Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Production and Characterization of Fruit Pulps
2.3. Residual Biomass Characterization
2.4. Anaerobic Digestion
2.5. Simulation of Small-Scale Biorefineries
2.6. Techno-Economic Assessment
3. Results
3.1. Production of Freeze-Dried Pulps
3.2. Characterization of the Residual Biomass
3.3. Quantification of TPC and DPPH of Residual Fraction of Açai, Noni, and Araza
3.4. Biogas Production
3.5. Techno-Economic Analysis
4. Social Impact Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
SCA | Depleted açai seed and peel |
SCZ | Depleted araza seed and peel |
SCN | Depleted noni seed and peel |
SCA:SCZ | Depleted açai and araza seeds and peel |
SCA:SCN | Depleted açai and noni seeds and peel |
SCA:SCZ:SCN | Depleted açai, araza, and noni seed and peel |
Sc. 1 | Scenario 1 with açai raw material |
Sc. 2 | Scenario 2 with raw material açai and noni |
Sc. 3 | Scenario 3 with açai and araza raw material |
Sc. 4 | Scenario 4 with açai, noni and araza raw material |
TPC | Total phenol content |
DPPH | Antioxidant activity |
Product yield | |
Product flow | |
Raw material flow | |
PMI | Process mass intensity |
Process input flow (raw materials and reagents) | |
MLI | Mass loss index |
SEC | Specific energy consumption |
Q | Process heat demand |
W | Process work demand |
SGI | Self-generation |
Lower calorific value of the product | |
VM | Volatile matter |
FC | Fixed carbon |
RM | Raw material |
CapEX | Capital expenditure |
OpEX | Operating costs |
NPV | Net present value |
MPSEF | Minimum processing scale for economic feasibility |
References
- Mackey, B.; Kormos, C.F.; Keith, H.; Moomaw, W.R.; Houghton, R.A.; Mittermeier, R.A.; Hole, D.; Hugh, S. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 763–787. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Quéré, C.L.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Millar, R.J.; Fuglestvedt, J.S.; Friedlingstein, P.; Rogelj, J.; Grubb, M.; Matthews, D.; Skeie, R.B.; Forster, P.M.; Frame, D.; Allen, M.R. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 2017, 10, 741–747. [Google Scholar] [CrossRef]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Emissions Gap Report 2018; UNEP—UN Environment Programme: Nairobi, Kenya, 2018.
- Canadell, J.G.; Raupach, M.R. Managing Forests for Climate Change Mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed]
- Forestry Department Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2005 Thematic Study on Mangroves China Country Profile; Forestry Department Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Cabrera, A.L.; Willink, A.; Organization of American States. Biogeografia de America Latina; Programa Regional de Desarrollo Científico y Tecnológico Dep. de Asuntos Científicos, Secretaría General de la Organización de los Estados Americanos: Washington, DC, USA, 1973. [Google Scholar]
- Alejandro Poveda-Giraldo, J.; Piedrahita-Rodríguez, S.; Salgado-Aristizabal, N.; Salas Moreno, H.; Ariel Cardona Alzate, C. Prefeasibility analysis of low-scale bioreneries: Annatto and açai case. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Barbosa, J.R.; Junior, R.N.D.C. Food sustainability trends—How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends Food Sci. Technol. 2022, 124, 86–95. [Google Scholar] [CrossRef]
- Soares, R.D.A.; de Oliveira, B.C.; de Bem, G.F.; de Menezes, M.P.; Romão, M.H.; Santos, I.B.; da Costa, C.A.; Carvalho, L.C.D.R.M.D.; Nascimento, A.L.R.; de Carvalho, J.J.; et al. Açaí (Euterpe oleracea Mart.) seed extract improves aerobic exercise performance in rats. Food Res. Int. 2020, 136, 109549. [Google Scholar] [CrossRef]
- Machado, A.K.; Cadoná, F.C.; Assmann, C.E.; Andreazza, A.C.; Duarte, M.M.M.F.; Branco, C.D.S.; Zhou, X.; de Souza, D.V.; Ribeiro, E.E.; da Cruz, I. Açaí (Euterpe oleracea Mart.) has anti-inflammatory potential through NLRP3-inflammasome modulation. J. Funct. Foods 2019, 56, 364–371. [Google Scholar] [CrossRef]
- Hogan, S.; Chung, H.; Zhang, L.; Li, J.; Lee, Y.; Dai, Y.; Zhou, K. Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem. 2010, 118, 208–214. [Google Scholar] [CrossRef]
- Filgueiras, H.; Alves, R.E.; Moura, C.; Araújo, N.; Almeida, A. Quality of Fruits Native to Latin America for Processing: Araza (Eugenia stipitata Mcvaugh). Acta Hortic. 2002, 543–547. [Google Scholar] [CrossRef]
- West, B.J.; Deng, S.; Jensen, C.J. Nutrient and phytochemical analyses of processed noni puree. Food Res. Int. 2011, 44, 2295–2301. [Google Scholar] [CrossRef]
- Commission Decision of 5 June 2003 Authorising the Placing on the Market of “Noni Juice” (Juice of the Fruit of Morinda citri-folia L.) as a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (Notified under Document Number C(2003) 1789). Available online: https://food.ec.europa.eu/safety/novel-food_es (accessed on 16 May 2023).
- Buratto, R.T.; Cocero, M.J.; Martín, Á. Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chem. Eng. Process. Process. Intensif. 2021, 160, 108269. [Google Scholar] [CrossRef]
- Barrera, J.A.; Hernadez, M.S.; Galvis, J.A.; Acosta, J. Prefactibilldad técnico-económica para el procesamiento del arazá (Eugenia stipitata me vaugh) y del copoazú (Theobroma grandiflorum wiii. ex spreng) en la zona de colonizacion de San Jose de Guaviare. Agron. Colomb. 1996, III, 91–105. Available online: https://revistas.unal.edu.co/index.php/agrocol (accessed on 16 May 2023).
- Teixeira, M.A.; Palacio, J.C.E.; Sotomonte, C.R.; Lora, E.E.S.; Venturini, O.J.; Aßmann, D. Assaí—An energy view on an Amazon residue. Biomass Bioenergy 2013, 58, 76–86. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- McCleary, B.V.; Sloane, N.; Draga, A.; Lazewska, I. Measurement of Total Dietary Fiber Using AOAC Method 2009.01 (AACC International Approved Method 32-45.01): Evaluation and Updates. Cereal Chem. 2013, 90, 396–414. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Pagès, P.-B.; Le Pimpec-Barthes, F.; Bernard, A. Chirurgie des métastases pulmonaires des cancers colorectaux: Facteurs prédictifs de survie. Rev. Mal. Respir. 2016, 33, 838–852. [Google Scholar] [CrossRef]
- VDI-Handbuch Technik Biomasse/Boden. VDI 4630—Fermentation of Organic Materials—Characterization of the Substrate, Sampling, Collection of Material Data and Fermentation Test. 2016. Available online: https://www.vdi.de/richtlinien/details/vdi-4630-fermentation-of-organic-materials-characterization-of-the-substrate-sampling-collection-of-material-data-fermentation-tests (accessed on 16 May 2023).
- Angelidaki, I.; Ahring, B. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 2000, 41, 189–194. [Google Scholar] [CrossRef]
- Soledad, M.; Jaime, H.; Barrera, A.; Carrillo, M. Arazá; Instituto Amazonico de Investigaciones Cientificas SINCHI: Bogotá, Colombia; Universidad Nacional de Colombia, Departamento de Biologia: Bogotá, Colombia, 2006; ISBN 958-8317-08-3. [Google Scholar]
- Budzinski, K.; Blewis, M.; Dahlin, P.; D’Aquila, D.; Esparza, J.; Gavin, J.; Ho, S.V.; Hutchens, C.; Kahn, D.; Koenig, S.G.; et al. Introduction of a process mass intensity metric for biologics. New Biotechnol. 2019, 49, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Toro, J.C.S.; Bello-Pérez, L.A.; Cardona-Alzate, C.A. Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod. Process. 2020, 121, 29–42. [Google Scholar] [CrossRef]
- Dávila, J.A.; Rosenberg, M.; Castro, E.; Cardona, C.A. A model biorefinery for avocado (Persea americana mill.) processing. Bioresour. Technol. 2017, 243, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Parra, D.F.; Lanari, M.C.; Zamora, M.C.; Chirife, J. Influence of storage conditions on phenolic compounds stability, antioxidant capacity and colour of freeze-dried encapsulated red wine. LWT 2016, 70, 162–170. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of Freeze-Dried Phenolic-Rich Plant Powders on the Bioactive Compounds Profile, Antioxidant Activity and Aroma of Different Types of Chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Rios, J.; Jilma-Stohlawetz, P.; Pacheco-Palencia, L.A.; Meibohm, B.; Talcott, S.T.; Derendorf, H. Pharmacokinetics of Anthocyanins and Antioxidant Effects after the Consumption of Anthocyanin-Rich Açai Juice and Pulp (Euterpe oleracea Mart.) in Human Healthy Volunteers. J. Agric. Food Chem. 2008, 56, 7796–7802. [Google Scholar] [CrossRef]
- Noratto, G.D.; Angel-Morales, G.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolics from Açaí (Euterpe oleracea Mart.) and Red Muscadine Grape (Vitis rotundifolia) Protect Human Umbilical Vascular Endothelial Cells (HUVEC) from Glucose- and Lipopolysaccharide (LPS)-Induced Inflammation and Target MicroRNA-126. J. Agric. Food Chem. 2011, 59, 7999–8012. [Google Scholar] [CrossRef]
- Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.; Wu, T.; Wu, X. Flavonoids from acai (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem. 2011, 128, 152–157. [Google Scholar] [CrossRef]
- Horiguchi, T.; Ishiguro, N.; Chihara, K.; Ogi, K.; Nakashima, K.; Sada, K.; Hori-Tamura, N. Inhibitory Effect of Açaí (Euterpe oleracea Mart.) Pulp on IgE-Mediated Mast Cell Activation. J. Agric. Food Chem. 2011, 59, 5595–5601. [Google Scholar] [CrossRef]
- Costa, A.G.V.; Garcia-Diaz, D.F.; Jimenez, P.; Silva, P.I. Bioactive compounds and health benefits of exotic tropical red–black berries. J. Funct. Foods 2013, 5, 539–549. [Google Scholar] [CrossRef]
- Lee, D.; Yu, J.S.; Huang, P.; Qader, M.; Manavalan, A.; Wu, X.; Kim, J.-C.; Pang, C.; Cao, S.; Kang, K.S.; et al. Identification of Anti-Inflammatory Compounds from Hawaiian Noni (Morinda citrifolia L.) Fruit Juice. Molecules 2020, 25, 4968. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Girmay, S.; da Silva, V.M.; Perry, B.; Hu, X.; Tan, G.T. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni). Evid. Based Complement. Altern. Med. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Kamiya, K.; Tanaka, Y.; Endang, H.; Umar, M.; Satake, T. Chemical Constituents of Morinda citrifolia Fruits Inhibit Copper-Induced Low-Density Lipoprotein Oxidation. J. Agric. Food Chem. 2004, 52, 5843–5848. [Google Scholar] [CrossRef] [PubMed]
- Llerena, W.; Samaniego, I.; Navarro, M.; Ortíz, J.; Angós, I.; Carrillo, W. Effect of modified atmosphere packaging (MAP) in the antioxidant capacity of arazá (Eugenia stipitata McVaugh), naranjilla (Solanum quitoense Lam.), and tree tomato (Solanum betaceum Cav.) fruits from Ecuador. J. Food Process. Preserv. 2020, 44, e14757. [Google Scholar] [CrossRef]
- Hernández, M.; Gutiérrez-Bravo, R.; Quiñones, Y.; Medina, S.; Fernández-Trujillo, J. Araza: A proposal for an innovative snack. Acta Hortic. 2018, 1205, 925–930. [Google Scholar] [CrossRef]
- de Araújo, F.F.; Farias, D.D.P.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; Sacramento, C.K.D.; Pastore, G.M. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res. Int. 2020, 139, 109904. [Google Scholar] [CrossRef] [PubMed]
- Itai, Y.; Santos, R.; Branquinho, M.; Malico, I.; Ghesti, G.F.; Brasil, A.M. Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renew. Energy 2014, 66, 662–669. [Google Scholar] [CrossRef]
- de Jesus, A.L.T.; Cristianini, M.; dos Santos, N.M.; Júnior, M.R.M. Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp. Food Res. Int. 2020, 130, 108856. [Google Scholar] [CrossRef]
- Jamaludin, R.; Kim, D.-S.; Salleh, L.; Lim, S.-B. Optimization of high hydrostatic pressure extraction of bioactive compounds from noni fruits. J. Food Meas. Charact. 2020, 14, 2810–2818. [Google Scholar] [CrossRef]
- Serquiz, A.C. Biotechnological Potential Assesment of Noni Fruit (Morinda citrifolialinns). MOJ Food Process. Technol. 2017, 5, 1–6. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Ampese, L.C.; Parisoto, T.A.C.; Forster-Carneiro, T. Process intensification for the recovery of methane-rich biogas from dry anaerobic digestion of açaí seeds. Biomass Convers. Biorefin. 2021, 1–14. [Google Scholar] [CrossRef]
- Gil, A.; Siles, J.A.; Serrano, A.; Chica, A.F.; Martín, M.A. Effect of variation in the C/[N+P] ratio on anaerobic digestion. Environ. Prog. Sustain. Energy 2019, 38, 228–236. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, A.; Zhuang, G.; Zhuang, X. The acetotrophic pathway dominates methane production in Zoige alpine wetland coexisting with hydrogenotrophic pathway. Sci. Rep. 2019, 9, 9141. [Google Scholar] [CrossRef] [PubMed]
- Sanjaya, A.P.; Cahyanto, M.N.; Millati, R. Mesophilic batch anaerobic digestion from fruit fragments. Renew. Energy 2016, 98, 135–141. [Google Scholar] [CrossRef]
- Sautermeister, F.; Priest, M.; Lee, P.; Fox, M. Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: Contact angle, interfacial tension and chemical interaction. Tribol. Int. 2013, 59, 47–56. [Google Scholar] [CrossRef]
- United Nations Development Programme. Sustainable Development Goals. The SDG’s in Action. Available online: https://www.undp.org/sustainable-development-goals (accessed on 16 May 2023).
- Blair, M.J.; Gagnon, B.; Klain, A.; Kulišić, B. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10, 181. [Google Scholar] [CrossRef]
- Grupo de investigacion Xue and Semillero de investigacion Barión. Estado de la Cobertura Eléctrica y las Zonas no Inter-Conectadas en la Región Central; Universidad Distrital Francisco José de Caldas: Cundinamarca, Colombia, 2020. Available online: https://regioncentralrape.gov.co/ (accessed on 16 May 2023).
Index | Equation | Unit | Eq. |
---|---|---|---|
Mass | |||
Product yield | kg product/ton of feedstock | (2) | |
Mass intensity of the process | kg of raw materials/kg product | (3) | |
Mass loss index | kg waste streams/kg products | (4) | |
Energy | |||
Specific energy consumption | kW/kg of raw materials | (5) | |
Self-generation | N.A. | (6) |
Item | TPC | DPPH | Fiber | Fats | Protein | Moisture |
---|---|---|---|---|---|---|
(mg GAE/g RM) | (%) on a Dry Basis | |||||
Raw açai pulp | 52.43 | 417.08 | 10.28 | 33.49 | 3.97 | 81.30 |
Açai freeze-dried powder | 65.10 | 422.97 | 19.87 | 39.14 | 8.89 | 5.23 |
Raw noni pulp | 243.35 | 231.63 | 0.78 | 0.14 | 1.13 | 87.98 |
Noni freeze-dried powder | 299.32 | 241.43 | 1.08 | 0.29 | 9.21 | 14.94 |
Raw araza pulp | 340.59 | 290.12 | 10.51 | 1.52 | 11.86 | 88.7 |
Araza freeze-dried powder | 350.27 | 318.02 | 12.67 | 2.56 | 15.67 | 4.94 |
Item | Açai | Noni | Araza | |||
---|---|---|---|---|---|---|
Seed | Peel | Seed | Peel | Seed | Peel | |
Fruit fraction (%w/w) | 60.12 | 16.98 | 8.14 | 13.79 | 22.04 | 6.03 |
Chemical characterization (%) on a dry basis | ||||||
Moisture | 32.93 | 22.16 | 75.39 | 40.55 | 12.60 | 61.94 |
Total extractives | 29.51 | 25.74 | 32.25 | 38.27 | 28.96 | 44.55 |
Fats | 1.75 | 7.07 | 3.89 | 0.16 | 0.65 | 1.87 |
Cellulose | 12.65 | 9.22 | 41.75 | 29.06 | 32.83 | 26.10 |
Hemicellulose | 42.58 | 40.48 | 15.03 | 24.47 | 26.27 | 15.20 |
Total lignin | 11.41 | 16.90 | 6.45 | 5.78 | 10.92 | 11.06 |
Ashes | 2.09 | 0.60 | 0.63 | 2.25 | 0.35 | 1.23 |
Proximate analysis | ||||||
Volatile matter | 82.7 | 85.97 | 85.45 | 85.12 | 83.76 | 85.81 |
Fixed carbon | 15.3 | 13.38 | 12.40 | 10.49 | 15.68 | 12.19 |
Total solids | 92.56 | 90.16 | 88.21 | 85.66 | 91.10 | 85.77 |
Volatile solids | 2.43 | 2.36 | 7.11 | 8.02 | 3.99 | 8.48 |
VM/FC | 5.4 | 6.42 | 6.97 | 8.11 | 5.34 | 7.04 |
FC: Fixed carbon |
Fruit | Residual Fraction | ||
Açai | Seed | 65.92 | 437.50 |
Peel | 39.81 | 132.04 | |
Noni | Seed | 92.88 | 289.07 |
Peel | 45.19 | 243.70 | |
Araza | Seed | 88.92 | 372.55 |
Peel | 116.41 | 276.63 |
Item. | Scenario 1 (Sc. 1) | Scenario 2 (Sc. 2) | Scenario 3 (Sc. 3) | Scenario 4 (Sc. 4) |
---|---|---|---|---|
Mass indicators | ||||
Product yield (kg/kg RM) | ||||
Freeze-dried pulp | 0.46 | 0.47 | 0.48 | 0.50 |
Bioactive compounds | 0.26 | 0.26 | 0.25 | 0.25 |
Biogas | 0.07 | 0.08 | 0.08 | 0.09 |
Process Mass Intensity (PMI) (kg RM/kg P) | 0.55 | 0.56 | 0.56 | 0.58 |
Mass loss index (MLI) (kg WS/kg P) | 2.947 | 2.940 | 2.928 | 2.942 |
Energy indicators | ||||
Specific Energy Consumption (SEC) (kW/kg RM) | 2.449 | 2.438 | 2.460 | 2.539 |
Self-generation (SGI) | 0.0250 | 0.027 | 0.028 | 0.026 |
Economic analysis | ||||
CapEx(M-USD) | 1.37 | 1.71 | 1.71 | 2.00 |
OpEx (M-USD/year) | 0.89 | 0.99 | 1.12 | 1.22 |
Production cost (USD/kg) | ||||
Freeze-dried pulp | 3.130 | 3.162 | 3.574 | 3.588 |
Biogas | 0.090 | 0.087 | 0.103 | 0.101 |
Bioactive compounds | 6.18 | 6.24 | 7.05 | 7.07 |
Gross income (M-USD/year) * | 35.18 | 38.60 | 38.57 | 41.98 |
NPV (M-USD) * | 264.57 | 290.26 | 290.05 | 315.68 |
MPSEF (kg/year) * | 3159.9 | 3916.0 | 4375.8 | 5494.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Vallejo, M.C.; Poveda-Giraldo, J.A.; Cardona Alzate, C.A. Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities. Foods 2023, 12, 2229. https://doi.org/10.3390/foods12112229
Garcia-Vallejo MC, Poveda-Giraldo JA, Cardona Alzate CA. Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities. Foods. 2023; 12(11):2229. https://doi.org/10.3390/foods12112229
Chicago/Turabian StyleGarcia-Vallejo, Maria Camila, Jhonny Alejandro Poveda-Giraldo, and Carlos Ariel Cardona Alzate. 2023. "Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities" Foods 12, no. 11: 2229. https://doi.org/10.3390/foods12112229
APA StyleGarcia-Vallejo, M. C., Poveda-Giraldo, J. A., & Cardona Alzate, C. A. (2023). Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities. Foods, 12(11), 2229. https://doi.org/10.3390/foods12112229