Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Edible/Biodegradable Packaging Production
2.2. Oil Extraction from Spent Coffee Ground
2.3. Fat Content Determination in the Spent Coffee Ground (SCG)
2.4. Acid Value (AV) Determination of Oil Extracted from the Spent Coffee Ground
2.5. Peroxide Value (PV) Determination of Oil Extracted from the Spent Coffee Ground
2.6. Determination of Total Polyphenol Content
2.7. Ferric Reducing Antioxidant Power (FRAP)
2.8. 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
2.9. 2,2′-Azinobis-(3-ethylbenzthiazolin-6-sulfonic Acid) (ABTS)
2.10. Cupric Ion Reducing Antioxidant Capacity (CUPRAC)
2.11. Malondialdehyde (MDA)
2.12. Textural Properties of Packaging
2.13. Water Content, Solubility, and Swelling Degree
2.14. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhatia, S.K.; Kim, J.-H.; Kim, M.-S.; Kim, J.; Hong, J.W.; Hong, Y.G.; Kim, H.-J.; Jeon, J.-M.; Kim, S.-H.; Ahn, J.; et al. Production of (3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Copolymer from Coffee Waste Oil Using Engineered Ralstonia Eutropha. Bioprocess. Biosyst. Eng. 2018, 41, 229–235. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Using Cow Dung and Spent Coffee Grounds to Enhance the Two-Stage Co-Composting of Green Waste. Bioresour. Technol. 2017, 245, 152–161. [Google Scholar] [CrossRef]
- Murthy, P.S.; Madhava Naidu, M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Lessa, E.F.; Nunes, M.L.; Fajardo, A.R. Chitosan/Waste Coffee-Grounds Composite: An Efficient and Eco-Friendly Adsorbent for Removal of Pharmaceutical Contaminants from Water. Carbohydr. Polym. 2018, 189, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Vítězová, M.; Jančiková, S.; Dordević, D.; Vítěz, T.; Elbl, J.; Hanišáková, N.; Jampílek, J.; Kushkevych, I. The Possibility of Using Spent Coffee Grounds to Improve Wastewater Treatment Due to Respiration Activity of Microorganisms. Appl. Sci. 2019, 9, 3155. [Google Scholar] [CrossRef] [Green Version]
- Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883–5890. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A Study on Chemical Constituents and Sugars Extraction from Spent Coffee Grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Pasin, L.A.A.P.; de Abreu, M.S.; Souza, I.P. Influence of the Fungi Population on the Physicochemical and Chemical Composition of Coffee (Coffea arabica L.). Ciênc. Tecnol. Aliment. 2011, 31, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, P.; Jiménez, V.M. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Farah, A.; Donangelo, C.M. Phenolic Compounds in Coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Foerster, S.; Hartmann, F.; Kröger, M.; Kaltschmitt, M. Oil Extracted from Spent Coffee Grounds as a Renewable Source for Fatty Acid Methyl Ester Manufacturing. Fuel 2012, 96, 70–76. [Google Scholar] [CrossRef]
- Leow, Y.; Yew, P.Y.M.; Chee, P.L.; Loh, X.J.; Kai, D. Recycling of Spent Coffee Grounds for Useful Extracts and Green Composites. RSC Adv. 2021, 11, 2682–2692. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.-H.; Nguyen, T.-D. Physicochemical Characterization of Robusta Spent Coffee Ground Oil for Biodiesel Manufacturing. Waste Biomass Valor. 2019, 10, 2703–2712. [Google Scholar] [CrossRef]
- Dordevic, D.; Necasova, L.; Antonic, B.; Jancikova, S.; Tremlová, B. Plastic Cutlery Alternative: Case Study with Biodegradable Spoons. Foods 2021, 10, 1612. [Google Scholar] [CrossRef]
- Dordevic, S.; Dordevic, D.; Sedlacek, P.; Kalina, M.; Tesikova, K.; Antonic, B.; Tremlova, B.; Treml, J.; Nejezchlebova, M.; Vapenka, L.; et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers 2021, 13, 3388. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Lombo Vidal, O.; Tsukui, A.; Garrett, R.; Miguez Rocha-Leão, M.H.; Piler Carvalho, C.W.; Pereira Freitas, S.; Moraes de Rezende, C.; Simões Larraz Ferreira, M. Production of Bioactive Films of Carboxymethyl Cellulose Enriched with Green Coffee Oil and Its Residues. Int. J. Biol. Macromol. 2020, 146, 730–738. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dufresne, A. Sustainable Biodegradable Coffee Grounds Filler and Its Effect on the Hydrophobicity, Mechanical and Thermal Properties of Biodegradable PBAT Composites: ARTICLE. J. Appl. Polym. Sci. 2017, 134, 44498. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017, 5, 1906–1916. [Google Scholar] [CrossRef]
- Moustafa, H.; El-Wakil, A.E.-A.A.; Nour, M.T.; Youssef, A.M. Kenaf Fibre Treatment and Its Impact on the Static, Dynamic, Hydrophobicity and Barrier Properties of Sustainable Polystyrene Biocomposites. RSC Adv. 2020, 10, 29296–29305. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.; Floros, J.D. Active Food Packaging Technologies. Crit. Rev. Food Sci. Nutr. 2004, 44, 185–193. [Google Scholar] [CrossRef]
- Maryam Adilah, Z.A.; Jamilah, B.; Nur Hanani, Z.A. Functional and Antioxidant Properties of Protein-Based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Speer, K.; Kölling-Speer, I. The Lipid Fraction of the Coffee Bean. Braz. J. Plant Physiol. 2006, 18, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Richards, A.B.; Krakowka, S.; Dexter, L.B.; Schmid, H.; Wolterbeek, A.P.M.; Waalkens-Berendsen, D.H.; Shigoyuki, A.; Kurimoto, M. Trehalose: A Review of Properties, History of Use and Human Tolerance, and Results of Multiple Safety Studies. Food Chem. Toxicol. 2002, 40, 871–898. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, L.; Zhang, Z.; Huang, H.; Zhang, Z.; Jiang, L. Protective Role of Trehalose during Radiation and Heavy Metal Stress in Aureobasidium Subglaciale F134. Sci. Rep. 2017, 7, 17586. [Google Scholar] [CrossRef] [Green Version]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Agüero, M.V. Optimization of Ultrasound, Vanillin and Pomegranate Extract Treatment for Shelf-Stable Unpasteurized Strawberry Juice. LWT Food Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef]
- Sivarooban, T.; Hettiarachchy, N.S.; Johnson, M.G. Physical and Antimicrobial Properties of Grape Seed Extract, Nisin, and EDTA Incorporated Soy Protein Edible Films. Food Res. Int. 2008, 41, 781–785. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the Shelf-Life Stability of Apple and Strawberry Fruits Applying Chitosan-Incorporated Olive Oil Processing Residues Coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Ekwenye, U. Chemical Characteristics of Palm Oil Biodeterioration. Biokemistri 2006, 18, 141–149. [Google Scholar] [CrossRef]
- Dordevic, D.; Kushkevych, I.; Jancikova, S.; Zeljkovic, S.C.; Zdarsky, M.; Hodulova, L. Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations. Open Life Sci. 2020, 15, 606–618. [Google Scholar] [CrossRef]
- Dordevic, D.; Dordevic, S.; Ćavar-Zeljković, S.; Kulawik, P.; Kushkevych, I.; Tremlová, B.; Kalová, V. Monitoring the Quality of Fortified Cold-Pressed Rapeseed Oil in Different Storage Conditions. Eur. Food Res. Technol. 2022, 248, 2695–2705. [Google Scholar] [CrossRef]
- Nosari, A.B.F.L.; Lima, J.F.; Serra, O.A.; Freitas, L.A.P. Improved Green Coffee Oil Antioxidant Activity for Cosmetical Purpose by Spray Drying Microencapsulation. Rev. Bras. Farmacogn. 2015, 25, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Salazar-López, N.J.; López-Rodríguez, C.V.; Hernández-Montoya, D.A.; Campos-Vega, R. Health Benefits of Spent Coffee Grounds. In Food Wastes and By-Products; Campos-Vega, R., Oomah, B.D., Vergara-Castañeda, H.A., Eds.; Wiley: New York, NY, USA, 2020; pp. 327–351. ISBN 978-1-119-53410-5. [Google Scholar]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Antioxidant Activity of Tween-20 and Tween-80 Evaluated through Different in-Vitro Tests. J. Pharm. Pharmacol. 2015, 67, 666–672. [Google Scholar] [CrossRef]
- Schmidt, A.; Koulov, A.; Huwyler, J.; Mahler, H.-C.; Jahn, M. Stabilizing Polysorbate 20 and 80 against Oxidative Degradation. J. Pharm. Sci. 2020, 109, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Muangrat, R.; Pongsirikul, I. Recovery of Spent Coffee Grounds Oil Using Supercritical CO2: Extraction Optimisation and Physicochemical Properties of Oil. CyTA-J. Food 2019, 17, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.L.; Wang, A.L.; Li, X.H.; Zhu, M.P.; Wang, J.W. Effects of Chitosan-Based Coating and Modified Atmosphere Packaging (MAP) on Browning of Sweet Persimmons (Diospy kakilinn.f). Adv. Mater. Res. 2012, 557–559, 943–946. [Google Scholar] [CrossRef]
- Mahajan, K.; Kumar, S.; Bhat, Z.F.; Naqvi, Z.; Jayawardena, R. Development of Bioactive Edible Film Using Phytochemicals from Aloe Vera for Improved Microbial and Lipid Oxidative Stability of Frozen Dairy Products. Food Bioprocess. Technol. 2021, 14, 2120–2133. [Google Scholar] [CrossRef]
- da Silva, L.A.; de Almeida, T.M.B.; Teixeira, R.V.; de Araújo, E.S.; Aquino, K.A.d.S. Study of Coffee Grounds Oil Action in PVC Matrix Exposed to Gamma Radiation: Comparison of Systems in Film and Specimen Forms. Mater. Res. 2017, 20, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, M.; Yan, H.; Liu, H.; Liu, J.; Zhao, Y.; Wu, Y.; Zhang, Y.; Han, J. Enhanced Solubility of Bisdemethoxycurcumin by Interaction with Tween Surfactants: Spectroscopic and Coarse-Grained Molecular Dynamics Simulation Studies. J. Mol. Liq. 2021, 323, 115073. [Google Scholar] [CrossRef]
- Abdillah, A.A.; Charles, A.L. Characterization of a Natural Biodegradable Edible Film Obtained from Arrowroot Starch and Iota-Carrageenan and Application in Food Packaging. Int. J. Biol. Macromol. 2021, 191, 618–626. [Google Scholar] [CrossRef]
- Ratanajiajaroen, P.; Watthanaphanit, A.; Tamura, H.; Tokura, S.; Rujiravanit, R. Release Characteristic and Stability of Curcumin Incorporated in β-Chitin Non-Woven Fibrous Sheet Using Tween 20 as an Emulsifier. Eur. Polym. J. 2012, 48, 512–523. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.; Zhong, Q. Physical and Antimicrobial Properties of Chitosan Films Incorporated with Lauric Arginate, Cinnamon Oil, and Ethylenediaminetetraacetate. LWT-Food Sci. Technol. 2016, 65, 173–179. [Google Scholar] [CrossRef]
- Garcia, C.V.; Kim, Y.-T. Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
- Jaisan, C. Niramol Punbusayakul Development of Coffee Pulp Extract-Incorporated Chitosan Film and Its Antimicrobial and Antioxidant Activities. KKU Res. J. 2016, 21 (Suppl. 14), 140–149. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Using Lignocellulosic Fractions of Coffee Husk to Improve Properties of Compatibilised Starch-PLA Blend Films. Food Packag. Shelf Life 2019, 22, 100423. [Google Scholar] [CrossRef]
- Dobson, C.C.; Mottawea, W.; Rodrigue, A.; Buzati Pereira, B.L.; Hammami, R.; Power, K.A.; Bordenave, N. Impact of Molecular Interactions with Phenolic Compounds on Food Polysaccharides Functionality. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 90, pp. 135–181. ISBN 978-0-12-816567-6. [Google Scholar]
- Bulut, S.; Lazic, V.; Popovic, S.; Hromis, N.; Suput, D. Influence of Different Concentrations of Glycerol and Guar Xanthan on Properties of Pumpkin Oil Cake-Zein Bi-Layer Film. Ratar. I Povrt. 2017, 54, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Huber, K.C.; Embuscado, M.E. (Eds.) Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; ISBN 978-0-387-92823-4. [Google Scholar]
- Jancikova, S.; Dordevic, D.; Jamroz, E.; Behalova, H.; Tremlova, B. Chemical and Physical Characteristics of Edible Films, Based on κ- and ι-Carrageenans with the Addition of Lapacho Tea Extract. Foods 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
Sample Labeling | Ingredients |
---|---|
CACO | Control |
CA0.1TW20 | Carrageenan + 0.1 mL of oil from spent coffee ground + tween 20 |
CA0.45TW20 | Carrageenan + 0.45 mL of oil from spent coffee ground + tween 20 |
CA0.8TW20 | Carrageenan + 0.8 mL of oil from spent coffee ground + tween 20 |
CA1TW20 | Carrageenan + 1 mL of oil from spent coffee ground + tween 20 |
CA0.1TW80 | Carrageenan + 0.1 mL of oil from spent coffee ground + tween 80 |
CA0.45TW80 | Carrageenan + 0.45 mL of oil from spent coffee ground + tween 80 |
CA0.8TW80 | Carrageenan + 0.8 mL of oil from spent coffee ground + tween 80 |
CA1TW80 | Carrageenan + 1 mL of oil from spent coffee ground + tween 80 |
CA0.1 | Carrageenan + 0.1 mL of oil from spent coffee ground |
Analysis | Oil Extracted from SCG |
---|---|
Fat content (%) | 3.59 ± 0.45% |
Acid value (mg KOH/g) | 8.4 ± 0.96 |
Peroxide value (mekv. O2/kg) | 7.13 ± 0.81 |
FRAP Trolox (µmol/g) | 5.37 ± 0.32 |
ABTS (%) | 2.15 ± 0.24 |
Cuprac (Trolox µmol/g) | 22.77 ± 0.79 |
Total phenolic content (mg gallic acid/g) | 1.89 ± 0.14 |
Malondialdehyde (µg/g) | 0.51 ± 0.00 |
Samples | DPPH (%) | FRAP Trolox (µmol/g) | ABTS (%) | Cuprac Trolox (µmol/g) | TPC (mg gallic acid/g) | Malondialdehyde (µg/g) |
---|---|---|---|---|---|---|
CACO | 7.61 ± 3.12 afg | 1.74 ± 0.24 agh | 2.27 ± 0.12 a | 1.84 ± 0.14 a | 0.54 ± 0.07 a | 0.43 ± 0.00 a |
CA0.1TW20 | 1.95 ± 0.44 cafg | 1.87 ± 0.20 ca | 2.76 ± 0.09 b | 5.11 ± 2.33 b | 2.23 ± 0.17 b | 9.20 ± 0.05 b |
CA0.45TW20 | 1.04 ± 0.06 dafg | 2.77 ± 0.19 da | 2.79 ± 0.13 b | 7.23 ± 0.25 ci | 2.87 ± 0.11 c | 11.58 ± 0.03 c |
CA0.8TW20 | 2.95 ± 1.28 dafg | 3.22 ± 0.18 ea | 3.16 ± 0.11 d | 5.37 ± 0.51 b | 2.91 ± 0.13 c | 8.88 ± 0.01 d |
CA1TW20 | 0.48 ± 0.20 f | 7.22 ± 0.35 f | 3.34 ± 0.14 dg | 10.19 ± 0.45 e | 3.80 ± 0.14 g | 12.75 ± 0.03 e |
CA0.1TW80 | 0.00 ± 0.00 | 0.88 ± 0.28 gc | 3.14 ± 0.17 d | 8.21 ± 0.68 c | 3.55 ± 0.14 f | 11.91 ± 0.01 f |
CA0.45TW80 | 7.37 ± 4.52 ga | 3.60 ± 0.21 hde | 3.46 ± 0.05 g | 7.40 ± 0.20 ic | 4.02 ± 0.09 g | 7.84 ± 0.01 g |
CA0.8TW80 | 13.74 ± 0.58 he | 9.22 ± 1.30 i | 3.70 ± 0.10 h | 6.46 ± 0.17 bi | 4.35 ± 0.11 e | 7.83 ± 0.02 g |
CA1TW80 | 7.65 ± 5.78 ba | 12.67 ± 1.94 j | 3.81 ± 0.07 h | 5.29 ± 0.28 b | 7.00 ± 0.15 i | 8.28 ± 0.00 i |
CA0.1 | 8.95 ± 1.85 eba | 2.91 ± 0.08 ah | 3.91 ± 0.11 h | 14.16 ± 1.28 k | 1.01 ± 0.14 j | 4.61 ± 0.02 j |
Samples | Solubility in Distilled Water (%) | Solubility in Seawater (%) | Swelling Degree in Seawater (%) | Water Content (%) |
---|---|---|---|---|
CACO | 100 | 60.82 ± 2.75 a | 477.93 ± 18.22 a | 10.44 ± 1.37 a |
CA0.1TW20 | 100 | 87.95 ± 0.23 b | 148.27 ± 15.43 bce | 5.12 ± 0.40 b |
CA0.45TW20 | 100 | 85.30 ± 0.13 b | 127.99 ± 13.47 be | 6.80 ± 0.43 ab |
CA0.8TW20 | 100 | 77.70 ± 0.85 bce | 121.06 ± 9.15 b | 4.60 ± 0.52 b |
CA1TW20 | 100 | 71.99 ± 1.06 ea | 131.15 ± 14.37 be | 3.65± 0.09 b |
CA0.1TW80 | 100 | 83.39 ± 13.16 be | 197.70 ± 57.41 c | 4.58 ± 1.04 b |
CA0.45TW80 | 100 | 85.19 ± 0.79 b | 178.91 ± 7.76 bc | 4.99 ± 1.61 b |
CA0.8TW80 | 100 | 75.30 ± 0.36 cbe | 190.38 ± 14.52 ec | 5.73 ± 1.01 b |
CA1TW80 | 100 | 71.24 ± 2.23 cea | 163.53 ± 8.73 abc | 5.24 ± 0.40 b |
CA0.1 | 100 | 55.14 ± 0.36 d | 605.45 ± 17.53 d | 14.51 ± 3.31 c |
Samples | Strength (MPa) | Breaking Strain | Thickness (mm) |
---|---|---|---|
CACO | 0.13 ± 0.02 a | 74.26 ± 2.30 a | 0.52 ± 0.08 ac |
CA0.1TW20 | 0.03 ± 0.01 be | 90.80 ± 4.43 | 0.29 ± 0.04 b |
CA0.45TW20 | 0.03 ± 0.02 db | 79.61 ± 19.00 | 0.29 ± 0.04 ab |
CA0.8TW20 | 0.04 ± 0.01 bce | 89.69 ± 14.93 | 0.37 ± 0.03 ab |
CA1TW20 | 0.04 ± 0.01 bce | 82.84 ± 3.81 | 0.34 ± 0.03 ab |
CA0.1TW80 | 0.06 ± 0.00 c | 95.72 ± 6.32 bc | 0.20 ± 0.02 b |
CA0.45TW80 | 0.06 ± 0.01 ec | 97.04 ± 3.58 b | 0.26 ± 0.02 b |
CA0.8TW80 | 0.05 ± 0.00 bce | 86.84 ± 7.80 | 0.31 ± 0.05 ab |
CA1TW80 | 0.05 ± 0.02 bce | 90.67 ± 16.58 | 0.30 ± 0.04 ab |
CA0.1 | 0.15 ± 0.02 a | 76.01 ± 2.49 ca | 0.66 ± 0.32 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dordevic, D.; Dordevic, S.; Abdullah, F.A.A.; Mader, T.; Medimorec, N.; Tremlova, B.; Kushkevych, I. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods 2023, 12, 2626. https://doi.org/10.3390/foods12132626
Dordevic D, Dordevic S, Abdullah FAA, Mader T, Medimorec N, Tremlova B, Kushkevych I. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods. 2023; 12(13):2626. https://doi.org/10.3390/foods12132626
Chicago/Turabian StyleDordevic, Dani, Simona Dordevic, Fouad Ali Abdullah Abdullah, Tamara Mader, Nino Medimorec, Bohuslava Tremlova, and Ivan Kushkevych. 2023. "Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil" Foods 12, no. 13: 2626. https://doi.org/10.3390/foods12132626
APA StyleDordevic, D., Dordevic, S., Abdullah, F. A. A., Mader, T., Medimorec, N., Tremlova, B., & Kushkevych, I. (2023). Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods, 12(13), 2626. https://doi.org/10.3390/foods12132626