Comparative Studies of Antimicrobial Resistance in Escherichia coli, Salmonella, and Campylobacter Isolates from Broiler Chickens with and without Use of Enrofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Molecular Characterization of Antimicrobial Resistance
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Salmonella and Campylobacter in the Presence or Absence of ENR Use
3.2. Antimicrobial Resistance of E. coli, Salmonella, and Campylobacter Isolates in the Presence or Absence of ENR Use
3.3. Distribution of the MIC50/MIC90 Values of (Fluoro)Quinolones among E. coli, Salmonella, and Campylobacter Isolates from Untreated or ENR-Treated Broilers
3.4. Prevalence of PMQR and QRDR Mutations among the Selected E. coli, Salmonella, and Campylobacter Isolates from Untreated or ENR-Treated Broilers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koningstein, M.; Simonsen, J.; Helms, M.; Mølbak, K.J. The interaction between prior antimicrobial drug exposure and resistance in human Salmonella infections. J. Antimicrob. Chemother. 2010, 65, 1819–1825. [Google Scholar] [CrossRef]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.J. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Snary, E.L.; Kelly, L.A.; Davison, H.C.; Teale, C.J.; Wooldridge, M.J. Antimicrobial resistance: A microbial risk assessment perspective. J. Antimicrob. Chemother. 2004, 53, 906–917. [Google Scholar] [CrossRef]
- Ibrahim, J.; Eghnatios, E.; El Roz, A.; Fardoun, T.; Ghssein, G. Prevalence, antimicrobial resistance and risk factors for campylobacteriosis in Lebanon. J. Infect. Dev. Ctries. 2019, 13, 11–20. [Google Scholar] [CrossRef]
- Kaakoush, N.; Castaño-Rodríguez, N.; Mitchell, H.; Man, S. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef]
- Popa, G.; Papa, M. Salmonella spp. infection—A continuous threat worldwide. Germs 2021, 11, 88–96. [Google Scholar] [CrossRef]
- Ghssein, G.; Awada, R.; Salami, A.; Bahmad, H.; Awad, A.; Joumaa, W.; El Roz, A. Prevalence, laboratory findings and clinical characteristics of campylobacteriosis agents among hospitalized children with acute gastroenteritis in lebanon. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 346–356. [Google Scholar] [CrossRef]
- Smith, J.; Fratamico, P.M. Fluoroquinolone resistance in Campylobacter. J. Food Prot. 2010, 73, 1141–1152. [Google Scholar] [CrossRef]
- Gaffga, N.H.; Barton, B.C.; Ettestad, P.J.; Smelser, C.B.; Rhorer, A.R.; Cronquist, A.B.; Comstock, N.A.; Bidol, S.A.; Patel, N.J.; Gerner, S.P.; et al. Outbreak of salmonellosis linked to live poultry from a mail-order hatchery. N. Engl. J. Med. 2012, 366, 2065–2073. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. Biomed. Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef]
- Andersson, M.; Macgowan, A. Development of the quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. 1), 1–11. [Google Scholar] [CrossRef]
- Millanao, A.; Mora, A.; Villagra, N.; Bucarey, S.; Hidalgo, A. Biological effects of quinolones: A family of broad-spectrum antimicrobial agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine (6th Revision 2018): Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- International Epizootic Office. OIE List of Antimicrobial Agent of Veterinary Importance (July 2019); International Epizootic Office: Paris, France, 2020. [Google Scholar]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Randall, L.; Ridley, A.; Lemma, F.; Hale, C.; Davies, R.J. In vitro investigations into the use of antimicrobials in combination to maintain efficacy of fluoroquinolones in poultry. Res. Vet. Sci. 2016, 108, 47–53. [Google Scholar] [CrossRef]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Engberg, J.; Aarestrup, F.M.; Taylor, D.E.; Gerner, S.P.; Nachamkin, I.J. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: Resistance mechanisms and trends in human isolates. Emerg. Infect. Dis. 2001, 7, 24. [Google Scholar] [CrossRef]
- Mathew, A.G.; Cissell, R.; Liamthong, S.J. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef]
- Landoni, M.F.; Albarellos, G.J. The use of antimicrobial agents in broiler chickens. Vet. J. 2015, 205, 21–27. [Google Scholar] [CrossRef]
- Takahashi, T.; Ishihara, K.; Kojima, A.; Asai, T.; Harada, K.; Tamura, Y.J. Emergence of fluoroquinolone resistance in Campylobacter jejuni in chickens exposed to enrofloxacin treatment at the inherent dosage licensed in Japan. Antimicrob. Agents Chemother. 2005, 52, 460–464. [Google Scholar] [CrossRef]
- Doyle, M.E. Multidrug-resistant pathogens in the food supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Chantziaras, I.; Smet, A.; Haesebrouck, F.; Boyen, F.; Dewulf, J.J. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. J. Antimicrob. Chemother. 2017, 72, 1991–2001. [Google Scholar] [CrossRef]
- McDermott, P.F.; Bodeis, S.M.; English, L.L.; White, D.G.; Walker, R.D.; Zhao, S.; Simjee, S.; Wagner, D.D. Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J. Infect. Dis. 2002, 185, 837–840. [Google Scholar] [CrossRef]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 27 February 2017).
- Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q.J. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 2003, 47, 390–394. [Google Scholar] [CrossRef]
- Randall, L.P.; Eaves, D.J.; Cooles, S.W.; Ricci, V.; Buckley, A.; Woodward, M.J.; Piddock, L.J. Fluoroquinolone treatment of experimental Salmonella enterica serovar Typhimurium DT104 infections in chickens selects for both gyrA mutations and changes in efflux pump gene expression. J. Antimicrob. Chemother. 2005, 56, 297–306. [Google Scholar] [CrossRef]
- Stapleton, K.; Cawthraw, S.; Cooles, S.; Coldham, N.; La Ragione, R.; Newell, D.; Ridley, A.J. Selecting for development of fluoroquinolone resistance in a Campylobacter jejuni strain 81116 in chickens using various enrofloxacin treatment protocols. J. Appl. Microbiol. 2010, 109, 1132–1138. [Google Scholar] [CrossRef]
- Mourand, G.; Jouy, E.; Bougeard, S.; Dheilly, A.; Kérouanton, A.; Zeitouni, S.; Kempf, I.J. Experimental study of the impact of antimicrobial treatments on Campylobacter, Enterococcus and PCR-capillary electrophoresis single-strand conformation polymorphism profiles of the gut microbiota of chickens. J. Med. Microbiol. 2014, 63, 1552–1560. [Google Scholar] [CrossRef]
- MDPH. Foodborne Illness Investigation and Control Manual; Massachusetts Department of Public Health: Boston, MA, USA, 2017.
- Angulo, F.J.; Johnson, K.R.; Tauxe, R.V.; Cohen, M.L. Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: Implications for the use of fluoroquinolones in food animals. Microb. Drug Resist. 2000, 6, 77–83. [Google Scholar] [CrossRef]
- Li, J.; Hao, H.; Cheng, G.; Liu, C.; Ahmed, S.; Shabbir, M.A.; Hussain, H.I.; Dai, M.; Yuan, Z. Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin. Front. Microbiol. 2017, 8, 1711. [Google Scholar] [CrossRef]
- FDA/CVM Proposes to Withdraw Poultry Fluoroquinolones Approval. 2000. Available online: https://www.fda.gov/animal-veterinary/recalls-withdrawals/withdrawal-enrofloxacin-poultry (accessed on 21 May 2007).
- Price, L.; Lackey, L.; Vailes, R.; Silbergeld, E. The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environ. Health Perspect. 2007, 115, 1035–1039. [Google Scholar] [CrossRef]
- Gbylik, S.M.; Posyniak, A.; Sniegocki, T.; Sell, B.; Gajda, A.; Sawicka, A.; Olszewska, T.M.; Bladek, T.; Tomczyk, G.; Zmudzki, J. Influence of enrofloxacin traces in drinking water to doxycycline tissue pharmacokinetics in healthy and infected by Mycoplasma gallisepticum broiler chickens. Food Chem. Toxicol. 2016, 90, 123–129. [Google Scholar] [CrossRef]
- Han, F.F.; Lestari, S.I.; Pu, S.H.; Ge, B.L. Prevalence and antimicrobial resistance among Campylobacter spp. in Louisiana retail chickens after the enrofloxacin ban. Foodborne Pathog. Dis. 2009, 6, 163–171. [Google Scholar] [CrossRef]
- Hong, J.; Kim, J.M.; Jung, W.K.; Kim, S.H.; Bae, W.; Koo, H.C.; Gil, J.; Kim, M.; Ser, J.; Park, Y.H. Prevalence and antibiotic resistance of Campylobacter spp. isolated from chicken meat, pork, and beef in Korea, from 2001 to 2006. J. Food Prot. 2007, 70, 860–866. [Google Scholar] [CrossRef]
- Kim, J.J.; Seo, K.W.; Mo, I.P.; Lee, Y.J. Genetic Characterization of fluoroquinolone resistance in Salmonella enterica serovar Gallinarum isolates from chicken in Korea. Avian Dis. 2019, 63, 584–590. [Google Scholar] [CrossRef]
- Park, H.; Kang, J.; Jang, Y.; Song, J.Y.; Lee, K.J. Studies on pharmacokinetics/pharmacodanymics of enrofloxacin in broiler chicken. FASEB J. 2016, 30, lb539. [Google Scholar]
- Perrin, G.A.; Jouy, E.; Urban, D.; Chauvin, C.; Granier, S.A.; Mourand, G.; Chevance, A.; Adam, C.; Moulin, G.; Kempf, I. Decrease in fluoroquinolone use in French poultry and pig production and changes in resistance among E. coli and Campylobacter. Vet. Microbiol. 2020, 243, 108637. [Google Scholar] [CrossRef]
- Delsol, A.A.; Sunderland, J.; Woodward, M.J.; Pumbwe, L.; Piddock, L.J.; Roe, J.M. Emergence of fluoroquinolone resistance in the native Campylobacter coli population of pigs exposed to enrofloxacin. J. Antimicrob. Chemother. 2004, 53, 872–874. [Google Scholar] [CrossRef]
- Van, B.M.; Veldman, K.T.; de Jong, M.C.; Mevius, D.J. Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers. J. Antimicrob. Chemother. 2003, 52, 719–723. [Google Scholar]
- Chantziaras, I.; Smet, A.; Filippitzi, M.E.; Damiaans, B.; Haesebrouck, F.; Boyen, F.; Dewulf, J. The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal E. coli in broilers. Avian Pathol. 2018, 47, 443–454. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Belo, A.; Gonçalves, J.; Bernardo, F.J. Field trial evaluating changes in prevalence and patterns of antimicrobial resistance among Escherichia coli and Enterococcus spp. isolated from growing broilers medicated with enrofloxacin, apramycin and amoxicillin. Vet. Microbiol. 2009, 139, 284–292. [Google Scholar] [CrossRef]
- Shang, K.; Wei, B.; Kang, M. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Vet. Res. 2018, 14, 257. [Google Scholar] [CrossRef]
- Shang, K.; Wei, B.; Jang, H.K.; Kang, M. Phenotypic characteristics and genotypic correlation of antimicrobial resistant (AMR) Salmonella isolates from a poultry slaughterhouse and its downstream retail markets. Food Control 2019, 100, 35–45. [Google Scholar] [CrossRef]
- Cavaco, L.; Aarestrup, F. Evaluation of quinolones for use in detection of determinants of acquired quinolone resistance, including the new transmissible resistance mechanisms qnrA, qnrB, qnrS, and aac(6′)Ib-cr, in Escherichia coli and Salmonella enterica and determinations of wild-type distributions. J. Clin. Microbiol. 2009, 47, 2751–2758. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, Approved Standard M100-S30; 30th informational supplement; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2015 (Final Report); U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2018.
- Ojo, O.E.; Ogun Yinka, O.G.; Agbaje, M.; Okuboye, J.O.; Kehinde, O.O.; Oyekunle, M.A. Antibiogram of Enterobacteriaceae isolated from free-range chickens in Abeokuta, Nigeria. Vet. Arhiv. 2012, 82, 577–589. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W.J. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, J.A.; Shin, J.H.; Chang, C.L.; Jeong, J.; Cho, J.H.; Kim, M.N.; Kim, S.; Kim, Y.R.; Lee, C.H. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microb. Drug Resist. 2011, 17, 551–557. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.; Feinstein, J.; Lang, K.S.; Ryu, S.; Jeon, B. Development of fluoroquinolone resistance through antibiotic tolerance in Campylobacter jejuni. Microbiol. Spectr. 2022, 10, e0166722. [Google Scholar] [CrossRef]
- Pleydell, E.; Brown, P.; Woodward, M.J.; Davies, R.; French, N.J. Sources of variation in the ampicillin-resistant Escherichia coli concentration in the feces of organic broiler chickens. Appl. Environ. Microbiol. 2007, 73, 203–210. [Google Scholar] [CrossRef]
- Awada, R.; Ghssein, G.; Roz, A.; Farhat, M.; Nehme, N.; Hassan, H. Prevalence of Campylobacter spp. in broilers in North Lebanon. Vet. World 2023, 16, 322–328. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Enne, V.I.; Bennett, P.M.; Livermore, D.M.; Hall, L.M. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother. 2004, 53, 958–963. [Google Scholar] [CrossRef]
- Inglis, G.D.; Zaytsoff, S.J.; Selinger, L.B.; Taboada, E.N.; Uwiera, R.R. Therapeutic administration of enrofloxacin in mice does not select for fluoroquinolone resistance in Campylobacter jejuni. Can. J. Microbiol. 2018, 64, 681–694. [Google Scholar] [CrossRef]
- Usui, M.; Sakemi, Y.; Uchida, I.; Tamura, Y.J. Effects of fluoroquinolone treatment and group housing of pigs on the selection and spread of fluoroquinolone-resistant Campylobacter. Vet. Microbiol. 2014, 170, 438–441. [Google Scholar] [CrossRef]
- Yang, H.; Chen, H.; Yang, Q.; Chen, M.; Wang, H.J. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac (6′)-Ibra in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Antimicrob. Agents Chemother. 2008, 52, 4268–4273. [Google Scholar] [CrossRef]
- Seo, K.W.; Lee, Y.J. Characterization of plasmid mediated quinolone resistance determinants in ciprofloxacin resistant-Escherichia coli from chicken meat produced by integrated broiler operations in Korea. Int. J. Food Microbiol. 2019, 307, 108274. [Google Scholar] [CrossRef]
- Hordijk, J.; Veldman, K.; Dierikx, C.; van Essen-Zandbergen, A.; Wagenaar, J.A.; Mevius, D. Prevalence and characteristics of quinolone resistance in Escherichia coli in veal calves. Vet. Microbiol. 2012, 156, 136–142. [Google Scholar] [CrossRef]
- Lin, D.; Chen, K.; Chan, E.W.-C.; Chen, S. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci. Rep. 2015, 5, 14754. [Google Scholar] [CrossRef]
- Kang, M.; Wei, B.; Choi, S.W.; Cha, S.Y.; Jang, H.K. Molecular characterization of fluoroquinolone resistance mechanisms of Campylobacter isolates from duck meats. J. Food Prot. 2017, 80, 2056–2059. [Google Scholar] [CrossRef]
- Goulart, D.; Beyi, A.; Wu, Z.; Adiguzel, C.; Wilson, S.; Xu, C.; Pang, J.; Dewell, R.; Dewell, G.; Plummer, P.; et al. Influence of single dose enrofloxacin injection on development of fluoroquinolone resistance in Campylobacter jejuni in calves. Antibiotics 2022, 11, 1407. [Google Scholar] [CrossRef]
Pathogens | Group | 1-Day-Old | 15–25-Days-Old | Retail Meat | ||||||
---|---|---|---|---|---|---|---|---|---|---|
No. of Samples | No. of Isolates | Isolation Rate (%) | No. of Samples | No. of Isolates | Isolation Rate (%) | No. of Samples | No. of Isolates | Isolation Rate (%) | ||
Salmonella | 1 | 308 | 25 | 8.1 (5.1–11.2) | 1236 | 79 | 6.4 (5.0–7.8) | 105 | 30 | 28.6 (19.9–37.2) |
2 | 220 | 26 | 11.8 (7.6–16.1) | 485 | 56 | 11.6 (8.7–14.4) | 64 | 39 | 60.9 (49.0–72.9) | |
p-value | 0.114 | <0.001 | <0.001 | |||||||
Campylobacter | 1 | 308 | 1 | 0.3 (0.0–1.0) | 1236 | 83 | 6.7 (5.2–8.1) | 105 | 48 | 45.7 (36.2–55.2) |
2 | 220 | 0 | 0.0 (0.0–0.0) | 485 | 16 | 3.3 (1.7–4.9) | 64 | 17 | 26.6 (15.7–37.4) | |
p-value | 0.720 | 0.006 | 0.013 |
Antimicrobial Class | Antimicrobials | Antimicrobial Resistance (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1-Day-Old | 15–25-Days-Old | Retail Meat | ||||||||
Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | ||
Combinations | Amoxicillin/clavulanic acid | 9.1 | 9.1 | 1.000 | 6.1 | 5.4 | 0.838 | 23.1 | 45.0 | 0.083 |
Penicillin | Ampicillin | 63.6 | 72.9 | 0.316 | 88.6 | 82.2 | 0.181 | 94.9 | 70.0 | 0.025 |
Cephalosporins | Cephalothin | 100.0 | 40.0 | <0.001 | 54.7 | 39.6 | 0.038 | 37.9 | 60.0 | 0.128 |
Cefoxitin | 9.1 | 8.0 | 1.000 | 9.4 | 10.9 | 0.734 | 20.5 | 45.0 | 0.049 | |
Ceftiofur | 11.4 | 11.9 | 1.000 | 20.0 | 16.9 | 0.557 | 46.2 | 60.0 | 0.314 | |
Amphenicols | Chloramphenicol | 25.0 | 25.4 | 1.000 | 61.0 | 52.5 | 0.206 | 59.0 | 55.0 | 0.770 |
Florfenicol | 18.2 | 23.7 | 0.662 | 55.2 | 50.4 | 0.487 | 80.6 | 47.1 | 0.016 | |
Aminoglycosides | Streptomycin | 43.2 | 54.2 | 0.267 | 67.6 | 66.9 | 0.915 | 43.6 | 55.0 | 0.406 |
Gentamicin | 9.1 | 8.5 | 1.000 | 26.0 | 17.8 | 0.140 | 61.5 | 25.0 | 0.017 | |
Neomycin | 2.3 | 8.5 | 0.366 | 14.6 | 8.5 | 0.166 | 0.0 | 0.0 | N/A | |
Tetracycline | Tetracycline | 75.0 | 62.7 | 0.186 | 76.0 | 82.2 | 0.252 | 64.1 | 100.0 | 0.006 |
Sulfonamides | Trimethoprim/sulfamethoxazole | 29.5 | 34.0 | 0.692 | 40.6 | 40.0 | 0.931 | 76.9 | 80.0 | 1.000 |
Quinolones | Nalidixic acid | 100.0 | 81.4 | 0.007 | 99.0 | 96.6 | 0.439 | 82.1 | 85.0 | 1.000 |
Ciprofloxacin | 72.7 | 55.9 | 0.081 | 81.9 | 73.7 | 0.144 | 82.1 | 70.0 | 0.290 | |
Enrofloxacin | 68.2 | 59.3 | 0.357 | 88.1 | 78.0 | 0.048 | 79.5 | 80.0 | 1.000 | |
Polymyxin | Colistin | 0.0 | 0.0 | N/A | 1.0 | 0.8 | 1.000 | 2.6 | 0.0 | 1.000 |
MDR | 77.3 | 66.1 | 0.612 | 95.2 | 89.8 | 0.763 | 100.0 | 100.0 | 1.000 |
Antimicrobial Class | Antimicrobials | Antimicrobial Resistance (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1-Day-Old | 15–25-Days-Old | Retail Meat | ||||||||
Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | ||
Combinations | Amoxicillin/clavulanic acid | 0.0 | 0.0 | N/A | 1.3 | 0.0 | 1.000 | 0.0 | 0.0 | NA |
Penicillin | Ampicillin | 8.0 | 0.0 | 0.453 | 40.5 | 17.9 | 0.005 | 56.7 | 35.9 | 0.140 |
Cephalosporins | Cephalothin | 0.0 | 0.0 | N/A | 2.5 | 1.8 | 1.000 | 6.7 | 0.0 | 0.361 |
Cefoxitin | 20.0 | 11.5 | 0.656 | 7.6 | 7.1 | 1.000 | 0.0 | 2.6 | 1.000 | |
Ceftiofur | 8.0 | 3.8 | 0.972 | 6.3 | 3.6 | 0.750 | 0.0 | 7.7 | 0.338 | |
Amphenicols | Chloramphenicol | 0.0 | 0.0 | N/A | 38.0 | 12.5 | 0.001 | 56.7 | 35.9 | 0.140 |
Florfenicol | 0.0 | 0.0 | N/A | 22.8 | 12.5 | 0.130 | 20.0 | 23.1 | 0.990 | |
Aminoglycosides | Streptomycin | 36.0 | 26.9 | 0.692 | 49.4 | 44.6 | 0.588 | 26.7 | 28.2 | 1.000 |
Gentamicin | 0.0 | 0.0 | N/A | 1.3 | 1.8 | 1.000 | 0.0 | 0.0 | 0.055 | |
Neomycin | 60.0 | 34.6 | 0.125 | 41.8 | 44.6 | 0.740 | 16.7 | 41.0 | 0.155 | |
Tetracycline | Tetracycline | 24.0 | 11.5 | 0.424 | 63.3 | 23.2 | <0.001 | 53.3 | 33.3 | 0.404 |
Sulfonamides | Trimethoprim/sulfamethoxazole | 0.0 | 3.8 | 1.000 | 48.1 | 28.6 | 0.022 | 56.7 | 43.6 | 1.000 |
Quinolones | Nalidixic acid | 100.0 | 96.2 | 1.000 | 89.9 | 100.0 | 0.037 | 96.7 | 97.4 | 1.000 |
Ciprofloxacin-R | 0.0 | 0.0 | N/A | 1.3 | 0.0 | 1.000 | 3.3 | 0.0 | 1.000 | |
Ciprofloxacin-IR | 48.0 | 19.2 | 0.060 | 58.2 | 55.4 | 0.740 | 66.7 | 87.2 | 0.080 | |
Enrofloxacin-R | 0.0 | 0.0 | N/A | 2.5 | 0.0 | 0.634 | 0.0 | 5.1 | 1.000 | |
Enrofloxacin-IR | 48.0 | 26.9 | 0.120 | 67.1 | 48.2 | 0.028 | 73.3 | 69.2 | 0.710 | |
Polymyxin | Colistin | 0.0 | 0.0 | N/A | 6.3 | 1.8 | 0.402 | 0.0 | 2.6 | 1.000 |
MDR | 28.0 | 23.1 | 0.765 | 69.6 | 32.1 | 0.016 | 56.7 | 56.4 | 0.991 |
Antimicrobial Class | Antimicrobials | Antimicrobial Resistance (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1-Day-Old | 15–25-Days-Old | Retail Meat | ||||||||
Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value | ||
Penicillin | Ampicillin | 100.0 | - | N/A | 66.7 | 56.3 | 0.448 | 39.6 | 82.4 | 0.002 |
Tetracycline | Tetracycline | 0.0 | - | N/A | 15.7 | 81.3 | <0.001 | 58.3 | 76.5 | 0.183 |
Macrolides | Azithromycin | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 2.1 | 0.0 | 0.549 |
Erythromycin | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 0.0 | 0.0 | N/A | |
Amphenicols | Florfenicol | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 2.1 | 0.0 | N/A |
Aminoglycosides | Gentamicin | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 0.0 | 0.0 | N/A |
Ketolides | Telithromycin | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 0.0 | 0.0 | N/A |
Lincosamides | Clindamycin | 0.0 | - | N/A | 0.0 | 0.0 | N/A | 0.0 | 0.0 | N/A |
Quinolones | Nalidixic acid | 0.0 | - | N/A | 78.4 | 100.0 | 0.054 | 95.8 | 88.2 | 0.263 |
Ciprofloxacin | 0.0 | - | N/A | 78.4 | 100.0 | 0.054 | 100.0 | 100.0 | N/A | |
Enrofloxacin | 0.0 | - | N/A | 78.4 | 100.0 | 0.054 | 100.0 | 100.0 | N/A | |
MDR | 0.0 | - | N/A | 11.8 | 43.8 | 0.005 | 20.8 | 58.8 | 0.004 |
Group b (n) | n (%) c | ENR MIC (µg/mL) | PMQR (%) | QRDR Pattern | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gyrA | parC | parE | ||||||||||||||
Group 1 (n = 28) | 8 (28.6) | 16–32 | 0.0 | Ser-83-Leu | Asp-87-Asn | e | Ser-80-Ile | Ser-83-Tyr | wt | |||||||
7 (25.0) | 4–16 | qnrB (14.3) | wt d | Ser-80-Ile | Ser-83-Tyr | wt | ||||||||||
2 (7.1) | 4 | 0.0 | Ser-83-Leu | Ser-83-Tyr | wt | |||||||||||
2 (7.1) | 32 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-80-Ile | Ser-83-Tyr | Ser-458-Ala | |||||||||
2 (7.1) | 1–2 | qnrS1 (50.0) | wt | Ser-83-Tyr | wt | |||||||||||
1 (3.6) | 16 | 0.0 | Ser-83-Leu | Asp-87-His | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
1 (3.6) | 16 | 0.0 | Ser-83-Leu | Asp-87-Ala | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
1 (3.6) | 16 | 0.0 | Ser-83-Leu | Asp-87-Tyr | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
1 (3.6) | 16 | 0.0 | Ser-83-Leu | Asp-87-Gly | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
1 (3.6) | 32 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-80-Ile | Ser-83-Tyr | Ile-464-Phe | |||||||||
1 (3.6) | 32 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-83-Tyr | Glu-84-Lys | wt | |||||||||
1 (3.6) | > 32 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-80-Ile | Ser-83-Tyr | Glu-84-Gly | Ser-458-Ala | ||||||||
Group 2 (n = 17) | 6 (35.3) | 8–16 | 0.0 | Ser-80-Ile | Ser-83-Tyr | wt | ||||||||||
3 (17.6) | 16 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
3 (17.6) | > 32 | 0.0 | Ser-83-Leu | Asp-87-Asn | Ser-80-Ile | Ser-83-Tyr | Ser-458-Ala | |||||||||
3 (17.6) | 8 | 0.0 | wt | Ser-83-Tyr | wt | |||||||||||
1 (5.9) | 32 | 0.0 | Ser-83-Leu | Asp-87-His | Ser-80-Ile | Ser-83-Tyr | wt | |||||||||
1 (5.9) | 32 | 0.0 | wt | Ser-80-Arg | Ser-83-Tyr | wt |
Group b (n) | n (%) c | ENR MIC (µg/mL) | PMQR (%) | QRDR Pattern | |||||
---|---|---|---|---|---|---|---|---|---|
gyrA | parC | ||||||||
1 (n = 50) | 28 (56.0) | 0.25–1.00 | 0.00 | d | Asp-87-Gly | Tyr-57-Ser | |||
9 (18.0) | 0.25–0.50 | 0.00 | Ser-83-Phe | Tyr-57-Ser | |||||
5 (10.0) | 0.25–1.00 | 0.00 | wt e | Tyr-57-Ser | |||||
4 (8.0) | 0.25–0.50 | 0.00 | Ser-83-Phe | wt | |||||
2 (4.0) | 0.12–0.25 | 0.00 | Ser-83-Tyr | Tyr-57-Ser | |||||
1 (2.0) | 0.50 | 0.00 | Ser-83-Ala | Asp-87-Gly | Tyr-57-Ser | ||||
1 (2.0) | 0.25 | 0.00 | Asp-87-Asn | Tyr-57-Ser | |||||
2 (n = 49) | 33 (67.3) | 0.25–0.50 | 0.00 | Asp-87-Gly | Tyr-57-Ser | ||||
9 (18.4) | 0.50–1.00 | 0.00 | Ser-83-Phe | Tyr-57-Ser | |||||
4 (8.2) | 0.25 | 0.00 | Asp-87-Asn | Tyr-57-Ser | |||||
1 (2.0) | 0.50 | 0.00 | Ser-83-Phe | wt | |||||
1 (2.0) | 0.25 | 0.00 | wt | Tyr-57-Ser | |||||
1 (2.0) | 0.25 | 0.00 | Ser-83-Tyr | Tyr-57-Ser |
Group b (n) | n (%) c | ENR MIC (µg/mL) | PMQR (%) | QRDR Pattern |
---|---|---|---|---|
gyrA | ||||
Group 1 (n = 50) | 50 (100.0) | 4–32 | 0.0 | Thr-86-Ile |
Group 2 (n = 26) | 26 (100.0) | 4–32 | 0.0 | Thr-86-Ile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, K.; Kim, J.-H.; Park, J.-Y.; Choi, Y.-R.; Kim, S.-W.; Cha, S.-Y.; Jang, H.-K.; Wei, B.; Kang, M. Comparative Studies of Antimicrobial Resistance in Escherichia coli, Salmonella, and Campylobacter Isolates from Broiler Chickens with and without Use of Enrofloxacin. Foods 2023, 12, 2239. https://doi.org/10.3390/foods12112239
Shang K, Kim J-H, Park J-Y, Choi Y-R, Kim S-W, Cha S-Y, Jang H-K, Wei B, Kang M. Comparative Studies of Antimicrobial Resistance in Escherichia coli, Salmonella, and Campylobacter Isolates from Broiler Chickens with and without Use of Enrofloxacin. Foods. 2023; 12(11):2239. https://doi.org/10.3390/foods12112239
Chicago/Turabian StyleShang, Ke, Ji-Hyuk Kim, Jong-Yeol Park, Yu-Ri Choi, Sang-Won Kim, Se-Yeoun Cha, Hyung-Kwan Jang, Bai Wei, and Min Kang. 2023. "Comparative Studies of Antimicrobial Resistance in Escherichia coli, Salmonella, and Campylobacter Isolates from Broiler Chickens with and without Use of Enrofloxacin" Foods 12, no. 11: 2239. https://doi.org/10.3390/foods12112239