Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Pomace Powder Preparation
- Fresh sample, used as it was;
- Dried sample, obtained following a drying process carried out at 70 °C for 16 h in a tray dryer, and used as a powder;
- Freeze-dried sample, obtained by following the application of a patented, non-thermal, and non-invasive procedure and subsequently freeze-dried (Patent No. 001426984), and used as powder.
2.2. Pasta Production
2.3. Chemical Analysis
2.3.1. Methanolic Extraction
2.3.2. Determination of Total Polyphenols Content (TPC)
2.3.3. Polyphenolic Profile by High-Performance Liquid Chromatography (HPLC)
2.3.4. DPPH Radical Scavenging Activity
2.4. Protein Content
2.5. Size-Exclusion Liquid Chromatography Analysis (SE-HPLC)
2.6. SDS–PAGE (Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis) Analyses
2.7. Determination of SH and S–S Groups
2.8. Pasta Cooking Test
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characteristics of Grape Pomace Powders and GP-Fresh Pasta
3.2. Effect of the Addition of Freeze-Dried GPP on Pasta Gluten Network
3.2.1. Protein Content of Semolina- and GP-Fresh Pasta
3.2.2. Assessment of Polymeric Protein Distribution by SE-HPLC
3.2.3. Unextractable Polymeric Proteins (UPP) and S-S Bonds Formation Assessment
3.2.4. Electrophoretic Profiles
3.2.5. Optimal Cooking Time
3.3. Effect of the Addition of Freeze-Dried GPP on Fresh Semolina Tagliatelle Sensory Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menrad, K. Market and marketing of functional food in Europe. J. Food Eng. 2003, 56, 181–188. [Google Scholar] [CrossRef]
- Jane, M.; McKay, J.; Pal, S. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review. Nutrition 2019, 57, 84–91. [Google Scholar] [CrossRef]
- Cui, J.; Juhasz, B.; Tosaki, A.; Maulik, N.; Das, D.K. Cardioprotection with grapes. J. Cardiovasc. Pharmacol. 2002, 40, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Janˇcíková, S.; Dani Dordevic, D.; Tremlová, B. Grape pomace valorization: A systemic review and meta-analysis. Foods 2020, 9, 19627. [Google Scholar] [CrossRef] [PubMed]
- Balbinoti, T.C.V.; Stafussa, A.P.; Haminiuk, C.W.I.; Maciel, G.M.; Sassaki, G.L.; Jorge, L.M.D.M.; Jorge, R.M.M. Addition of grape pomace in the hydration step of parboiling increases the antioxidant properties of rice. Int. J. Food Sci. Technol. 2020, 55, 2370–2380. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of grape pomace addition on the technological, sensory, and nutritional properties of durum wheat pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Goula, M.A.; Thymiatis, K.; Kaderides, K. Valorization of grape pomace: Drying behaviour and ultrasound extraction of phenolics. Food Bioprod. Process. 2016, 100, 132–144. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Liu, C.Y.; Shepher, K.W.; Rathjen, A.J. Improvement of durum wheat pasta making and breadmaking qualities. Cereal Chem. 1996, 73, 156–166. [Google Scholar]
- Moayedi, S.; Ohm, J.; Manthey, F.A. Relationship between cooking quality of fresh pasta made from durum wheat and protein content and molecular weight distribution parameters. Cereal Chem. 2021, 98, 891–902. [Google Scholar] [CrossRef]
- Italian Republic. Decreto del Presidente della Repubblica (DPR) 9 febbraio 2001, n. 187. Regolamento per la revisione della normativa sulla produzione e commercializzazione di sfarinati e paste alimentari, a norma dell’articolo 50 della legge 22 febbraio 1994, n. 146. Off. J. Ital. Repub. 2001, 117, 6–12. [Google Scholar]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Revilla, E.; Ryan, J.M. Analysis of several phenolic compounds with potential antioxidant properties in grape extracts and wine by high-performance liquid chromatography-photodiode array detection without sample preparation. J. Chromatogr. A 2000, 881, 461–469. [Google Scholar] [CrossRef]
- Kuktaite, R.; Larsson, H.; Johansson, E. Protein composition in different phases obtained by the ultracentrifugation of dough. Acta Agron. Hung. 2003, 51, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.B.; Khan, K.; MacRitchie, F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 1993, 18, 23–41. [Google Scholar] [CrossRef]
- Chan, K.Y.; Wasserman, B.P. Direct colorimetric assay of free thiol groups and disulfide bonds in suspensions of solubilized and particulate cereal proteins. Cereal Chem. 1993, 70, 22–26. [Google Scholar]
- Padalino, L.; Costa, C.; Del Nobile, M.A.; Conte, A. Extract of Salicornia europaea in fresh pasta to enhance phenolic compounds and antioxidant activity. Int. J. Food Sci. Technol. 2019, 54, 3051–3057. [Google Scholar] [CrossRef]
- Gonz’alez-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rossell´o, C.; Femenia, A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—A response surface approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Nardiello, D.; Del Nobile, M.A.; Conte, A. New approach to enrich pasta with polyphenols from grape marc. J. Chem. 2015, 2015, 734578. [Google Scholar] [CrossRef] [Green Version]
- Dilucia, F.; Rutigliano, M.; Libutti, A.; Quinto, M.; Spadaccino, G.; Liberatore, M.T.; Michele Lauriola, M.; Di Luccia, A.; la Gatta, B. Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva sylvestris L.; Calendula officinalis L.; and Asparagus officinalis L. Infusions. Food Bioprocess Technol. 2023, 11947. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional component of grape pomace; their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Ruperez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Gaita, C.; Alex, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessar, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT-Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Petitot, M.; Abecassis, J.; Micarda, V. Structuring of pasta components during processing: Impact on starch and protein digestibility and allergenicity. Trends Food Sci. Technol. 2009, 20, 521–532. [Google Scholar] [CrossRef]
- Lamacchia, C.; Di Luccia, A.; Baiano, A.; Gambacorta, G.; la Gatta, B.; Pati, S.; La Notte, E. Changes in pasta proteins induced by drying cycles and their relationship to cooking behaviour. J. Cereal Sci. 2007, 46, 58–63. [Google Scholar] [CrossRef]
- Zweifel, C.; Handschin, S.; Escher, F.; Conde-Petit, B. Influence of high-temperature drying on structural and textural properties of durum wheat pasta. Cereal Chem. 2003, 80, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Zho, T.; Zhang, T.; Liu, W.; Zhao, G. Physicochemical characteristics and functional properties of grape (Vitis vinifera L.) seeds protein. Int. J. Food Sci. Technol. 2011, 46, 635–641. [Google Scholar] [CrossRef]
- Lamacchia, C.; Baiano, A.; Lamparelli, S.; Padalino, L.; La Notte, E.; Di Luccia, A. Study on the interactions between soy and semolina proteins during pasta making. Food Res. Int. 2010, 43, 1049–1056. [Google Scholar] [CrossRef]
- la Gatta, B.; Rutigliano, M.; Rusco, G.; Petrella, G.; Di Luccia, A. Evidence for different supramolecular arrangements in pasta from durum wheat (Triticum durum) and einkorn (Triticum monococcum) flours. J. Cereal Sci. 2017, 73, 76–83. [Google Scholar] [CrossRef]
- Sun, X.; Sarteshnizi, R.A.; Udenigwe, C.C. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 2022, 45, 100840. [Google Scholar] [CrossRef]
- Lamacchia, C.; Baiano, A.; Lamparelli, S.; Terracone, C.; Trani, A.; Di Luccia, A.; Lamacchia, C. Polymeric protein formation during pasta-making with barley and semolina mixtures, and prediction of its effect on cooking behaviour and acceptability. Food Chem. 2011, 129, 319–328. [Google Scholar] [CrossRef] [PubMed]
(a) | ||
Samples | TPC (mg of Gallic Acid/100 g) | Antioxidant Activity (μmol TEAC/100 g) |
Raw GPP | 3191 ± 6 c | 1417 ± 67 a |
Dried GPP | 7380 ± 267 b | 1303 ± 86 a |
Freeze-dried GPP | 18199 ± 240 a | 1523 ± 82 a |
(b) | ||
Samples | TPC (mg of Gallic Acid/100 g) | Antioxidant Activity (μmol TEAC/100 g) |
Semolina Flour | 143 ± 5 c | 0 c |
100% Raw Semolina Fresh Pasta | 53 ± 3.8 d | 0 c |
100% Cooked Semolina Fresh Pasta | 61.1 ± 2.5 d | 0 c |
5% Raw GP-Fresh Pasta | 219 ± 10 b | 1933 ± 60 b |
5% Cooked GP-Fresh Pasta | 150 ± 3 c | 2199 ± 28 a |
10% Raw GP-Fresh Pasta | 305 ± 2 a | 1913 ± 96 b |
10% Cooked GP-Fresh Pasta | 202 ± 4 b | 2160 ± 22 a |
Sample | %Protein |
---|---|
Semolina flour | 12.0 ± 0.01 a |
Freeze-dried GPP | 10.5 ± 0.01 f |
100% Raw Semolina Fresh Pasta | 11.6 ± 0.03 b |
100% Cooked Semolina Fresh Pasta | 5.92 ± 0.02 h |
5% Raw GP-Fresh Pasta | 11.3 ± 0.04 c |
5% Cooked GP-Fresh Pasta | 8.22 ± 0.02 g |
10% Raw GP-Fresh Pasta | 10.9 ± 0.04 d |
10% Cooked GP-Fresh Pasta | 10.7 ± 0.06 e |
Semolina Flour | Grape Pomace Powder | 100% Raw Semolina Fresh Pasta | 100% Cooked Semolina Fresh Pasta | 5% Raw GP-Fresh Pasta | 5% Cooked GP-Fresh Pasta | 10% Raw GP-Fresh Pasta | 10% Cooked GP-Fresh Pasta | ||
---|---|---|---|---|---|---|---|---|---|
Peak 1 | mAu⋅s % | 42652.50 ± 533.87 21.43 | / | 35610.90 ± 53.74 23.90 | 161.55 ± 48.44 2.18 | 25712.60 ± 1800.01 23.07 | 170 ± 5.59 1.06 | 23641.60 ± 268.28 25.44 | 942.90 ± 190.78 2.13 |
Peak 2 | mAu⋅s % | 39433.40 ± 19.65 19.82 | / | 28121.95 ± 1967.81 18.88 | 1667.25 ± 301.16 22.45 | 23552.30 ± 1643.32 21.13 | 3049.20 ± 36.91 18.99 | 19221.95 ± 330.57 20.69 | 10199.65 ± 150.26 22.99 |
Peak 3 | mAu⋅s % | 118564.80 ± 754.48 39.01 | / | 55275.15 ± 1665.45 37.10 | 5596.70 ± 11.17 75.37 | 44414.05 ± 422.35 39.86 | 12837.25 ± 141.92 79.95 | 36322.05 ± 977.15 39.09 | 33224.70 ± 467.68 74.89 |
Peak 4 | mAu⋅s | 39275.80 ± 3487.31 19.74 | / | 29973.65 ± 995.82 20.12 | / | 17759.60 ± 2073.24 15.94 | / | 13736.05 ± 190.85 14.78 | / |
Samples |
Free Thiol (nmol/mg Prot) |
Disulfide Groups (nmol/mg Prot) |
---|---|---|
Semolina Flour | 70.56 ± 0.68 b,c | 33.65 ± 2.84 a |
100% Raw Semolina Fresh Pasta | 63.98 ± 2.80 c | 17.98 ± 3.50 b,c |
100% Cooked Semolina Fresh Pasta | 98.98 ± 7.68 a | 36.19 ± 4.12 a |
5% Raw GP-Fresh Pasta | 69.03 ± 2.14 b,c | 21.26 ± 3.42 b |
5% Cooked GP-Fresh Pasta | 78.55 ± 2.37 b | 8.11 ± 3.16 d,e |
10% Raw GP-Fresh Pasta | 68.30 ± 1.49 b,c | 12.49 ± 1.34 c,d |
10% Cooked GP-Fresh Pasta | 66.03 ± 2.89 b,c | 3.44 ± 3.34 e |
Samples | OCT (min) |
---|---|
100% Semolina Fresh Pasta | 3.06 ± 0.13 c |
5% GP-Fresh Pasta | 4.03 ± 0.06 b |
10% GP-Fresh Pasta | 4.55 ± 0.10 a |
Raw Fresh Pasta | |||
---|---|---|---|
100% Semolina Fresh Pasta | 5% Grape Pomace Fresh Pasta | 10% Grape Pomace Fresh Pasta | |
Odor | 3.71 ±0.12 | 3.71 ± 0.04 | 3.43 ± 0.28 |
Color | 3.57 ± 0.76 | 3.86 ± 0.89 | 3.71 ± 1.06 |
Superficial aspect | 3.86 ± 0.14 | 4.00 ± 0.16 | 3.86 ± 0.19 |
General presentation | 3.71 ± 0.12 | 3.71 ± 0.04 | 4.00 ± 0.09 |
Overall acceptability | 3.86 ± 0.09 | 4.14 ± 0.09 | 4.00 ± 0.04 |
Cooked Fresh Pasta | |||
100% Semolina Fresh Pasta | 5% Grape Pomace Fresh Pasta | 10% Grape Pomace Fresh Pasta | |
Odor | 3.86 ± 0.1 | 4.00 ± 0.03 | 4.46 ± 0.08 |
Color | 3.71 ± 0.04 | 4.14 ± 0.04 | 4.61 ± 0.07 |
Superficial aspect | 3.71 ± 0.06 | 4.43 ± 0.02 | 4.61 ± 0.07 |
General presentation | 4.00 ± 0.06 | 4.14 ± 0.04 | 4.75 ± 0.05 |
Overall acceptability | 3.71 ± 0.04 | 4.57 ± 0.02 | 4.79 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
la Gatta, B.; Rutigliano, M.; Liberatore, M.T.; Dilucia, F.; Palmitessa, M.; Di Luccia, A.; Lamacchia, C. Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality. Foods 2023, 12, 2699. https://doi.org/10.3390/foods12142699
la Gatta B, Rutigliano M, Liberatore MT, Dilucia F, Palmitessa M, Di Luccia A, Lamacchia C. Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality. Foods. 2023; 12(14):2699. https://doi.org/10.3390/foods12142699
Chicago/Turabian Stylela Gatta, Barbara, Mariacinzia Rutigliano, Maria Teresa Liberatore, Flavia Dilucia, Maurizio Palmitessa, Aldo Di Luccia, and Carmela Lamacchia. 2023. "Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality" Foods 12, no. 14: 2699. https://doi.org/10.3390/foods12142699
APA Stylela Gatta, B., Rutigliano, M., Liberatore, M. T., Dilucia, F., Palmitessa, M., Di Luccia, A., & Lamacchia, C. (2023). Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality. Foods, 12(14), 2699. https://doi.org/10.3390/foods12142699