Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Preparation of Mung Bean Protein Isolate (MBPI)
2.3. Preparation of MTG-Treated MBPI
2.4. Effects of MTG Treatment on MBPI
2.4.1. Electrophoresis
2.4.2. Surface Hydrophobicity (H0)
2.4.3. Protein Solubility
2.5. Techno-Functional Properties
2.5.1. Water- and Oil-Holding Capacity (WHC/OHC)
2.5.2. Emulsifying Capacity and Stability (EC/ES)
2.5.3. Foaming Capacity and Stability (FC/FS)
2.5.4. Least Gelling Concentration (LGC)
2.6. Characterization of Heat-Induced Protein Gel
2.6.1. Texture Profile Analysis (TPA)
2.6.2. Field Emission Scanning Electron Microscopy (FE-SEM)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Electrophoresis
3.2. Surface Hydrophobicity (H0)
3.3. Protein Solubility
3.4. Techno-Functional Properties
3.4.1. Water- and Oil- Holding Capacity (WHC/OHC)
3.4.2. Emulsifying Capacity and Stability (EC/ES)
3.4.3. Foaming Capacity and Stability (FC/FS)
3.4.4. Least Gelling Concentration (LGC)
3.5. Characterization of Heat-Induced Protein Gels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products—A Review. Int. J. Food Ferment. Technol. 2015, 5, 107. [Google Scholar] [CrossRef]
- Liu, K. Chemistry and Nutritional Value of Soybean Components. Soybeans 1997, 25–113. [Google Scholar] [CrossRef]
- Cabrera-Orozco, A.; Jimenez-Martinez, C.; Davila-Ortiz, G. Soybean: Non-Nutritional Factors and Their Biological Functionality. Soybean—Bio-Active Compd. 2013, 387–410. [Google Scholar] [CrossRef]
- Pi, X.; Wan, Y.; Yang, Y.; Li, R.; Wu, X.; Xie, M.; Li, X.; Fu, G. Research Progress in Peanut Allergens and Their Allergenicity Reduction. Trends Food Sci. Technol. 2019, 93, 212–220. [Google Scholar] [CrossRef]
- Xia, J.; Zu, Q.; Yang, A.; Wu, Z.; Li, X.; Tong, P.; Yuan, J.; Wu, Y.; Fan, Q.; Chen, H. Allergenicity Reduction and Rheology Property of Lactobacillus-Fermented Soymilk. J. Sci. Food Agric. 2019, 99, 6841–6849. [Google Scholar] [CrossRef]
- Shahrajabian, M.H. A Short Review of Health Benefits and Nutritional Values of Mung Bean in Sustainable Agriculture. Polish J. Agron. 2019, 37, 31–36. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Kudre, T.G.; Benjakul, S.; Kishimura, H. Comparative Study on Chemical Compositions and Properties of Protein Isolates from Mung Bean, Black Bean and Bambara Groundnut. J. Sci. Food Agric. 2013, 93, 2429–2436. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.X.; Mata, A.; Corke, H.; Gan, R.Y.; Fang, Y. Physicochemical and PH-Dependent Functional Properties of Proteins Isolated from Eight Traditional Chinese Beans. Food Hydrocoll. 2021, 112, 106288. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zhang, S.; Zhao, X.; Liu, Y.; Jiang, J.; Xiong, Y.L. Structural and Rheological Properties of Mung Bean Protein Emulsion as a Liquid Egg Substitute: The Effect of PH Shifting and Calcium. Food Hydrocoll. 2022, 126, 107485. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Functional Properties and Nutritional Quality of Acetylated and Succinylated Mung Bean Protein Isolate. Food Chem. 2000, 70, 83–91. [Google Scholar] [CrossRef]
- Motoki, M.; Seguro, K. Transglutaminase and Its Use for Food Processing. Trends Food Sci. Technol. 1998, 9, 204–210. [Google Scholar] [CrossRef]
- Gulzar, S.; Tagrida, M.; Patil, U.; Ma, L.; Zhang, B.; Benjakul, S. Mung Bean Protein Isolate Treated with High-Intensity Pulsed Electric Field: Characteristics and Its Use for Encapsulation of Asian Seabass Oil. J. Microencapsul. 2023, 1, 21. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.K.; Alizadeh, M. Isolated Mung Bean Protein-Pectin Nanocomposite Film Containing True Cardamom Extract Microencapsulation/CeO2 Nanoparticles/Graphite Carbon Quantum Dots: Investigating Fluorescence, Photocatalytic and Antimicrobial Properties. Food Packag. Shelf Life 2022, 33, 100912. [Google Scholar] [CrossRef]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of Drying Techniques on the Physicochemical, Functional, Thermal, Structural and Rheological Properties of Mung Bean (Vigna radiata) Protein Isolate Powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef]
- Liu, C.; Damodaran, S.; Heinonen, M. Effects of Microbial Transglutaminase Treatment on Physiochemical Properties and Emulsifying Functionality of Faba Bean Protein Isolate. LWT 2019, 99, 396–403. [Google Scholar] [CrossRef]
- Li, J.; Wu, M.; Wang, Y.; Li, K.; Du, J.; Bai, Y. Effect of PH-Shifting Treatment on Structural and Heat Induced Gel Properties of Peanut Protein Isolate. Food Chem. 2020, 325, 126921. [Google Scholar] [CrossRef]
- Liu, F.F.; Li, Y.Q.; Wang, C.Y.; Zhao, X.Z.; Liang, Y.; He, J.X.; Mo, H.Z. Impact of PH on the Physicochemical and Rheological Properties of Mung Bean (Vigna radiata L.) Protein. Process Biochem. 2021, 111, 274–284. [Google Scholar] [CrossRef]
- Cortés-Ríos, J.; Zárate, A.M.; Figueroa, J.D.; Medina, J.; Fuentes-Lemus, E.; Rodríguez-Fernández, M.; Aliaga, M.; López-Alarcón, C. Protein Quantification by Bicinchoninic Acid (BCA) Assay Follows Complex Kinetics and Can Be Performed at Short Incubation Times. Anal. Biochem. 2020, 608, 113904. [Google Scholar] [CrossRef]
- Ahmedna, M.; Prinyawiwatkul, W.; Rao, R.M. Solubilized Wheat Protein Isolate: Functional Properties and Potential Food Applications. J. Agric. Food Chem. 1999, 47, 1340–1345. [Google Scholar] [CrossRef]
- Jeong, M.S.; Lee, S.D.; Cho, S.J. Effect of Three Defatting Solvents on the Techno-Functional Properties of an Edible Insect (Gryllus bimaculatus) Protein Concentrate. Molecules 2021, 26, 5307. [Google Scholar] [CrossRef] [PubMed]
- O’kane, F.E.; Happe, R.P.; Vereijken, J.M.; Gruppen, H.; van Boekel, M.A. Characterization of Pea Vicilin. 2. Consequences of Compositional Heterogeneity on Heat-Induced Gelation Behavior. ACS Publ. 2004, 52, 3149–3154. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Chen, J.; Zhang, J.; Sheng, L. Impact of Phosphates on Heat-Induced Egg White Gel Properties: Texture, Water State, Micro-Rheology and Microstructure. Food Hydrocoll. 2021, 110, 106200. [Google Scholar] [CrossRef]
- Shrestha, S.; van ’t Hag, L.; Haritos, V.; Dhital, S. Comparative Study on Molecular and Higher-Order Structures of Legume Seed Protein Isolates: Lentil, Mungbean and Yellow Pea. Food Chem. 2023, 411, 135464. [Google Scholar] [CrossRef] [PubMed]
- Rahma, E.H.; Dudek, S.; Mothes, R.; Görnitz, E.; Schwenke, K.D. Physicochemical Characterization of Mung Bean (Phaseolus aureus) Protein Isolates. J. Sci. Food Agric. 2000, 80, 477–483. [Google Scholar] [CrossRef]
- Basman, A.; Köksel, H.; Ng, P.K.W. Effects of Transglutaminase on SDS-PAGE Patterns of Wheat, Soy, and Barley Proteins and Their Blends. J. Food Sci. 2002, 67, 2654–2658. [Google Scholar] [CrossRef]
- Han, X.; Liang, Z.; Tian, S.; Liu, L.; Wang, S. Modification of Whey−soybean Mixed Protein by Sequential High-Pressure Homogenization and Transglutaminase Treatment. LWT 2022, 172, 114217. [Google Scholar] [CrossRef]
- Nivala, O.; Nordlund, E.; Kruus, K.; Ercili-Cura, D. The Effect of Heat and Transglutaminase Treatment on Emulsifying and Gelling Properties of Faba Bean Protein Isolate. LWT 2021, 139, 110517. [Google Scholar] [CrossRef]
- Agyare, K.K.; Addo, K.; Xiong, Y.L. Emulsifying and Foaming Properties of Transglutaminase-Treated Wheat Gluten Hydrolysate as Influenced by PH, Temperature and Salt. Food Hydrocoll. 2009, 23, 72–81. [Google Scholar] [CrossRef]
- Gaspar, A.L.C.; De Góes-Favoni, S.P. Action of Microbial Transglutaminase (MTGase) in the Modification of Food Proteins: A Review. Food Chem. 2015, 171, 315–322. [Google Scholar] [CrossRef]
- Shi, A.M.; Jiao, B.; Liu, H.Z.; Zhu, S.; Shen, M.J.; Feng, X.L.; Hu, H.; Liu, L.; Faisal, S.; Wang, Q.; et al. Effects of Proteolysis and Transglutaminase Crosslinking on Physicochemical Characteristics of Walnut Protein Isolate. LWT 2018, 97, 662–667. [Google Scholar] [CrossRef]
- Tang, C.H.; Sun, X.; Yin, S.W.; Ma, C.Y. Transglutaminase-Induced Cross-Linking of Vicilin-Rich Kidney Protein Isolate: Influence on the Functional Properties and in Vitro Digestibility. Food Res. Int. 2008, 41, 941–947. [Google Scholar] [CrossRef]
- Ahn, H.J.; Kim, J.H.; Ng, P.K.W. Functional and Thermal Properties of Wheat, Barley, and Soy Flours and Their Blends Treated with a Microbial Transglutaminase. J. Food Sci. 2005, 70, c380–c386. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Xu, Z.; Shan, M.; Ge, X.; Zhang, Y.; Shao, S.; Huang, L.; Wang, W.; Lu, F. Effects of Bacillus Subtilis Transglutaminase Treatment on the Functional Properties of Whey Protein. LWT 2019, 116, 108559. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of Drying Methods on Physico-Chemical and Functional Properties of Chickpea Protein Concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
- Mokni Ghribi, A.; Maklouf Gafsi, I.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S. Effects of Enzymatic Hydrolysis on Conformational and Functional Properties of Chickpea Protein Isolate. Food Chem. 2015, 187, 322–330. [Google Scholar] [CrossRef]
- Zhu, Y.; Fu, S.; Wu, C.; Qi, B.; Teng, F.; Wang, Z.; Li, Y.; Jiang, L. The Investigation of Protein Flexibility of Various Soybean Cultivars in Relation to Physicochemical and Conformational Properties. Food Hydrocoll. 2020, 103, 105709. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Li, Y. Effects of Flexibility and Surface Hydrophobicity on Emulsifying Properties: Ultrasound-Treated Soybean Protein Isolate. LWT 2021, 142, 110881. [Google Scholar] [CrossRef]
- Glusac, J.; Isaschar-Ovdat, S.; Fishman, A. Transglutaminase Modifies the Physical Stability and Digestibility of Chickpea Protein-Stabilized Oil-in-Water Emulsions. Food Chem. 2020, 315, 126301. [Google Scholar] [CrossRef]
- Babiker, E.E. Effect of Transglutaminase Treatment on the Functional Properties of Native and Chymotrypsin-Digested Soy Protein. Food Chem. 2000, 70, 139–145. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Nie, Y.; Yang, M.; Wu, W.; Wang, Z.; Wang, X.; Zhong, J. Effect of Transglutaminase Crosslinking on the Structural, Physicochemical, Functional, and Emulsion Stabilization Properties of Three Types of Gelatins. LWT 2022, 163, 113543. [Google Scholar] [CrossRef]
- Pinterits, A.; Arntfield, S.D. Improvement of Canola Protein Gelation Properties through Enzymatic Modification with Transglutaminase. LWT 2008, 41, 128–138. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation Properties of Salt-Extracted Pea Protein Isolate Catalyzed by Microbial Transglutaminase Cross-Linking. Food Hydrocoll. 2011, 25, 25–31. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Acevedo, N.C. Effects of Pre-Heating Soybean Protein Isolate and Transglutaminase Treatments on the Properties of Egg-Soybean Protein Isolate Composite Gels. Food Chem. 2020, 318, 126421. [Google Scholar] [CrossRef] [PubMed]
Fraction | Sample | |||
---|---|---|---|---|
MBPI | CTL | MTM4 | MTM8 | |
WHC (g/g) | 1.90 ± 0.03 a | 2.00 ± 0.05 a | 3.74 ± 0.12 b | 4.08 ± 0.08 b |
OHC (g/g) | 2.16 ± 0.07 ab | 2.28 ± 0.14 b | 2.03 ± 0.12 a | 2.10 ± 0.04 ab |
EC (%, v/v) | 54.2 ± 3.6 a | 56.3 ± 0.0 a | 66.7 ± 3.6 b | 68.8 ± 0.0 b |
ES (%, v/v) | 94.6 ± 1.1 a | 94.5 ± 5.1 a | 97.0 ± 5.3 a | 97.3 ± 2.4 a |
FC (%, v/v) | 40.0 ± 0.0 a | 36.7 ± 2.9 a | 36.7 ± 2.9 a | 38.3 ± 2.9 a |
FS (%, v/v) | 54.2 ± 7.2 c | 27.4 ± 2.1 a | 45.2 ± 4.1 b | 39.3 ± 3.1 b |
LGC (%, w/w) | 22.3 ± 0.6 b | 22.3 ± 0.6 b | 12.7 ± 0.6 a | 12.3 ± 0.6 a |
Parameter | Sample Gel | |||
---|---|---|---|---|
MBPI | CTL | MTM4 | MTM8 | |
Hardness (g) | 1310.9 ± 50.3 a | 1339.9 ± 68.5 a | 1754.6 ± 71.8 b | 1907.5 ± 20.2 c |
Adhesiveness (g·s) | −32.9 ± 3.1 a | −29.8 ± 1.9 a | −16.4 ± 1.4 b | −11.2 ± 1.6 c |
Springiness | 1.0 ± 0.0 a | 1.0 ± 0.0 a | 1.0 ± 0.0 a | 1.0 ± 0.0 a |
Cohesiveness | 1.16 ± 0.07 a | 1.31 ± 0.06 a | 1.08 ± 0.03 a | 1.08 ± 0.03 a |
Gumminess (g) | 1524.54 ± 133.0 a | 1513.6 ± 40.1 a | 1897.4 ± 85.6 b | 2066.1 ± 41.8 c |
Chewiness (g) | 1518.44 ± 132.5 a | 1507.5 ± 40.0 a | 1897.1 ± 84.0 b | 2059.2 ± 42.6 c |
Resilience | 0.14 ± 0.00 ab | 0.15 ± 0.01 bc | 0.13 ± 0.01 a | 0.15 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.-H.; Cho, S.-J. Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate. Foods 2023, 12, 1998. https://doi.org/10.3390/foods12101998
Moon S-H, Cho S-J. Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate. Foods. 2023; 12(10):1998. https://doi.org/10.3390/foods12101998
Chicago/Turabian StyleMoon, Su-Hyeon, and Seong-Jun Cho. 2023. "Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate" Foods 12, no. 10: 1998. https://doi.org/10.3390/foods12101998
APA StyleMoon, S.-H., & Cho, S.-J. (2023). Effect of Microbial Transglutaminase Treatment on the Techno-Functional Properties of Mung Bean Protein Isolate. Foods, 12(10), 1998. https://doi.org/10.3390/foods12101998