Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork—Focus on Pork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Data Collection
2.2. Manuscript Inclusion/Exclusion Criteria
2.3. Database
2.4. Data Analysis
3. Results
4. Discussion
4.1. Variation within the Meta-Analysis across Species
4.2. Meta-Analysis of Pork Only Studies—Water Holding Capacity
4.3. Meta-Analysis across Pork Only Studies—Sensory Tenderness
4.4. Meta Analysis and Linear Regression of Pork Only Studies—WBSF
4.5. Pork Fibre Type and Colour
4.6. Meta-Analysis across Pork Only Studies—pH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karlsson, A.H.; Klont, R.E.; Fernandez, X. Skeletal muscle fibres as factors for pork quality. Livest. Prod. Sci. 1999, 60, 255–269. [Google Scholar] [CrossRef]
- Kim, G.D.; Jeong, J.Y.; Jung, E.Y.; Yang, H.S.; Lim, H.T.; Joo, S.T. The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Sci. 2013, 94, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef]
- Bendall, J.R. Relations between muscle pH and important biochemical parameters during the postmortem changes in mammalian muscles. Meat Sci. 1979, 3, 143–157. [Google Scholar] [CrossRef]
- Hughes, J.; Clarke, F.; Purslow, P.; Warner, R. High pH in beef longissimus thoracis reduces muscle fibre transverse shrinkage and light scattering which contributes to the dark colour. Food Res. Int. 2017, 101, 228–238. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 372, n71. [Google Scholar] [CrossRef]
- Chauhan, S.S.; LeMaster, M.N.; Clark, D.L.; Foster, M.K.; Miller, C.E.; England, E.M. Glycolysis and pH Decline Terminate Prematurely in Oxidative Muscles Despite the Presence of Excess Glycogen. Meat Muscle Biol. 2019, 3, 254–264. [Google Scholar] [CrossRef]
- Aberle, E.D.; Forrest, J.C.; Gerrard, D.E.; Mills, E.W. Principles of Meat Sciemce, 5th ed.; Hunt Publishing Company: Dubuque, LA, USA, 2012; Volume 5. [Google Scholar]
- Klont, R.E.; Brocks, L.; Eikelenboom, G. Muscle Fibre Type and Meat Quality. Meat Sci. 1998, 49, 219–229. [Google Scholar] [CrossRef]
- James, F.; Schweigert, B. The Science of Meat and Meat Products. In The Science of Meat and Meat Products, 3rd ed.; Food and Nutrition Pree Inc.: Westport, CT, USA, 1987. [Google Scholar]
- Warner, R.D.; Kauffman, R.G.; Russel, R.L. Quality attributes of major porcine muscles: A comparison with the longissimus lumborum. Meat Sci. 1993, 33, 359–372. [Google Scholar] [CrossRef]
- Seideman, S.C.; Crouse, J.D.; Cross, H.R. The effect of sex condition and growth implants on bovine muscle fiber characteristics. Meat Sci. 1986, 17, 79–95. [Google Scholar] [CrossRef]
- Bekhit, A.E.; Faustman, C. Metmyoglobin reducing activity. Meat Sci. 2005, 71, 407–439. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, D.; Zhou, G.; Xu, X.; Qi, J.; Shi, P.; Xia, T. Meat quality and cooking attributes of thawed pork with different low field NMR T 21. Meat Sci. 2011, 92, 79–83. [Google Scholar] [CrossRef]
- Tornberg, E.V. Effects of heat on meat proteins-Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Ha, M.; Ong, L.; Chen, G.; White, J.D.; Gras, S.; Warner, R. Myosin sensitivity to thermal denaturation explains differences in water loss and shrinkage during cooking in muscles of distinct fibre types. Meat Sci. 2021, 179, 108521. [Google Scholar] [CrossRef]
- Monin, G.; Sellier, P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci. 1985, 13, 49–63. [Google Scholar] [CrossRef]
- Lee, S.H.; Choe, J.H.; Choi, Y.M.; Jung, K.C.; Rhee, M.S.; Hong, K.C.; Lee, S.K.; Ryu, Y.C.; Kim, B.C. The influence of pork quality traits and muscle fiber characteristics on the eating quality of pork from various breeds. Meat Sci. 2012, 90, 284–291. [Google Scholar] [CrossRef]
- Song, S.; Ahn, C.H.; Song, M.; Kim, G.D. Pork Loin Chop Quality and Muscle Fiber Characteristics as Affected by the Direction of Cut. Foods 2020, 10, 43. [Google Scholar] [CrossRef]
- Crouse, J.D.; Koohmaraie, M.; Seideman, S.D. The relationship of muscle fibre size to tenderness of beef. Meat Sci. 1991, 30, 295–302. [Google Scholar] [CrossRef]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef]
- Totland, G.K.; Kryvi, H.; Slinde, E. Composition of muscle fibre types and connective tissue in bovine M. semitendinosus and its relation to tenderness. Meat Sci. 1988, 23, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Calkins, C.R.; Dutson, T.R.; Smith, G.C.; Carpenter, Z.L.; Davis, G.W. Relationship of Fiber Type Composition to Marbling and Tenderness of Bovine Muscle. J. Food Sci. 1981, 46, 708–710. [Google Scholar] [CrossRef]
- Huff Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Zybert, A.; Tarczyński, K.; Sieczkowska, H.; Krzęcio-Nieczyporuk, E.; Antosik, K. Relationship of glycogen and lactate concentrations as a pork quality indicator. S. Afr. J. Anim. Sci. 2020, 50, 26–37. [Google Scholar] [CrossRef]
- Lean, I.J.; Thompson, J.M.; Dunshea, F.R. A Meta-Analysis of Zilpaterol and Ractopamine Effects on Feedlot Performance, Carcass Traits and Shear Strength of Meat in Cattle. PLoS ONE 2014, 9, e115904. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Kang, Y.K.; Choi, Y.M.; Lee, S.H.; Choe, J.H.; Hong, K.C.; Kim, B.C. Effects of myosin heavy chain isoforms on meat quality, fatty acid composition, and sensory evaluation in Berkshire pigs. Meat Sci. 2011, 89, 384–389. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef]
- Chang, K.C.; da Costa, N.; Blackley, R.; Southwood, O.; Evans, G.; Plastow, G.; Wood, J.D.; Richardson, R.I. Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci. 2003, 64, 93–103. [Google Scholar] [CrossRef]
- Velotto, S.; Ashkezary, M.R.; De Camillis, S.; Todaro, A. Myosin heavy chain isoforms, fatty acid composition, sensory evaluation and quality of cinta senese pig meat. Ital. J. Food Sci. 2018, 30, 650–661. [Google Scholar]
- Kim, G.D.; Yang, H.S.; Jeong, J.Y. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality. Food Chem. 2018, 244, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.W.; Choi, Y.M.; Lee, S.H.; Choe, J.H.; Hong, K.C.; Park, H.C.; Kim, B.C. Correlations of trained panel sensory values of cooked pork with fatty acid composition, muscle fiber type, and pork quality characteristics in Berkshire pigs. Meat Sci. 2010, 86, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Henckel, P.; Oksbjerg, N.; Erlandsen, E.; Barton-Gade, P.; Bejerholm, C. Histo- and biochemical characteristics of the longissimus dorsi muscle in pigs and their relationships to performance and meat quality. Meat Sci. 1997, 47, 311–321. [Google Scholar] [CrossRef]
- Nam, Y.J.; Choi, Y.M.; Lee, S.H.; Choe, J.H.; Jeong, D.W.; Kim, Y.Y.; Kim, B.C. Sensory evaluations of porcine longissimus dorsi muscle: Relationships with postmortem meat quality traits and muscle fiber characteristics. Meat Sci. 2009, 83, 731–736. [Google Scholar] [CrossRef]
- Fiedler, I.; Ender, K.; Wicke, M.; Maak, S.; Lengerken, G.; Meyer, W. Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci. 1999, 53, 9–15. [Google Scholar] [CrossRef]
- Picard, B.; Jurie, C.; Duris, M.P.; Renand, G. Consequences of selection for higher growth rate on muscle fibre development in cattle. Livest. Sci. 2006, 102, 107–120. [Google Scholar] [CrossRef]
- Wojtysiak, D.; Połtowicz, K. Carcass quality, physico-chemical parameters, muscle fibre traits and myosin heavy chain composition of m. longissimus lumborum from Puławska and Polish Large White pigs. Meat Sci. 2014, 97, 395–403. [Google Scholar] [CrossRef]
- Fiedler, I.; Nürnberg, K.; Hardge, T.; Nürnberg, G.; Ender, K. Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population Duroc × Berlin Miniature Pig and relationships to meat quality. Meat Sci. 2003, 63, 131–139. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, S.H.; Choe, J.H.; Rhee, M.S.; Lee, S.K.; Joo, S.T.; Kim, B.C. Protein solubility is related to myosin isoforms, muscle fiber types, meat quality traits, and postmortem protein changes in porcine longissimus dorsi muscle. Livest. Sci. 2009, 127, 183–191. [Google Scholar] [CrossRef]
- Choi, Y.M.; Kim, B.C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest. Sci. 2009, 122, 105–118. [Google Scholar] [CrossRef]
- Straadt, I.K.; Rasmussen, M.; Andersen, H.J.; Bertram, H.C. Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss-A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study. Meat Sci. 2007, 75, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, R.; Ledward, D. Lawrie’s Meat Science. In Lawrie’s Meat Science, 7th ed.; Limited, W.P., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2006; pp. 128–155, 280–337. [Google Scholar]
- Li, R.; Carpenter, J.A.; Cheney, R. Sensory and Instrumental Properties of Smoked Sausage Made with Mechanically Separated Poultry (MSP) Meat and Wheat Protein. J. Food Sci. 1998, 63, 923–929. [Google Scholar] [CrossRef]
- Christensen, M.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Olleta, J.L.; Panea, B.; Albertí, P.; Juárez, M.; Hocquette, J.F.; et al. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2010, 87, 61–65. [Google Scholar] [CrossRef]
- Ngapo, T.M.; Martin, J.F.; Dransfield, E. Consumer choices of pork chops: Results from three panels in France. Food Qual. Prefer. 2004, 15, 349–359. [Google Scholar] [CrossRef]
- Norman, J.L.; Berg, E.P.; Heymann, H.; Lorenzen, C.L. Pork loin color relative to sensory and instrumental tenderness and consumer acceptance. Meat Sci. 2003, 65, 927–933. [Google Scholar] [CrossRef]
- Bredahl, L.; Grunert, K.G.; Fertin, C. Relating consumer perceptions of pork quality to physical product characteristics. Food Qual. Prefer. 1998, 9, 273–281. [Google Scholar] [CrossRef]
- Strydom, P.E.; Naude, R.T.; Smith, M.F.; Scholtz, M.M.; Van Wyk, J.B. Characterisation of indigenous African cattle breeds in relation to meat quality traits. Meat Sci. 2000, 55, 79–88. [Google Scholar] [CrossRef]
- Renand, G.; Picard, B.; Touraille, C.; Berge, P.; Lepetit, J. Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Sci. 2001, 59, 49–60. [Google Scholar] [CrossRef]
- Maltin, C.A.; Warkup, C.C.; Matthews, K.R.; Grant, C.M.; Porteig, A.D.; Delday, M.I. Pig Muscle Fibre Characteristics as a Source of Variation in Eating Quality. Meat Sci. 1997, 47, 231–248. [Google Scholar] [CrossRef]
- Gil, M.; Oliver, M.À.; Gispert, M.; Diestre, A.; Sosnicki, A.A.; Lacoste, A.; Carrión, D. The relationship between pig genetics, myosin heavy chain I, biochemical traits and quality of M. longissimus thoracis. Meat Sci. 2003, 65, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Clark, F.; Li, Y.; Warner, R. Differences in light scattering between pale and dark beef longissimus thoracis muscles are primarily caused by differences in the myofilaent lattice, myofibril and muscle fiber transverse spacing. Meat Sci. 2019, 149, 96–106. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.G.; Byrne, D.V.; Martens, H.; Gidskehaug, L.H.; Andersen, H.J.; Martens, M. Evaluation of pork colour: Prediction of visual sensory quality of meat from instrumental and computer vision methods of colour analysis. Meat Sci. 2003, 65, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Jeon, J.T.; Joo, S.T. The Relationship between Meat Color (CIE L* and a*), Myoglobin Content, and Their Influence on Muscle Fiber Characteristics and Pork Quality. Korean J. Food Sci. Anim. Resour. 2010, 30, 626–633. [Google Scholar] [CrossRef]
- Purslow, P.P.; Warner, R.D.; Clark, F.M.; Hughes, J.M. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci. 2019, 159, 107941. [Google Scholar] [CrossRef]
- Lengerken, G.; Wicke, M.; Maak, S. Stress susceptibility and meat quality-situation and prospects in animal breeding and research. Arch. Fuer Tierz. 1997, 40, 163–171. [Google Scholar]
- Choi, Y.M.; Ryu, Y.C.; Kim, B.C. Influence of myosin heavy-and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci. 2007, 76, 281–288. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Bate-Smith, E.C.; Bendall, J.R. Factors determining the time course of rigor mortis. J. Physiol. 1949, 110, 47–65. [Google Scholar] [CrossRef]
- Bendall, J.R. Postmortem Changes in Muscles. In The Structure and Function of Muscle; Bourne, G.H., Ed.; Academic Press Inc.: Atlanta, GA, USA, 1973; Volume 2, pp. 243–309. [Google Scholar]
- Eggert, J.M.; Depreux, F.F.S.; Schinckel, A.P.; Grant, A.L.; Gerrard, D.E. Myosin heavy chain isoforms account for variation in pork quality. Meat Sci. 2002, 61, 117–126. [Google Scholar] [CrossRef]
- England, E.M.; Matarneh, S.K.; Oliver, E.M.; Apaoblaza, A.; Scheffler, T.L.; Shi, H.; Gerrard, D.E. Excess glycogen does not resolve high ultimate pH of oxidative muscle. Meat Sci. 2016, 114, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 1994, 77, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Monin, G.; Mejenes-Quijano, A.; Talmant, A.; Sellier, P. Influence of Breed and Muscle Metabolic Type on Muscle Glycolytic Potential and Meat pH in Pigs. Meat Sci. 1987, 20, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Seideman, S.C.; Koohmaraie, M.; Crouse, J.D. Factors associated with tenderness in young beef. Meat Sci. 1987, 20, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Wegner, J.; Albrecht, E.; Fiedler, I.; Teuscher, F.; Papstein, H.J.; Ender, K. Growth-and breed-related changes of muscle fiber characteristics in cattle. J. Anim. Sci. 2000, 78, 1485–1496. [Google Scholar] [CrossRef]
- Vestergaard, M.; Therkildsen, M.; Henckel, P.; Jensen, L.; Andersen, H.; Sejrsen, K. Influence of feeding intensity, grazing and finishing feeding on meat and eating quality of young bulls and the relationship between muscle fibre characteristics, fibre fragmentation and meat tenderness. Meat Sci. 2000, 54, 187–195. [Google Scholar] [CrossRef]
- Dransfield, E.; Martin, J.-F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Jurie, C.; Picard, B.; Hocquette, J.-F.; Dransfield, E.; Micol, D.; Listrat, A. Muscle and meat quality characteristics of Holstein and Salers cull cows. Meat Science 2007, 77, 459–466. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Kim, G.-D.; Jeong, J.-Y.; Hur, S.-J.; Joo, S.-T. The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Sci. 2010, 86, 456–461. [Google Scholar] [CrossRef]
- Essén-Gustavsson, B.; Fjelkner-Modig, S. Skeletal muscle characteristics in different breeds of pigs in relation to sensory properties of meat. Meat Sci. 1985, 13, 33–47. [Google Scholar] [CrossRef]
- Huff, L.; Baas, T.J.; Malek, M.; Dekkers, J.C.M.; Prusa, K.; Rothschild, M.F. Correlations among selected pork quality traits. J. Anim. Sci. 2002, 80, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Migdał, W.; Paściak, P.; Wojtysiak, D.; Barowicz, T.; Pieszka, M.; Pietras, M. The effect of dietary CLA supplementation on meat and eating quality, and the histochemical profile of the m. longissimus dorsi from stress susceptible fatteners slaughtered at heavier weights. Meat Sci. 2004, 66, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Melody, J.L.; Lonergan, S.M.; Rowe, L.J.; Huiatt, T.W.; Mayes, M.S.; Huff-Lonergan, E. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles1. J. Anim. Sci. 2004, 82, 1195–1205. [Google Scholar] [CrossRef]
- Shin, H.-G.; Choi, Y.-M.; Nam, Y.-J.; Lee, S.-H.; Choe, J.-H.; Jeong, D.-W.; Kim, B.-C. Relationships among instrumental tenderness parameters, meat quality traits, and histochemical characteristics in porcine Longissimus dorsi muscle. Food Sci. Biotechnol. 2008, 17, 965–970. [Google Scholar]
- Smith, R.M.; Gabler, N.K.; Young, J.M.; Cai, W.; Boddicker, N.J.; Anderson, M.J.; Huff-Lonergan, E.; Dekkers, J.C.M.; Lonergan, S.M. Effects of selection for decreased residual feed intake on composition and quality of fresh pork. J. Anim. Sci. 2011, 89, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-D.; Kim, B.-W.; Jeong, J.-Y.; Hur, S.-J.; Cho, I.-C.; Lim, H.-T.; Joo, S.-T. Relationship of Carcass Weight to Muscle Fiber Characteristics and Pork Quality of Crossbred (Korean Native Black Pig × Landrace) F2 Pigs. Food Bioprocess Technol. 2013, 6, 522–529. [Google Scholar] [CrossRef]
- Kim, J.-M.; Lee, S.-H.; Ryu, Y.-C. Comparisons of meat quality and muscle fibre characteristics on multiple pig breeds and sexes using principal component analysis. Anim. Prod. Sci. 2018, 58, 2091–2099. [Google Scholar] [CrossRef]
- Lowell, J.; Schunke, E.; Harsh, B.; Bryan, E.; Overholt, M.; Stahl, C.; Dilger, A.; Boler, D. Correlation comparisons among early postmortem loin quality and aged loin and pork chop quality characteristics between finishing pigs from either Duroc or Pietrain sires. J. Anim. Sci. 2018, 96, 4644–4657. [Google Scholar] [CrossRef]
- Kim, G.; Overholt, M.F.; Lowell, J.E.; Harsh, B.N.; Klehm, B.J.; Dilger, A.C.; Boler, D.D. Evaluation of muscle fiber characteristics based on muscle fiber volume in porcine longissimus muscle in relation to pork quality. Meat Muscle Biol. 2018, 2. [Google Scholar] [CrossRef]
Quality Characteristic | Fibre Type | Overall Effect | d.f. | I2 | 95% CI |
---|---|---|---|---|---|
pH | I | 0.09 | 37 | 61% | 0.02; 0.16 * |
(% fibre type) | IIa | 0.03 | 35 | 61% | −0.05; 0.10 |
IIb | −0.04 | 36 | 60% | −0.10; 0.03 | |
L* | I | −0.03 | 13 | 62% | −0.17; 0.10 |
(% fibre type) | IIa | −0.12 | 12 | 54% | −0.30; 0.06 |
IIb | 0.08 | 13 | 66% | −0.09; 0.25 | |
WBSF N | I | −0.04 | 66 | 26% | −0.09; 0.02 |
(% fibre type) | IIa | 0.10 | 64 | 0% | 0.04; 0.14 * |
IIb | 0.00 | 66 | 48% | −0.06; 0.07 | |
WBSF N | I | 0.08 | 61 | 0% | 0.03; 0.13 * |
(CSA fibre type) | IIa | 0.00 | 59 | 0% | −0.05; 0.05 |
IIb | 0.02 | 59 | 49% | −0.05; 0.09 | |
Drip loss % | I | −0.19 | 20 | 44% | −0.22; −0.03 * |
(% fibre type) | IIa | −0.02 | 18 | 75% | −0.15; 0.10 |
IIb | 0.14 | 20 | 85% | −0.00; 0.27 | |
Sensory | I | 0.01 | 10 | 31% | −0.10; 0.11 |
Tenderness | IIa | −0.11 | 9 | 66% | −0.24; 0.03 |
(% fibre type) | IIb | −0.03 | 11 | 57% | −0.15; 0.08 |
Quality Characteristic (CSA or %) | Fibre Type | Overall Effect | d.f. | I2 | 95% CI |
---|---|---|---|---|---|
pH | I | 0.09 | 18 | 67% | −0.00; 0.18 |
(% fibre type) | IIa | 0.14 | 18 | 59% | 0.04; 0.24 * |
IIb | −0.09 | 18 | 77% | −0.19; 0.01 | |
L* | I | −0.13 | 13 | 12% | −0.22; −0.04 * |
(% fibre type) | IIa | −0.09 | 12 | 89% | −0.27; 0.11 |
IIb | 0.08 | 14 | 63% | −0.04; 0.19 | |
L* | I | −0.20 | 6 | 0% | −0.26; −0.14 * |
(CSA fibre type) | IIa | −0.17 | 6 | 0% | −0.23; −0.09 * |
IIb | 0.16 | 6 | 86% | 0.02; 0.28 * | |
a* | I | 0.09 | 6 | 0% | 0.03; 0.15 * |
(CSA fibre type) | IIa | 0.03 | 6 | 37% | −0.05; 0.11 |
IIb | −0.21 | 6 | 82% | −0.32; −0.07 * | |
WBSF N | I | 0.05 | 17 | 57% | −0.04; 0.14 |
(% fibre type) | IIa | 0.06 | 15 | 0% | −0.01; 0.13 |
IIb | −0.05 | 17 | 37% | −0.13; 0.04 | |
WBSF N | I | 0.07 | 16 | 58% | −0.04; 0.17 |
(CSA fibre type) | IIa | −0.02 | 14 | 0% | −0.09; 0.05 |
IIb | −0.04 | 14 | 54% | −0.14; 0.07 | |
Drip loss % | I | −0.19 | 10 | 0% | −0.27; −0.11 * |
(% fibre type) | IIa | −0.04 | 11 | 77% | −0.20; 0.12 |
IIb | 0.19 | 13 | 84% | 0.07; 0.30 * | |
Cook loss % | I | 0.16 | 7 | 0% | 0.11; 0.21 * |
(% fibre type) | IIa | −0.17 | 5 | 97% | −0.59; 0.33 |
IIb | −0.05 | 7 | 84% | −0.17; 0.06 | |
Sensory | I | 0.13 | 10 | 0% | 0.05; 0.20 * |
Tenderness | IIa | −0.15 | 8 | 41% | −0.26; −0.04 * |
(% fibre type) | IIb | 0.01 | 10 | 31% | −0.10; 0.11 |
Cross-Sectional Area | Frequency | |||||
---|---|---|---|---|---|---|
Trait Fibre Type | n | Slope ± SE | p-Value | n | Slope ± SE | p-Value |
pH | ||||||
I | 25 | 0.000044 ± 0.0000522 | 0.41 | 51 | 0.019 ± 0.0035 | <0.001 |
IIa | 25 | −0.000014 ± 0.0000455 | 0.76 | 51 | 0.0073 ± 0.00304 | 0.021 |
Iib | 25 | −0.000021 ± 0.0000256 | 0.43 | 51 | −0.0090 ± 0.00194 | <0.001 |
L* | ||||||
I | 15 | −0.0028 ± 0.00122 | 0.037 | 42 | −0.341 ± 0.192 | 0.084 |
Iia | 15 | −0.00102 ± 0.00133 | 0.84 | 42 | −0.56 ± 0.134 | <0.001 |
Iib | 15 | 0.00031 ± 0.000705 | 0.670 | 42 | 0.399 ± 0.0859 | <0.001 |
a* | ||||||
I | 19 | 0.00013 ± 0.000356 | 0.72 | 42 | 0.026 ± 0.206 | 0.90 |
Iia | 19 | 0.00015 ± 0.000336 | 0.34 | 42 | 0.50 ± 0.147 | 0.002 |
Iib | 19 | 0.00014 ± 0.000208 | 0.52 | 42 | −0.38 ± 0.0903 | <0.001 |
Cook loss % | ||||||
I | 10 | −0.0018 ± 0.00340 | 0.62 | 20 | 0.17 ± 0.627 | 0.79 |
Iia | 10 | −0.0094 ± 0.00865 | 0.31 | 20 | 2.55 ± 0.520 | <0.001 |
Iib | 10 | 0.0069 ± 0.00263 | 0.027 | 20 | −0.88 ± 0.424 | 0.065 |
Drip loss % | ||||||
I | 16 | −0.0010 ± 0.000816 | 0.22 | 47 | −0.065 ± 0.0594 | 0.28 |
Iia | 16 | −0.00035 ± 0.000806 | 0.67 | 47 | −0.19 ± 0.0073 | 0.012 |
Iib | 16 | 0.00030 ± 0.000426 | 0.50 | 47 | 0.099 ± 0.0488 | 0.053 |
WBSF N | ||||||
I | 4 | −0.0056 ± 0.00999 | 0.014 | 31 | −0.0092 ± 0.0713 | 0.90 |
Iia | 4 | −0.0023 ± 0.00333 | 0.73 | 31 | −0.016 ± 0.379 | 0.73 |
Iib | 4 | 0.0022 ± 0.000601 | 0.009 | 31 | 0.0035 ± 0.0318 | 0.91 |
Sensory tenderness | ||||||
I | 8.5 | −0.00125 ± 0.000619 | 0.065 | 24 | 1.53 ± 0.842 | 0.10 |
Iia | 13 | 0.0039 ± 0.00291 | <0.001 | 24 | −1.09 ± 0.362 | 0.008 |
Iib | 13 | −0.0013 ± 0.000557 | 0.78 | 24 | −0.32 ± 0.926 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LeMaster, M.N.; Warner, R.D.; Chauhan, S.S.; D’Souza, D.N.; Dunshea, F.R. Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork—Focus on Pork. Foods 2023, 12, 2215. https://doi.org/10.3390/foods12112215
LeMaster MN, Warner RD, Chauhan SS, D’Souza DN, Dunshea FR. Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork—Focus on Pork. Foods. 2023; 12(11):2215. https://doi.org/10.3390/foods12112215
Chicago/Turabian StyleLeMaster, Michelle N., Robyn D. Warner, Surinder S. Chauhan, Darryl N. D’Souza, and Frank R. Dunshea. 2023. "Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork—Focus on Pork" Foods 12, no. 11: 2215. https://doi.org/10.3390/foods12112215
APA StyleLeMaster, M. N., Warner, R. D., Chauhan, S. S., D’Souza, D. N., & Dunshea, F. R. (2023). Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork—Focus on Pork. Foods, 12(11), 2215. https://doi.org/10.3390/foods12112215