viscosity of xanthan gum in aqueous solution. Adv. Mater. Res. 2011, 239–242, 2632–2637. [Google Scholar] [CrossRef]
- Dimitrakellis, P.; Gogolides, E. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Adv. Colloid Interface Sci. 2018, 254, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Segat, A.; Misra, N.; Cullen, P.; Innocente, N. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov. Food Sci. Emerg. Technol. 2015, 29, 247–254. [Google Scholar] [CrossRef]
- Hosseini-Parvar, S.; Matia-Merino, L.; Goh, K.; Razavi, S.M.A.; Mortazavi, S.A. Steady shear flow behavior of gum extracted from Ocimum basilicum L. Seed: Effect of concentration and temperature. J. Food Eng. 2010, 101, 236–243. [Google Scholar] [CrossRef]
- Ghiasi, F.; Eskandari, M.H.; Golmakani, M.T.; Gahruie, H.H.; Zarei, R.; Naghibalhossaini, F.; Hosseini, S.M.H. A novel promising delivery system for cuminaldehyde using gelled lipid nanoparticles: Characterization and anticancer, antioxidant, and antibacterial activities. Int. J. Pharm. 2021, 610, 121274. [Google Scholar] [CrossRef]
- Sadar, L.N. Rheological and Textural Characteristics of Copolymerized Hydrocolloidal Solutions Containing Curdlan Gum. Master’s Thesis, University of Maryland, College Park, MD, USA, 2004. [Google Scholar]
- Zhang, B.; Chen, L.; Li, X.; Li, L.; Zhang, H. Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocoll. 2015, 50, 228–236. [Google Scholar] [CrossRef]
- Zou, J.-J.; Liu, C.-J.; Eliasson, B. Modification of starch by glow discharge plasma. Carbohydr. Polym. 2004, 55, 23–26. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Razavi, S.M.A. New studies on basil (Ocimum bacilicum L.) seed gum: Part III—Steady and dynamic shear rheology. Food Hydrocoll. 2017, 67, 243–250. [Google Scholar] [CrossRef]
- Amirabadi, S.; Milani, J.M.; Sohbatzadeh, F. Effects of cold atmospheric-pressure plasma on the rheological properties of gum arabic. Food Hydrocoll. 2021, 117, 106724. [Google Scholar] [CrossRef]
- Razavi, S.; Naji-Tabasi, S. Rheology and texture of basil seed gum: A new hydrocolloid source. In Advances in Food Rheology and Its Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 405–435. [Google Scholar]
- N’gouamba, E.; Essadik, M.; Goyon, J.; Oerther, T.; Coussot, P. Yielding and rheopexy of aqueous xanthan gum solutions. Rheol. Acta 2021, 60, 653–660. [Google Scholar] [CrossRef]
- Hosseini-Parvar, S. Basil Seed Gum (BSG): Physico-Chemical, Rheological and Emulsifying Characterization and Its Synergistic Interactions in Combination with Locust Bean Gum and Guar Gum. Master’s Thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 2009. [Google Scholar]
- Kutz, M. Handbook of Farm, Dairy and Food Machinery Engineering; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Ghiasi, F.; Eskandari, M.H.; Golmakani, M.-T.; Hosseini, S.M.H. Development of highly stable colloidal dispersions of gelled-oil nanoparticles loaded with cuminaldehyde. J. Colloid Interface Sci. 2019, 541, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Rafe, A.; Razavi, S.M.; Farhoosh, R. Rheology and microstructure of basil seed gum and β-lactoglobulin mixed gels. Food Hydrocoll. 2013, 30, 134–142. [Google Scholar] [CrossRef]
- Rafe, A.; Razavi, S.M. Dynamic viscoelastic study on the gelation of basil seed gum. Int. J. Food Sci. Technol. 2013, 48, 556–563. [Google Scholar] [CrossRef]
- Wei, Y.; Lin, Y.; Xie, R.; Xu, Y.; Yao, J.; Zhang, J. The flow behavior, thixotropy and dynamical viscoelasticity of fenugreek gum. J. Food Eng. 2015, 166, 21–28. [Google Scholar] [CrossRef]
- Garti, N.; Reichman, D. Hydrocolloids as food emulsifiers and stabilizers. Food Struct. 1993, 12, 3. [Google Scholar]
- Chu, P.K.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381. [Google Scholar] [CrossRef]
- Asadi-Yousefabad, S.H.; Mohammadi, S.; Ghasemi, S.; Saboktakin-Rizi, K.; Sahraeian, S.; Asadi, S.S.; Hashemi, M.; Ghaffari, H.R. Development of fortified milk with gelled-oil nanoparticles incorporated with cinnamaldehyde and tannic acid. LWT 2022, 154, 112652. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
C | 37.67 ± 1.53 A | 11.67 ± 0.58 A | 25.67 ± 0.58 A | 62.46 ± 1.33 A |
CP10 | 37.33 ± 1.53 A | 11.33 ± 0.58 A | 25.33 ± 0.58 A | 62.56 ± 1.50 A |
CP20 | 37.33 ± 0.58 A | 12.00 ± 1.00 A | 25.33 ± 0.58 A | 62.34 ± 1.27 A |
CP30 | 38.33 ± 1.15 A | 11.67 ± 0.58 A | 26.33 ± 1.15 A | 62.26 ± 1.21 A |
Sample | C | CP10 | CP20 | CP30 | |
---|---|---|---|---|---|
Apparent viscosity (mPa.s) | 105.72 | 112.94 | 138.35 | 144.84 | |
Rheological model | |||||
Power Law | k (Pa.sn) | 0.46 | 0.39 | 0.38 | 0.35 |
n | 0.53 | 0.68 | 0.89 | 0.96 | |
R2 (%) | 95.54 | 94.14 | 96.79 | 93.92 | |
Casson | kc (Pa.s0.5) | 0.14 | 0.12 | 0.13 | 0.12 |
τ0 (Pa) | 0.84 | 0.90 | 0.98 | 0.99 | |
R2 (%) | 99.76 | 99.66 | 99.33 | 99.53 | |
Bingham | μ (Pa.s) | 0.030 | 0.027 | 0.031 | 0.029 |
τ0 (Pa) | 1.02 | 1.17 | 1.59 | 1.56 | |
R2 (%) | 98.79 | 98.99 | 97.99 | 99.06 | |
Herschel–Bulkely | k (Pa.sn) | 0.64 | 0.82 | 1.06 | 1.30 |
n | 0.41 | 0.34 | 0.34 | 0.27 | |
τ0 (Pa) | 0.56 | 0.67 | 0.67 | 0.93 | |
R2 (%) | 92.70 | 89.98 | 94.68 | 86.14 |
BSG-C | BSG-Phytosome | BSG-Free | |
---|---|---|---|
Thickness (μm) | 55.03 ± 7.33 A | 63.50 ± 12.70 A | 67.73 ± 14.66 A |
Density (g/cm3) | 1.15 ± 0.02 A | 1.03 ± 0.01 B | 0.94 ± 0.02 C |
Opacity (1/mm) | 7.67 ± 0.19 C | 8.58 ± 0.10 B | 9.54 ± 0.12 A |
Moisture content (%) | 9.91 ± 0.47 A | 7.36 ± 0.46 B | 8.34 ± 0.76 B |
Solubility (%) | 48.13 ± 0.41 A | 38.76 ± 1.26 C | 42.75 ± 1.49 B |
BSG-C | BSG-Phytosome | BSG-Free | |
---|---|---|---|
L* | 63.33 ± 1.15 A | 48.00 ± 1.00 C | 52.33 ± 1.15 B |
a* | 5.33 ± 0.58 C | 9.00 ± 1.00 A | 7.33 ± 0.58 B |
b* | 30.33 ± 1.15 C | 34.33 ± 0.58 A | 32.67 ± 0.58 B |
ΔE | 43.03 ± 0.06 C | 57.62 ± 0.90 A | 52.98 ± 0.63 B |
WI | 52.09 ± 0.15 A | 37.03 ± 0.92 C | 41.74 ± 0.70 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi Gahruie, H.; Eskandari, M.H.; Sadeghi, R.; Hosseini, S.M.H. Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid. Foods 2023, 12, 71. https://doi.org/10.3390/foods12010071
Hashemi Gahruie H, Eskandari MH, Sadeghi R, Hosseini SMH. Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid. Foods. 2023; 12(1):71. https://doi.org/10.3390/foods12010071
Chicago/Turabian StyleHashemi Gahruie, Hadi, Mohammad Hadi Eskandari, Rohollah Sadeghi, and Seyed Mohammad Hashem Hosseini. 2023. "Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid" Foods 12, no. 1: 71. https://doi.org/10.3390/foods12010071
APA StyleHashemi Gahruie, H., Eskandari, M. H., Sadeghi, R., & Hosseini, S. M. H. (2023). Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid. Foods, 12(1), 71. https://doi.org/10.3390/foods12010071