Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Standard Preparation
2.4. Ultrasound-Assisted Extraction (UAE)
2.5. Solid Phase Extraction (SPE)
2.6. Polyphenol Quantifications–UPLC-qTOF-MS/MS
2.7. Antioxidant Activity: ORAC
2.8. Statistical Analysis
3. Results
3.1. Polyphenol Quantifications–UPLC-qTOF-MS/MS
3.2. Antioxidant Capacity
4. Discussion
4.1. Phenolic Acid Composition
4.2. Antioxidant Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tirdiľová, I. Diferences in Fytochemicals Content in Coloured Cultivars of Common Bean (Phaseolus Vulgaris L.). J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1187–1190. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, H.B.; Negi, P.S. Phenolic Acids from Vegetables: A Review on Processing Stability and Health Benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Piccioni, F.; Malvicini, M.; Garcia, M.G.; Rodriguez, A.; Atorrasagasti, C.; Kippes, N.; Piedra Buena, I.T.; Rizzo, M.M.; Bayo, J.; Aquino, J.; et al. Antitumor Effects of Hyaluronic Acid Inhibitor 4-Methylumbelliferone in an Orthotopic Hepatocellular Carcinoma Model in Mice. Glycobiology 2012, 22, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Kakizaki, I.; Kojima, K.; Takagaki, K.; Endo, M.; Kannagi, R.; Ito, M.; Maruo, Y.; Sato, H.; Yasuda, T.; Mita, S.; et al. A Novel Mechanism for the Inhibition of Hyaluronan Biosynthesis by 4-Methylumbelliferone. J. Biol. Chem. 2004, 279, 33281–33289. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Afaq, F.; Mukhtar, H. Selective Growth-Inhibitory, Cell-Cycle Deregulatory and Apoptotic Response of Apigenin in Normal versus Human Prostate Carcinoma Cells. Biochem. Biophys. Res. Commun. 2001, 287, 914–920. [Google Scholar] [CrossRef]
- Ahmad, M.; Gilani, A.-U.-H.; Aftab, K.; Ahmad, V.U. Effects of Kaempferol-3-O-Rutinoside on Rat Blood Pressure. Phytother. Res. 1993, 7, 314–316. [Google Scholar] [CrossRef]
- Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The Blood Pressure-Lowering Effect and Safety of Chlorogenic Acid from Green Coffee Bean Extract in Essential Hypertension. Clin. Exp. Hypertens. 2006, 28, 439–449. [Google Scholar] [CrossRef]
- Habtemariam, S. α-Glucosidase Inhibitory Activity of Kaempferol-3-O-Rutinoside. Nat. Prod. Commun. 2011, 6, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.; Khan, M.M.; Raza, S.S.; Javed, H.; Ahmad, A.; Khan, A.; Islam, F.; Safhi, M.M. Rutin Protects Dopaminergic Neurons from Oxidative Stress in an Animal Model of Parkinson’s Disease. Neurotox. Res. 2012, 22, 1–15. [Google Scholar] [CrossRef]
- Koda, T.; Kuroda, Y.; Imai, H. Protective Effect of Rutin against Spatial Memory Impairment Induced by Trimethyltin in Rats. Nutr. Res. 2008, 28, 629–634. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Holm, D.G.; Broeckling, C.D.; Prenni, J.E.; Heuberger, A.L. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds. Front. Nutr. 2018, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Spooner, D.M. The Potato: Evolution, Biodiversity and Genetic Resources. J.G. Hawkes. American Potato J. 1990, 67, 733–735. [Google Scholar] [CrossRef]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional Value of Potatoes: Vitamin, Phytonutrient, and Mineral Content. Adv. Potato Chem. Technol. 2009, 14, 395–424. [Google Scholar] [CrossRef]
- Ahloowalia, B.S. In-Vitro Techniques and Mutagenesis for the Improvement of Vegetatively Propagated Plants. In Somaclonal Variation and Induced Mutations in Crop Improvement; Springer: Berlin/Heidelberg, Germany, 1998; pp. 293–309. [Google Scholar] [CrossRef]
- Blair, M.W.; Porch, T.; Cichy, K.; Galeano, C.H.; Lariguet, P.; Pankhurst, C.; Broughton, W. Induced Mutants in Common Bean (Phaseolus vulgaris), and Their Potential Use in Nutrition Quality Breeding and Gene Discovery. Isr. J. Plant Sci. 2007, 55, 191–200. [Google Scholar] [CrossRef]
- Tomlekova, N.B. Induced Mutagenesis for Crop Improvement in Bulgaria. Plant Mutat. Rep. 2010, 2, 4–27. [Google Scholar]
- Nacheva, E.; Tomlekova, N.; Petkova, V. Induced Mutagenesis in F1 Hybrid Seeds of Potato. Ecol. Future Nacheva 2012, 11, 30–35. [Google Scholar]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline Chloride-Based Natural Deep Eutectic Solvents for the Extraction and Stability of Phenolic Compounds, Ascorbic Acid, and Antioxidant Capacity from Citrus Sinensis Peel. LWT 2023, 177, 114595. [Google Scholar] [CrossRef]
- Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Anticona, M.; Lopez-Malo, D.; Frigola, A.; Esteve, M.J.; Blesa, J. Comprehensive Analysis of Polyphenols from Hybrid Mandarin Peels by SPE and HPLC-UV. LWT 2022, 165, 113770. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Khan, H.; Ali, J. UHPLC/Q-TOF-MS Technique: Introduction and Applications. Lett. Org. Chem. 2015, 12, 371–378. [Google Scholar] [CrossRef]
- Kim, J.; Soh, S.Y.; Bae, H.; Nam, S.Y. Antioxidant and Phenolic Contents in Potatoes (Solanum tuberosum L.) and Micropropagated Potatoes. Appl. Biol. Chem. 2019, 62, 17. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; ahman Al-Khalifa, A.S.; eidoon Shahidi, F. Phenolic Content and Antioxidant Activities of Selected Potato Varieties and Their Processing by-Products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Mahpara, S.; Fatima, L.; Gul, A.; Ullah, R.; Muneer, M.; Bhatti, M.A.; Iqbal, J.; Ahmed, A.; Fatima, T.; Ijaz, M.U.; et al. Exploring the Efficiency of Ethyl Methane Sulfonate (EMS) and Sodium Azide (SA) to Induce Mutation in Chili (Capsicum annuum L.) Germplasm. J. King Saud. Univ. Sci. 2023, 35, 102507. [Google Scholar] [CrossRef]
- Navarre, D.A.; Pillai, S.S.; Shakya, R.; Holden, M.J. HPLC Profiling of Phenolics in Diverse Potato Genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera, M.D.R.; Hoffmann, L.; Hausman, J.F.; Larondelle, Y.; Evers, D. Andean Potato Cultivars (Solarium tuberosum L.) as a Source of Antioxidant and Mineral Micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An Up-to-Date Review of Rutin and Its Biological and Pharmacological Activities. EXCLI J. 2015, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Kundu, J.K.; Chun, K.S.; Na, H.K.; Surh, Y.J. Rutin Inhibits UVB Radiation-Induced Expression of COX-2 and INOS in Hairless Mouse Skin: P38 MAP Kinase and JNK as Potential Targets. Arch. Biochem. Biophys. 2014, 559, 38–45. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A Natural Bioactive Flavone-Type Molecule with Promising Therapeutic Function. J. Funct. Foods 2018, 48, 457–471. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in Potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Plazas, M.; Prohens, J.; Cuñat, A.N.; Vilanova, S.; Gramazio, P.; Herraiz, F.J.; Andújar, I. Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. Macrocarpon) Eggplants. Int. J. Mol. Sci. 2014, 15, 17221–17241. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol. 2017, 15, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Raskar, V.; Bhalekar, M.R. Formulation of Coffee Bean Extract (Chlorogenic Acid) Solid Lipid Nanoparticles for Lymphatic Uptake on Oral Administration. J. Drug Deliv. Ther. 2019, 9, 477–484. [Google Scholar] [CrossRef]
- Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic Acid Is Absorbed in Its Intact Form in the Stomach of Rats. J. Nutr. 2006, 136, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Kagawa, D.; Ochiai, R.; Tokimitsu, I.; Saito, I. Green Coffee Bean Extract and Its Metabolites Have a Hypotensive Effect in Spontaneously Hypertensive Rats. Hypertens. Res. 2002, 25, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Gomez, F.J.V.; Espino, M.; de los Angeles Fernandez, M.; Raba, J.; Silva, M.F. Enhanced Electrochemical Detection of Quercetin by Natural Deep Eutectic Solvents. Anal. Chim. Acta 2016, 936, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharm. Rev. 2016, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Pietta, P.; Minoggio, M.; Bramati, L. Plant Polyphenols: Structure, Occurrence and Bioactivity. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 28, pp. 257–312. [Google Scholar]
- Aydin, Y.; Dikbasan, Y.U.; Orta Yilmaz, B. Plant Bioactives in Immune Modulation and Their Role in Antiaging. In Plant Bioactives as Natural Panacea Against Age-Induced Diseases; Elsevier: Amsterdam, The Netherlands, 2023; pp. 85–109. [Google Scholar] [CrossRef]
- Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T. Bin Prospective Multifunctional Roles and Pharmacological Potential of Dietary Flavonoid Narirutin. Biomed. Pharmacother. 2022, 150, 112932. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Gámbaro, A.; Medrano-Fernandez, A.; del Castillo, M.D. In Vitro Bioaccessibility of Citrus Pomace Compounds Possessing Health Promoting Properties with Potential to Reduce the Risk of Diabetes. Proceedings 2020, 61, 31. [Google Scholar] [CrossRef]
- Kumar, Y.; Bhatia, A. Polyphenols and Skin Cancers. Polyphen. Hum. Health Dis. 2014, 1, 643–653. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Devkar, R.V. Polyphenols and Flavonoids in Controlling Non-Alcoholic Steatohepatitis. Polyphen. Hum. Health Dis. 2014, 1, 615–623. [Google Scholar] [CrossRef]
- Ahmad, S.T.; Arjumand, W.; Nafees, S.; Seth, A.; Ali, N.; Rashid, S.; Sultana, S. Hesperidin Alleviates Acetaminophen Induced Toxicity in Wistar Rats by Abrogation of Oxidative Stress, Apoptosis and Inflammation. Toxicol. Lett. 2012, 208, 149–161. [Google Scholar] [CrossRef]
- Akiyama, S.; Katsumata, S.I.; Suzuki, K.; Nakaya, Y.; Ishimi, Y.; Uehara, M. Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Biosci. Biotechnol. Biochem. 2009, 73, 2779–2782. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, S.; Katsumata, S.I.; Suzuki, K.; Ishimi, Y.; Wu, J.; Uehara, M. Dietary Hesperidin Exerts Hypoglycemic and Hypolipidemic Effects in Streptozotocin-Induced Marginal Type 1 Diabetic Rats. J. Clin. Biochem. Nutr. 2010, 46, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Semalty, A.; Semalty, M.; Singh, D.; Rawat, M.S.M. Preparation and Characterization of Phospholipid Complexes of Naringenin for Effective Drug Delivery. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 253–260. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Reiter, J.; Ries, M.; Gruhlke, M.C.H. Screening Procedures and Tests for Antioxidants. In Pathology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 389–395. [Google Scholar]
- Hellmann, H.; Goyer, A.; Navarre, D.A. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021, 26, 2446. [Google Scholar] [CrossRef] [PubMed]
- Cazzonelli, C.I.; Pogson, B.J. Source to Sink: Regulation of Carotenoid Biosynthesis in Plants. Trends Plant Sci. 2010, 15, 266–274. [Google Scholar] [CrossRef]
- DellaPenna, D.; Pogson, B.J. Vitamin Synthesis in Plants: Tocopherols and Carotenoids. Annu. Rev. Plant Biol. 2006, 57, 711–738. [Google Scholar] [CrossRef] [Green Version]
Mutant Group | Hybrid Combination | Origin | M1V8 Mutant Lines | Controls |
---|---|---|---|---|
M-I | PC 428 × PC 490 | “Nadezhda” × I 75.127 N | M-I-8, M-I-17 | N/A |
M-III | PC 692 (N/A) × PC 490 | “Orlik” × I 75.127 N | M-III-8, M-III-9, M-III-30, M-III-48, M-III-50 | K-III-2 |
M-IV | PC 707 × PC 428 | “Olza” × “Nadezhda” | M-IV-14, M-IV-17 | K-IV-3 |
M-VII | PC 757 × PC 538 | E 402 × “Karlena” | M-VII-7 | K-VII-4 |
Concentration, (µg/mL) | ||||
---|---|---|---|---|
Phenolic Compound | PC 428 | PC 490 | M-I-8 | M-I-17 |
Ferulic acid | 0.1145 ± 0.0004 a | 0.0205 ± 0.0003 b | 0.0210 ± 0.0002 b | N/D |
Rutin | N/D | N/D | 0.0075 ± 0.0005 b | 0.0240 ± 0.0004 a |
Naringin | N/D | N/D | N/D | N/D |
Apigenin | 0.0430 ± 0.0004 c | 0.0445 ± 0.0009 b | 0.0985 ± 0.0005 a | 0.0430 ± 0.0003 c |
Hesperetin | N/D | N/D | N/D | 0.0180 ± 0.0005 |
Chlorogenic acid | 12.5750 ± 0.0028 a | 3.7970 ± 0.0009 b | 2.2790 ± 0.0010 c | 1.7350 ± 0.0006 d |
Quercetin | N/D | N/D | 0.1015 ± 0.0005 | N/D |
Narirutin | N/D | N/D | 0.0080 ± 0.0004 a | 0.0085 ± 0.0003 a |
Hesperidin | 0.0275 ± 0.0004 d | 0.0710 ± 0.0010 a | 0.0325 ± 0.0003 c | 0.0590 ± 0.0006 b |
Trans-cinnamic acid | 5.1700 ± 0.0020 | N/D | N/D | N/D |
Naringenin | 0.0075 ± 0.0003 a | 0.0070 ± 0.0002 ab | 0.0080 ± 0.0002 a | 0.0080 ± 0.0002 a |
Kaempferol | 0.0015 ± 0.0001 b | 0.0015 ± 0.0001 b | 0.0025 ± 0.0002 a | 0.0010 ± 0.0002 c |
Concentration, (µg/mL) | |||||||
---|---|---|---|---|---|---|---|
Phenolic Compound | PC 490 | K-III-2 | M-III-8 | M-III-9 | M-III-30 | M-III-48 | M-III-50 |
Ferulic acid | 0.0205 ± 0.0003 f | 0.0565 ± 0.0004 d | 0.0220 ± 0.0005 e | 0.0655 ± 0.0005 c | 0.0800 ± 0.0005 b | 0.0895 ± 0.0005 a | 0.0560 ± 0.0005 d |
Rutin | N/D | 0.2020 ± 0.0008 a | 0.0295 ± 0.0001 c | 0.0025 ± 0.0003 f | 0.0795 ± 0.0007 b | 0.0110 ± 0.0004 e | 0.0150 ± 0.0005 d |
Naringin | N/D | 0.0040 ± 0.0003 a | N/D | N/D | N/D | 0.0015 ± 0.0002 b | N/D |
Apigenin | 0.0445 ± 0.0009 bc | 0.0465 ± 0.0007 b | 0.0400 ± 0.0006 d | 0.0395 ± 0.0004 d | 0.3200 ± 0.0013 a | 0.0455 ± 0.0004 bc | 0.0430 ± 0.0004 c |
Hesperetin | N/D | 0.0260 ± 0.0004 a | N/D | N/D | N/D | 0.0155 ± 0.0007 b | N/D |
Chlorogenic acid | 3.7970 ± 0.0009 d | 6.8700 ± 0.0007 c | 1.9030 ± 0.0006 f | 1.6415 ± 0.0014 g | 2.8435 ± 0.0008 e | 7.5400 ± 0.0021 b | 9.2200 ± 0.0021 a |
Quercetin | N/D | N/D | 0.0170 ± 0.0002 c | N/D | 0.4165 ± 0.0010 a | 0.0170 ± 0.0004 c | 0.0185 ± 0.0003 b |
Narirutin | N/D | N/D | 0.0160 ± 0.0007 b | N/D | N/D | 0.0405 ± 0.0004 a | N/D |
Hesperidin | 0.0710 ± 0.0010 c | 0.1025 ± 0.0010 b | 0.1100 ± 0.0013 a | 0.0200 ± 0.0002 f | 0.0580 ± 0.0005 d | 0.1025 ± 0.0007 b | 0.0350 ± 0.0002 e |
Trans-cinnamic acid | N/D | N/D | 0.0700 ± 0.0005 c | N/D | 0.5090 ± 0.0014 b | N/D | 1.4905 ± 0.0007 a |
Naringenin | 0.0070 ± 0.0002 c | 0.0035 ± 0.0002 f | 0.0045 ± 0.0003 e | 0.0060 ± 0.0003 d | 0.0180 ± 0.0004 b | 0.0210 ± 0.0002 a | 0.0040 ± 0.0001 ef |
Kaempferol | 0.0015 ± 0.0001 c | 0.0130 ± 0.0006 a | 0.0010 ± 0.0002 c | 0.0015 ± 0.0002 c | 0.0080 ± 0.0002 b | 0.0010 ± 0.0003 c | 0.0015 ± 0.0002 c |
Concentration, (µg/mL) | |||||
---|---|---|---|---|---|
Phenolic Compound | PC 707 | PC 428 | K-IV-3 | M-IV-14 | M-IV-17 |
Ferulic acid | 0.0230 ± 0.0004 c | 0.1145 ± 0.0004 a | 0.0290 ± 0.0007 b | 0.0095 ± 0.0004 d | 0.0220 ± 0.0003 c |
Rutin | 0.0110 ± 0.0001 a | N/D | N/D | 0.0010 ± 0.0003 c | 0.0040 ± 0.0005 b |
Naringin | N/D | N/D | N/D | N/D | N/D |
Apigenin | 0.0440 ± 0.0002 c | 0.0430 ± 0.0004 c | 0.0595 ± 0.0004 a | 0.0455 ± 0.0007 b | 0.0410 ± 0.0004 d |
Hesperetin | N/D | N/D | N/D | N/D | N/D |
Chlorogenic acid | 3.3095 ± 0.0012 b | 12.5750 ± 0.0028 a | 2.1180 ± 0.0008 c | 0.7860 ± 0.0008 d | 2.0435 ± 0.0006 c |
Quercetin | N/D | N/D | 0.0470 ± 0.0008 a | 0.0305 ± 0.0004 b | 0.0200 ± 0.0002 c |
Narirutin | N/D | N/D | N/D | N/D | N/D |
Hesperidin | 0.0120 ± 0.0003 b | 0.0275 ± 0.0004 a | 0.0025 ± 0.0003 c | N/D | N/D |
Trans-cinnamic acid | 0.5425 ± 0.0009 b | 5.1700 ± 0.0020 a | N/D | 0.1185 ± 0.0006 c | N/D |
Naringenin | 0.0035 ± 0.0001 d | 0.0075 ± 0.0003 a | 0.0065 ± 0.0003 b | 0.0030 ± 0.0002 d | 0.0050 ± 0.0003 c |
Kaempferol | 0.0015 ± 0.0001 b | 0.0015 ± 0.0001 b | 0.0010 ± 0.0001 c | 0.0025 ± 0.0002 a | 0.0015 ± 0.0002 b |
Concentration (µg/mL) | ||||
---|---|---|---|---|
Phenolic Compound | PC 538 | PC 757 | K-VII-4 | M-VII-7 |
Ferulic acid | N/D | 0.0480 ± 0.0006 b | 0.0310 ± 0.0002 c | 0.0585 ± 0.0001 a |
Rutin | N/D | N/D | 0.0060 ± 0.0002 a | 0.0035 ± 0.0003 b |
Naringin | N/D | N/D | N/D | N/D |
Apigenin | 0.0410 ± 0.0007 b | 0.0440 ± 0.0004 a | 0.0405 ± 0.0003 b | 0.0385 ± 0.0005 c |
Hesperetin | N/D | N/D | N/D | N/D |
Chlorogenic acid | 2.4010 ± 0.0011 b | 1.8965 ± 0.0005 d | 2.7125 ± 0.0012 a | 1.9860 ± 0.0009 c |
Quercetin | N/D | N/D | N/D | N/D |
Narirutin | N/D | N/D | N/D | N/D |
Hesperidin | N/D | 0.0635 ± 0.0010 a | 0.0045 ± 0.0001 c | 0.0175 ± 0.0003 b |
Trans-cinnamic acid | N/D | N/D | N/D | 0.0140 ± 0.0004 |
Naringenin | 0.0070 ± 0.0004 a | 0.0065 ± 0.0003 a | N/D | 0.0035 ± 0.0002 b |
Kaempferol | 0.0015 ± 0.0002 b | 0.0010 ± 0.0001 c | 0.0030 ± 0.0001 a | 0.0015 ± 0.0001 b |
Hybrid Combination | I | III | IV | VII | ||||
---|---|---|---|---|---|---|---|---|
Sample | mM TE/g | Sample | mM TE/g | Sample | mM TE/g | Sample | mM TE/g | |
Parent Plant/s | PC 428 | 1.45 ± 0.21 c | PC 490 | 2.09 ± 0.47 cd | PC 707 | 1.84 ± 0.15 bc | PC 538 | 1.96 ± 0.45 b |
PC 490 | 2.09 ± 0.47 b | PC 428 | 1.45 ± 0.21 c | PC 757 | 2.42 ± 0.18 ab | |||
Control | K-III-2 | 2.07 ± 0.33 cd | K-IV-3 | 2.16 ± 0.35 b | K-VII-4 | 2.79 ± 0.75 ab | ||
Mutants | M-I-8 | 3.32 ± 0.13 a | M-III-8 | 2.73 ± 0.50 bc | M-IV-14 | 2.02 ± 0.22 b | M-VII-7 | 3.08 ± 0.50 a |
M-I-17 | 2.61 ± 0.40 b | M-III-9 | 3.81 ± 0.30 a | M-IV-17 | 3.03 ± 0.41 a | |||
M-III-30 | 1.55 ± 0.38 d | |||||||
M-III-48 | 3.84 ± 0.31 a | |||||||
M-III-50 | 3.41 ± 0.38 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Urios, C.; Kalaydzhiev, H.; Blesa, J.; Esteve, M.J.; Nacheva, E.; Iserliyska, D.; Tomlekova, N. Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification. Foods 2023, 12, 2616. https://doi.org/10.3390/foods12132616
Gomez-Urios C, Kalaydzhiev H, Blesa J, Esteve MJ, Nacheva E, Iserliyska D, Tomlekova N. Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification. Foods. 2023; 12(13):2616. https://doi.org/10.3390/foods12132616
Chicago/Turabian StyleGomez-Urios, Clara, Hristo Kalaydzhiev, Jesus Blesa, Maria Jose Esteve, Emiliya Nacheva, Dida Iserliyska, and Nasya Tomlekova. 2023. "Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification" Foods 12, no. 13: 2616. https://doi.org/10.3390/foods12132616
APA StyleGomez-Urios, C., Kalaydzhiev, H., Blesa, J., Esteve, M. J., Nacheva, E., Iserliyska, D., & Tomlekova, N. (2023). Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification. Foods, 12(13), 2616. https://doi.org/10.3390/foods12132616