Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Sampling of Pickles
2.2. DBD Plasma Treatment
2.3. Counting and Analysis of Culturable Microorganisms in Raw Radish Materials
2.4. Monitoring of pH and Nitrite Content in Pickled Radish
2.5. Real-Time PCR Monitoring of Pickled Radish Fermentation Broth
2.6. High-Throughput Sequencing of Pickled Radish Fermentation Broth
3. Results
3.1. Effects of DBD Cold Plasma Treatment Time on the Microbial CFU Count of Raw Radish
3.2. Effect of DBD Cold Plasma Treatment Time on the Dynamic Changes of pH in Pickled Radish
3.3. Effect of DBD Cold Plasma Treatment Times on the Self-Degradation Process of Nitrite in Pickled Radish
3.4. Effects of DBD Cold Plasma on the Microbial Community Abundance in Pickled Radish
3.5. Effects of DBD Cold Plasma on the Microbial Community Composition of Pickled Radish
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A.J.; Luo, W.; Peng, Y.T.; Niu, K.L.; Liu, X.Y.; Shen, G.H.; Zhang, Z.Q.; Wan, H.; Luo, Q.Y.; Li, S.S. Quality and Microbial Flora Changes of Radish Paocai during Multiple Fermentation Rounds. Food Control 2019, 106, 106733. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, T.; Peng, Z.; Liu, C.; Huang, T.; Yu, H.; Xie, M. Correlation between Microbiota and Flavours in Fermentation of Chinese Sichuan Paocai. Food Res. Int. 2018, 114, 123–132. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y. Effects of Microbial Diversity on Nitrite Concentration in Pao Cai, a Naturally Fermented Cabbage Product from China. Food Microbiol. 2018, 72, 185–192. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Ren, T.; Wang, B.; Peng, Y.; Zeng, S.; Su, Y. Sichuan Paocai Fermented by Mixed-Starter Culture of Lactic Acid Bacteria. Food Sci. Nutr. 2020, 8, 5402–5409. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, X.; Wang, G.; Zhang, H.; Xiong, Z.; Sun, Y.; Ai, L. Characterization and Selection of Lactobacillus Brevis Starter for Nitrite Degradation of Chinese Pickle. Food Control 2017, 78, 126–131. [Google Scholar] [CrossRef]
- Huang, Y.; Jia, X.; Yu, J.; Chen, Y.; Liu, D.; Liang, M. Effect of Different Lactic Acid Bacteria on Nitrite Degradation, Volatile Profiles, and Sensory Quality in Chinese Traditional Paocai. LWT 2021, 147, 111597. [Google Scholar] [CrossRef]
- Barrangou, R.; Yoon, S.S.; Breidt, F.; Fleming, H.P.; Klaenhammer, T.R. Identification and Characterization of Leuconostoc Fallax Strains Isolated from an Industrial Sauerkraut Fermentation. Appl. Environ. Microbiol. 2002, 68, 2877–2884. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.T.; Wu, Z.Y.; Zhang, W.X. Effects of Garlic Addition on Bacterial Communities and the Conversions of Nitrate and Nitrite in a Simulated Pickle Fermentation System. Food Control 2020, 113, 107215. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, D.; Yuan, L.; Fan, P.; Xiao, Y.; Chen, J.; Feng, W. Transcriptome and Protein Networks to Elucidate the Mechanism Underlying Nitrite Degradation by Lactiplantibacillus Plantarum. Food Res. Int. 2022, 156, 111319. [Google Scholar] [CrossRef]
- Yu, S.M.; Zhang, Y. Effects of Lactic Acid Bacteria on Nitrite Degradation during Pickle Fermentation. Adv. Mat. Res. 2013, 781–784, 1656–1660. [Google Scholar]
- Liu, D.M.; Wang, P.; Zhang, X.Y.; Xu, X.L.; Wu, H.; Li, L. Characterization of Nitrite Degradation by Lactobacillus casei Subsp. Rhamnosus LCR 6013. PLoS ONE 2014, 9, e93308. [Google Scholar] [CrossRef]
- Liang, H.; He, Z.; Wang, X.; Song, G.; Chen, H.; Lin, X.; Ji, C.; Li, S. Effects of Salt Concentration on Microbial Diversity and Volatile Compounds during Suancai Fermentation. Food Microbiol. 2020, 91, 103537. [Google Scholar] [CrossRef]
- Du, R.; Song, G.; Zhao, D.; Sun, J.; Ping, W.; Ge, J. Lactobacillus casei Starter Culture Improves Vitamin Content, Increases Acidity and Decreases Nitrite Concentration during Sauerkraut Fermentation. Int. J. Food Sci. Technol. 2018, 53, 1925–1931. [Google Scholar] [CrossRef]
- Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N.G.; Katsaros, G. Effect of Cold Atmospheric Plasma Processing on Quality and Shelf-Life of Ready-to-Eat Rocket Leafy Salad. Innov. Food Sci. Emerg. Technol. 2020, 66, 102502. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Cheng, J.H.; Sun, D.W. Chemical, Physical and Physiological Quality Attributes of Fruit and Vegetables Induced by Cold Plasma Treatment: Mechanisms and Application Advances. Crit. Rev. Food Sci. Nutr. 2019, 60, 2676–2690. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Naumova, I.; Tarasov, A.; Titov, V. Solution plasma processing as an environmentally friendly method for low-molecular chitosan production. Plasma Chem. Plasma Process. 2022, 42, 587–603. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, D.U.; Min, S.C. Microbial Decontamination of Red Pepper Powder by Cold Plasma. Food Microbiol. 2014, 38, 128–136. [Google Scholar] [CrossRef]
- Sarangapani, C.; Patange, A.; Bourke, P.; Keener, K.; Cullen, P.J. Recent Advances in the Application of Cold Plasma Technology in Foods. Annu. Rev. Food Sci. Technol. 2018, 9, 609–629. [Google Scholar] [CrossRef]
- Huang, M.; Zhuang, H.; Zhao, J.; Wang, J.; Yan, W.; Zhang, J. Differences in Cellular Damage Induced by Dielectric Barrier Discharge Plasma between Salmonella typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020, 132, 107445. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Sites, J.E.; Boyd, G.; Lacombe, A. Dielectric Barrier Discharge Atmospheric Cold Plasma Inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane Virus in Romaine Lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram Positive and Gram Negative Bacteria Differ in Their Sensitivity to Cold Plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef] [Green Version]
- Saifutdinova, A.A.; Saifutdinov, A.I.; Gainullina, S.V.; Timerkaev, B.A. Modeling the Parameters of an Atmospheric Pressure Dielectric Barrier Discharge Controlled by the Shape of the Applied Voltage. IEEE Trans. Plasma Sci. 2022, 50, 1144–1156. [Google Scholar] [CrossRef]
- GB 5099.33-2016; National Quality Standards for Food Safety Determination of Nitrite and Nitrate in Food. National Standard of the People’s Republic of China: Beijing, China, 2016.
- Ding, Z.; Johanningsmeier, S.D.; Price, R.; Reynolds, R.; Truong, V.-D.; Payton, S.C.; Breidt, F. Evaluation of Nitrate and Nitrite Contents in Pickled Fruit and Vegetable Products. Food Control 2018, 90, 304–311. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Ren, H.; Zhan, Y. Comparison of Bacterial Diversity Profiles and Microbial Safety Assessment of Salami, Chinese Dry-Cured Sausage and Chinese Smoked-Cured Sausage by High-Throughput Sequencing. LWT 2018, 90, 108–115. [Google Scholar] [CrossRef]
- Youssef, N.; Sheik, C.S.; Krumholz, L.R.; Najar, F.Z.; Roe, B.A.; Elshahed, M.S. Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S RRNA Gene-Based Environmental Surveys. Appl. Environ. Microbiol. 2009, 75, 5227–5236. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Patil, S.; Boehm, D.; Milosavljević, V.; Cullen, P.J.; Bourke, P. Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 2016, 82, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Hu, X.; Yang, S.; Wang, K.; Zeng, C.; Hou, Z.; Cui, H.; Liu, S.; Zhu, L. Denitrifying Halophilic Archaea Derived from Salt Dominate the Degradation of Nitrite in Salted Radish during Pickling. Food Res. Int. 2022, 152, 110906. [Google Scholar] [CrossRef]
- GB 2761-2017; National Quality Standards for Food Safety Food Pollutant Limits. National Standard of the People’s Republic of China: Beijing, China, 2017.
- Zhang, Y.; Xu, Z.; Li, J.; Liu, D.; Yuan, Y.; Chen, Z.; Wang, G. Cooperation between Two Strains of Enterobacter and Klebsiella in the Simultaneous Nitrogen Removal and Phosphate Accumulation Processes. Bioresour. Technol. 2019, 291, 121854. [Google Scholar] [CrossRef]
- Zheng, X.F.; Yang, Z.; Zhang, H.; Jin, W.X.; Xu, C.W.; Gao, L.; Rao, S.Q.; Jiao, X. Isolation of Virulent Phages Infecting Dominant Mesophilic Aerobic Bacteria in Cucumber Pickle Fermentation. Food Microbiol. 2020, 86, 103330. [Google Scholar] [CrossRef]
- Huang, X.; Weisener, C.G.; Ni, J.; He, B.; Xie, D.; Li, Z. Nitrate Assimilation, Dissimilatory Nitrate Reduction to Ammonium, and Denitrification Coexist in Pseudomonas Putida Y-9 under Aerobic Conditions. Bioresour. Technol. 2020, 312, 123597. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Sharma, S.; Mishra, S.; Tanuku, N.R.S.; Pinnaka, A.K. Sphingobacterium Bovisgrunnientis sp. Nov., Isolated from Yak Milk. Int. J. Syst. Evol. Microbiol. 2018, 68, 636–642. [Google Scholar] [CrossRef]
- He, W.; Xue, H.-P.; Liu, C.; Zhang, A.H.; Huang, J.-K.; Zhang, D.-F. Biomineralization of Struvite Induced by Indigenous Marine Bacteria of the Genus Alteromonas. Front. Mar. Sci. 2023, 10, 413. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, T.; Xu, Y.; Peng, Z.; Liu, Z.; Guan, Q.; Xie, M.; Xiong, T. Metatranscriptomics Reveals the Gene Functions and Metabolic Properties of the Major Microbial Community during Chinese Sichuan Paocai Fermentation. Food Microbiol. 2021, 98, 103573. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Li, H.; Zhou, Z.; Wu, Z.; Zhang, W. Integrating Metabolomics and Metatranscriptomics to Explore the Formation Pathway of Aroma-Active Volatile Phenolics and Metabolic Profile during Industrial Radish Paocai Fermentation. Food Res. Int. 2023, 167, 112719. [Google Scholar] [CrossRef]
- Sarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric Cold Plasma Dissipation Efficiency of Agrochemicals on Blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Ge, L.; Huang, Y.; Wang, Y.; Wang, Y.; Lai, H.; Wang, Y.; Zhu, Y.; Zhang, J. Impact of Cold Plasma Processing on Quality Parameters of Packaged Fermented Vegetable (Radish Paocai) in Comparison with Pasteurization Processing: Insight into Safety and Storage Stability of Products. Innov. Food Sci. Emerg. Technol. 2020, 60, 102300. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Liu, S.; Ma, Y.; Xu, C.; Bai, Y. Effect of Plasma-Activated Water on Microbial Quality and Physicochemical Characteristics of Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019, 52, 49–56. [Google Scholar] [CrossRef]
- Bauer, A.; Ni, Y.; Bauer, S.; Paulsen, P.; Modic, M.; Walsh, J.L.; Smulders, F.J.M. The Effects of Atmospheric Pressure Cold Plasma Treatment on Microbiological, Physical-Chemical and Sensory Characteristics of Vacuum Packaged Beef Loin. Meat Sci. 2017, 128, 77–87. [Google Scholar] [CrossRef]
- Hou, X.; Zhao, N.; Ge, L.; Mei, Y.; Qian, J.; Zeng, X.; Yan, W.; Zhang, J. Effect of Cold Plasma Treatment on the Inhibition of Pellicle-Spoilage and the Storage Quality of Low-Salt Paocai, a Traditional Chinese Fermented Vegetable Food. Food Sci. 2022, 43, 282–290. (In Chinese) [Google Scholar]
Treatments | Total Reads | OTU | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
C-1d | 81,573 | 394 | 401.7 | 4.4 | 0.8 | 0.998 |
C-3d | 89,664 | 405 | 470.1 | 3.6 | 0.8 | 0.998 |
C-4d | 65,255 | 353 | 325.5 | 3.5 | 0.8 | 0.993 |
C-8d | 54,884 | 336 | 338.6 | 3.6 | 0.9 | 0.999 |
T-1d | 61,977 | 368 | 361.6 | 4.0 | 0.9 | 0.998 |
T-3d | 88,872 | 378 | 365.3 | 3.8 | 0.9 | 0.998 |
T-4d | 83,706 | 323 | 311.0 | 3.7 | 0.9 | 0.998 |
T-8d | 89,907 | 300 | 293.0 | 3.6 | 0.9 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Yang, S.; Yang, F.; Hu, X.; Wang, Y.; Guo, W.; Yang, B.; Xiao, X.; Zhu, L. Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish. Foods 2023, 12, 2550. https://doi.org/10.3390/foods12132550
Wei W, Yang S, Yang F, Hu X, Wang Y, Guo W, Yang B, Xiao X, Zhu L. Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish. Foods. 2023; 12(13):2550. https://doi.org/10.3390/foods12132550
Chicago/Turabian StyleWei, Wei, Shujing Yang, Fan Yang, Xinyu Hu, Yuan Wang, Wenjun Guo, Biyue Yang, Xiang Xiao, and Lin Zhu. 2023. "Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish" Foods 12, no. 13: 2550. https://doi.org/10.3390/foods12132550
APA StyleWei, W., Yang, S., Yang, F., Hu, X., Wang, Y., Guo, W., Yang, B., Xiao, X., & Zhu, L. (2023). Cold Plasma Controls Nitrite Hazards by Modulating Microbial Communities in Pickled Radish. Foods, 12(13), 2550. https://doi.org/10.3390/foods12132550