Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Preparation
2.3. Preparation of Standard Solutions
2.4. IC-MS/MS Analysis
2.5. Validation Procedure
2.6. Methodology of Risk Assessment
2.7. Statistical Analysis
3. Results
3.1. Optimization of IC-MS/MS Method
3.2. Method Validation
3.3. Method Application
3.4. Risk Assessment of BAs in Wine
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dabadé, D.S.; Jacxsens, L.; Miclotte, L.; Abatih, E.; Devlieghere, F.; Meulenaer, B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2021, 120, 107497. [Google Scholar] [CrossRef]
- Jaguey-Hernández, Y.; Aguilar-Arteaga, K.; Ojeda-Ramirez, D.; Añorve-Morga, J.; González-Olivares, L.G.; Castañeda-Ovando, A. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res. Int. 2021, 144, 110341. [Google Scholar] [CrossRef]
- Mayer, H.K.; Fiechter, G. UHPLC analysis of biogenic amines in different cheese varieties. Food Control 2018, 93, 9–16. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; He, R.; Zhang, Y.; Wang, B.; Zhang, Z.-H.; Ho, C.-T. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem. 2023, 405, 134911. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. TRAC Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Lee, J.H.; Mah, J.-H. Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chem. 2019, 278, 1–9. [Google Scholar] [CrossRef] [PubMed]
- del Rio, B.; Redruello, B.; Linares, D.M.; Ladero, V.; Fernandez, M.; Martin, M.C.; Ruas-Madiedo, P.; Alvarez, M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017, 218, 249–255. [Google Scholar] [CrossRef] [PubMed]
- McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. J. Food Compos. Anal. 2006, 19, S58–S65. [Google Scholar] [CrossRef]
- Martuscelli, M.; Arfelli, G.; Manetta, A.C.; Suzzi, G. Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chem. 2013, 140, 590–597. [Google Scholar] [CrossRef]
- EFSA panel on biological hazards (BIOHAZ). Scientific opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393–2486. [Google Scholar] [CrossRef] [Green Version]
- Costantini, A.; Vaudano, E.; Pulcini, L.; Carafa, T.; Garcia-Moruno, E. An overview on biogenic amines in wine. Beverages 2019, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Han, X.; Deng, H.; Wu, T.; Li, C.; Zhan, J.; Huang, W.; You, Y. Profiling the occurrence of biogenic amines in wine from Chinese market and during fermentation using an improved chromatography method. Food Control 2022, 136, 108859. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yang, Y.P.; Peng, Q.; Han, Y. Biogenic amines in wine: A review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- Ganić, K.K.; Gracin, L.; Komes, D.; Ćurko, N.; Lovrić, T. Changes of the content of biogenic amines during winemaking of Sauvignon wines. Croat. J. Food Sci. Technol. 2009, 1, 21–27. [Google Scholar]
- Cecchini, F.; Morassut, M. Effect of grape storage time on biogenic amines content in must. Food Chem. 2010, 123, 263–268. [Google Scholar] [CrossRef]
- Pineda, A.; Carrasco, J.; Peña-Farfal, C.; Henríquez-Aedo, K.; Aranda, M. Preliminary evaluation of biogenic amines content in Chilean young varietal wines by HPLC. Food Control 2012, 23, 251–257. [Google Scholar] [CrossRef]
- Benkerroum, N. Biogenic amines in dairy products: Origin, incidence, and control means. Compr. Rev. Food Sci. Food Saf. 2016, 15, 801–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, M.F.; Flores, M.; Aranda, M.; Henriquez-Aedo, K. Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food Chem. 2020, 309, 125689. [Google Scholar] [CrossRef]
- Mitar, I.; Ljubenkov, I.; Rohtek, N.; Prkic, A.; Andelic, I.; Vuletic, N. The Content of Biogenic Amines in Croatian Wines of Different Geographical Origins. Molecules 2018, 23, 2570. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M.; Ferrer, S.; Polo, L.; Pardo, I. Biogenic amines in wines from three Spanish regions. J. Agric. Food Chem. 2005, 53, 1119–1124. [Google Scholar] [CrossRef]
- Marques, A.P.; Leitao, M.C.; Romao, M.V.S. Biogenic amines in wines: Influence of oenological factors. Food Chem. 2008, 107, 853–860. [Google Scholar] [CrossRef]
- Esposito, F.; Montuori, P.; Schettino, M.; Velotto, S.; Stasi, T.; Romano, R.; Cirillo, T.; Ibrahim, S.A. Level of biogenic amines in red and white wines, dietary exposure, and histamine-mediated symptoms upon wine ingestion. Molecules 2019, 24, 3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, R.; Wei, Z.; Bogdal, C.; Göktaş, R.K.; Xiao, R. Profiling wines in China for the biogenic amines: A nationwide survey and pharmacokinetic fate modeling. Food Chem. 2018, 250, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Vasco, M.; Rodríguez-Cáceres, M.I.; Mora-Diez, N.; Pardo-Botello, R.; Acedo-Valenzuela, M.I. Biogenic amines profile in red wines regarding aging and storage conditions. J. Food Compos. Anal. 2019, 83, 103295. [Google Scholar] [CrossRef]
- Li, G.; Dong, L.; Wang, A.; Wang, W.; Hu, N.; You, J. Simultaneous determination of biogenic amines and estrogens in foodstuff by an improved HPLC method combining with fluorescence labeling. LWT Food Sci. Technol. 2014, 55, 355–361. [Google Scholar] [CrossRef]
- Liu, S.-J.; Xu, J.-J.; Ma, C.-L.; Guo, C.-F. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem. 2018, 266, 275–283. [Google Scholar] [CrossRef]
- Michalski, R.; Pecyna-Utylska, P.; Kernert, J. Determination of ammonium and biogenic amines by ion chromatography. A review. J. Chromatogr. A 2021, 1651, 462319. [Google Scholar] [CrossRef] [PubMed]
- Palermo, C.; Muscarella, M.; Nardiello, D.; Iammarino, M.; Centonze, D. A multi-residual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal. Bioanal. Chem. 2013, 405, 1015–1023. [Google Scholar] [CrossRef]
- Favaro, G.; Pastore, P.; Saccani, G.; Cavalli, S. Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on Au electrode. Food Chem. 2007, 105, 1652–1658. [Google Scholar] [CrossRef]
- Saccani, G.; Tanzi, E.; Pastore, P.; Cavalli, S.; Rey, M. Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J. Chromatogr. A 2005, 1082, 43–50. [Google Scholar] [CrossRef]
- Scavnicar, A.; Rogelj, I.; Kocar, D.; Kose, S.; Pompe, M. Determination of biogenic amines in cheese by ion chromatography with tandem mass spectrometry detection. J. AOAC Int. 2018, 101, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Fabjanowicz, M.; Różańska, A.; Kalinowska, K.; Płotka-Wasylka, J. Miniaturized, green salting-out liquid–liquid microextraction coupled with GC–MS used to evaluate biogenic amines in wine samples. Microchem. J. 2022, 180, 107616. [Google Scholar] [CrossRef]
- Ancin-Azpilicueta, C.; Gonzalez-Marco, A.; Jimenez-Moreno, N. Current knowledge about the presence of amines in wine. Crit. Rev. Food Sci. 2008, 48, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Capozzi, V.; Spano, G.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Metabolites of microbial origin with an impact on health: Ochratoxin A and biogenic amines. Front. Microbiol. 2016, 7, 482. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
Compounds | Q1 Mass (Da) | Q3 Mass (Da) | Declustering Potential (V) | Entrance Potential (V) | Collision Energy (V) | Mobile Phase Composition |
---|---|---|---|---|---|---|
OCT | 154.1 | 107.0 a | 23 | 9 | 26 | Solvent A: 1.0 M formic acid; Solvent B: ultrapure water. The mobile phase was as follows: 0.0 to 15.0 min, a linear gradient from 3% to 25% A; 15.0 to 16.0 min, a linear gradient from 25% to 100% A; 16.0 to 25.0 min, 100% A; 25.0 to 26.0 min, a linear gradient from 100% to 3% A; 26.0 to 30.0 min, 3% A. |
91.0 | 31 | 10 | 35 | |||
TYR | 138.1 | 121.1 a | 30 | 10 | 13 | |
77.1 | 24 | 10 | 36 | |||
PUT | 89.1 | 72.0 a | 31 | 8 | 13 | |
30.0 | 30 | 9 | 30 | |||
CAD | 103.2 | 86.1 a | 30 | 9 | 12 | |
69.0 | 40 | 10 | 20 | |||
HIS | 112.2 | 95.0 a | 53 | 10 | 18 | |
68.0 | 60 | 10 | 28 | |||
PHE | 122.2 | 105.1 a | 26 | 9 | 15 | |
77.0 | 37 | 9 | 16 | |||
TRY | 161.1 | 144.1 a | 25 | 7 | 14 | |
117.1 | 30 | 8 | 32 | |||
SPMD | 146.2 | 112.1 a | 80 | 10 | 18 | |
72.0 | 80 | 10 | 20 | |||
SPM | 203.2 | 129.1 a | 81 | 10 | 17 | |
112.1 | 120 | 10 | 47 |
Analyte | Linearity Range (mg/L) | R2 | LOD (μg/L) | LOQ (μg/L) | Repeatability, RSD% | Reproducibility, RSD% | ||||
---|---|---|---|---|---|---|---|---|---|---|
MS/MS | COND | UV | MS/MS | COND | UV | |||||
OCT | 0.01–5.0 | 0.9972 | 3.0 | -- | 94 | 10 | -- | 314 | 1.0 | 1.6 |
TYR | 0.01–10 | 0.9986 | 0.6 | -- | 100 | 2.0 | -- | 340 | 0.9 | 1.4 |
PUT | 0.1–10 | 0.9978 | 18 | 43 | -- | 60 | 145 | -- | 1.3 | 0.6 |
CAD | 0.1–10 | 0.9989 | 20 | 51 | -- | 68 | 170 | -- | 1.1 | 1.3 |
HIS | 0.01–10 | 0.9983 | 3.0 | 114 | -- | 10 | 380 | -- | 1.0 | 0.9 |
PHE | 0.01–2.5 | 0.9998 | 1.5 | 220 | -- | 5.0 | 735 | -- | 1.8 | 2.1 |
TRY | 0.01–5.0 | 0.9987 | 2.0 | -- | -- | 7.0 | -- | -- | 1.2 | 2.4 |
SPMD | 0.2–10 | 0.9978 | 40 | 36 | -- | 135 | 120 | -- | 1.5 | 1.7 |
SPM | 2.0–50 | 0.9986 | 500 | 98 | -- | 1700 | 330 | -- | 2.4 | 3.4 |
Analyte | Sample | Sample + 0.5 mg/L | Sample + 2.0 mg/L | Sample + 10 mg/L | ||||
---|---|---|---|---|---|---|---|---|
Found (mg/L) | RSD% | Recovery% | RSD% | Recovery% | RSD% | Recovery% | RSD% | |
OCT | 0.1 | 3.7 | 89.1 | 3.5 | 89.3 | 3.5 | 93.7 | 2.6 |
TYR | 12.5 | 2.1 | 86.5 | 1.2 | 83.6 | 1.9 | 91.0 | 2.0 |
PUT | 12.7 | 1.7 | 97.6 | 2.7 | 90.0 | 3.0 | 84.9 | 3.9 |
CAD | 1.3 | 3.5 | 99.7 | 1.4 | 95.2 | 1.2 | 89.3 | 1.3 |
HIS | 14.8 | 2.6 | 101.9 | 3.0 | 85.6 | 1.1 | 96.5 | 2.9 |
PHE | 0.5 | 4.1 | 91.7 | 3.3 | 95.9 | 1.7 | 89.6 | 2.1 |
TRY | ND | -- | 88.9 | 4.0 | 96.0 | 1.6 | 96.2 | 2.4 |
SPMD | 2.7 | 2.1 | 82.6 | 1.4 | 95.8 | 3.8 | 103.0 | 1.6 |
SPM | ND | -- | -- | -- | 99.5 | 4.2 | 95.9 | 3.4 |
Reference | Category | BAs | n | ND | Mean | P5 | Median | P95 | Max |
---|---|---|---|---|---|---|---|---|---|
This study | Red wine | OCT | 213 | 45% | 0.055 | 0.030 | 0.048 | 0.11 | 0.21 |
TYR | 213 | 0% | 4.54 | 0.027 | 3.83 | 11.38 | 14.67 | ||
PUT | 213 | 0% | 14.33 | 4.26 | 11.95 | 31.59 | 39.77 | ||
CAD | 213 | 3% | 0.79 | 0.14 | 0.73 | 1.62 | 3.75 | ||
HIS | 213 | 0% | 5.40 | 0.091 | 4.36 | 13.36 | 16.54 | ||
PHE | 213 | 1% | 0.33 | 0.026 | 0.18 | 1.04 | 6.29 | ||
TRY | 213 | 99% | 0.016 | 0.014 | 0.016 | 0.018 | 0.019 | ||
SPMD | 213 | 41% | 0.85 | 0.22 | 0.49 | 2.84 | 5.30 | ||
SPM | 213 | 100% | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | ||
Total BAs | 213 | 0% | 25.96 | 6.63 | 21.95 | 53.72 | 65.51 | ||
BAI | 213 | 0% | 25.03 | 5.85 | 21.20 | 52.40 | 65.02 | ||
White wine | OCT | 23 | 83% | 0.047 | 0.039 | 0.048 | 0.054 | 0.054 | |
TYR | 23 | 0% | 2.08 | 0.025 | 0.26 | 8.25 | 12.64 | ||
PUT | 23 | 0% | 11.04 | 1.06 | 4.06 | 45.07 | 48.85 | ||
CAD | 23 | 61% | 0.76 | 0.13 | 0.57 | 1.63 | 1.71 | ||
HIS | 23 | 0% | 2.09 | 0.066 | 0.18 | 10.11 | 10.37 | ||
PHE | 23 | 4% | 0.40 | 0.038 | 0.17 | 2.01 | 2.14 | ||
TRY | 23 | 100% | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
SPMD | 23 | 57% | 0.98 | 0.25 | 0.79 | 2.12 | 2.19 | ||
SPM | 23 | 100% | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | ||
Total BAs | 23 | 0% | 16.34 | 1.68 | 5.40 | 62.28 | 72.41 | ||
BAI | 23 | 0% | 15.50 | 1.39 | 5.20 | 59.39 | 71.19 | ||
EFSA | Red wine | TYR | 296 | 12% | 2.7–2.9 | <0.2 | 1.6–1.8 | 7.8–8.5 | 18.5 |
PUT | 120 | 5% | 4.2–4.8 | 0.3–1 | 3.4–3.7 | 9.5–11.5 | 21.6 | ||
CAD | 126 | 26% | 0.2–0.5 | <0.1 | 0.1–0.2 | 0.6–1.6 | 5 | ||
HIS | 300 | 10% | 3.6–3.7 | <0.1 | 1.4–1.5 | 12.3–12.4 | 34.3 | ||
PHE | 24 | 100% | <2.4 | <1.5 | <1.5 | <5 | <5 | ||
White wine | TYR | 224 | 17% | 1.1–1.2 | <0.1 | 0.8 | 4.3–4.5 | 10 | |
PUT | 100 | 3% | 1.4–1.5 | 0.2 | 1.0 | 3.9–4.3 | 5.7–10 | ||
CAD | 100 | 30% | 0.1–0.2 | <0.1 | <0.1 | 0.3–0.4 | 10 | ||
HIS | 225 | 22% | 0.8–0.9 | <0.1 | 0.3 | 2.6 | 55 | ||
PHE | 2 | 100% | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 |
Origin | HIS (mg/Meal) | TYR (mg/Meal) | |||||
---|---|---|---|---|---|---|---|
Best Case | Worst Case | ARfD | Best Case | Worst Case | ARfD | ||
Red wine | China | 7.7 | 14.3 | Healthy individuals: 50, People with HIS intolerance: 0 | 5.8 | 11.8 | Healthy individuals: 600, People taking MAOI: 50, People taking classical MAOI: 6 |
Italy | 3.7 | 7.2 | 4.3 | 8.6 | |||
France | 2.4 | 6.8 | 3.9 | 9.5 | |||
Australia | 0.3 | 1.9 | 0.2 | 3.6 | |||
Other countries | 2.3 | 6.2 | 2.7 | 5.0 | |||
White wine | Czech | 13.4 | 15.5 | 9.8 | 17.3 | ||
Italy | 0.3 | 0.5 | 0.4 | 1.4 | |||
China | 0.2 | 0.3 | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Song, X.; Jiang, Y.; Yao, J.; Li, Z.; Dai, F.; Wang, Q. Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography–Tandem Mass Spectrometry. Foods 2023, 12, 2262. https://doi.org/10.3390/foods12112262
Zhu Z, Song X, Jiang Y, Yao J, Li Z, Dai F, Wang Q. Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography–Tandem Mass Spectrometry. Foods. 2023; 12(11):2262. https://doi.org/10.3390/foods12112262
Chicago/Turabian StyleZhu, Zuoyi, Xinyue Song, Yunzhu Jiang, Jiarong Yao, Zhen Li, Fen Dai, and Qiang Wang. 2023. "Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography–Tandem Mass Spectrometry" Foods 12, no. 11: 2262. https://doi.org/10.3390/foods12112262
APA StyleZhu, Z., Song, X., Jiang, Y., Yao, J., Li, Z., Dai, F., & Wang, Q. (2023). Determination of Biogenic Amines in Wine from Chinese Markets Using Ion Chromatography–Tandem Mass Spectrometry. Foods, 12(11), 2262. https://doi.org/10.3390/foods12112262