Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches
Abstract
:1. Introduction
2. Chemometric Approaches in Spectroscopy Data
2.1. Pre-Processing Techniques
2.2. Variable Selection Tools
2.3. Exploratory and Clustering Tools
2.4. Regression and Prediction Tools
2.5. Classification Tools
2.6. Mixture Analysis Tools
3. Advanced Spectroscopy Techniques with Chemometrics in Food Analysis
3.1. X-ray-Fluorescence-Based Methods
3.2. Hyperspectral and Multispectral Imaging
3.3. Infrared Spectroscopy
3.4. Raman Spectroscopy
3.5. NMR Analysis
3.6. UV-Visible
3.7. Fluorescence Spectroscopy
3.8. Fusion of Spectroscopic Techniques
3.9. Portable Spectroscopic Techniques
4. Importance of Integrating Advanced Spectroscopy Techniques in Food Analysis
5. Food Application and Aspects
5.1. Sensory Attributes
5.2. Adulteration Attributes
5.3. Chemical Attributes
5.4. Mycotoxin Attributes
5.5. Parasitic Contamination
5.6. Internal Functional Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lakshmi, V.; Pradesh, A. Food Adulteration. Int. J. Sci. Invent. Today 2012, 1, 106–113. [Google Scholar]
- The Lancet. Melamine and Food Safety in China. Lancet 2009, 373, 353. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Jha, S.; Lawrence, F.; Dodd, V. From Mumbai to Your Supermarket: On the Murky Trail of Britain’s Biggest Food Scandal. Guardian 2005, 23. [Google Scholar]
- Wu, D.; Shi, H.; He, Y.; Yu, X.; Bao, Y. Potential of Hyperspectral Imaging and Multivariate Analysis for Rapid and Non-Invasive Detection of Gelatin Adulteration in Prawn. J. Food Eng. 2013, 119, 680–686. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Yen, T.-H.; Lin-Tan, D.-T.; Lin, J.-L. Food Safety Involving Ingestion of Foods and Beverages Prepared with Phthalate-Plasticizer-Containing Clouding Agents. J. Formos. Med. Assoc. 2011, 110, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Hauser, R.; Goldman, R.H. Taiwan Food Scandal: The Illegal Use of Phthalates as a Clouding Agent and Their Contribution to Maternal Exposure. Food Chem. Toxicol. 2013, 58, 362–368. [Google Scholar] [CrossRef]
- Schneider, A. Asian Honey, Banned in Europe, Is Flooding US Grocery Shelves. Am. Bee J. 2011, 151, 933. [Google Scholar]
- Baeten, V.; Dardenne, P. Spectroscopy: Developments in Instrumentation and Analysis. Grasas Y Aceites 2002, 53, 45–63. [Google Scholar] [CrossRef]
- Joshi, V.C.; Srinivas, P.V.; Khan, I.A. Rapid and Easy Identification of Illicium Verum Hook. f. and Its Adulterant Illicium Anisatum Linn. by Fluorescent Microscopy and Gas Chromatography. J. AOAC Int. 2005, 88, 703–706. [Google Scholar] [CrossRef]
- Gemperline, P. Practical Guide to Chemometrics; CRC Press: Boca Raton, FL, USA, 2006; ISBN 0429119569. [Google Scholar]
- Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 3527340971. [Google Scholar]
- Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. Missing Data Imputation Toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2016, 154, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. Assessment of Maximum Likelihood PCA Missing Data Imputation. J. Chemom. 2016, 30, 386–393. [Google Scholar] [CrossRef]
- Elcoroaristizabal, S.; Bro, R.; García, J.A.; Alonso, L. PARAFAC Models of Fluorescence Data with Scattering: A Comparative Study. Chemom. Intell. Lab. Syst. 2015, 142, 124–130. [Google Scholar] [CrossRef]
- Tomasi, G.; Bro, R. PARAFAC and Missing Values. Chemom. Intell. Lab. Syst. 2005, 75, 163–180. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, S.; Xie, Q.; Han, Q.; Zhang, G.; Sun, H. An Improved Weighted Multiplicative Scatter Correction Algorithm with the Use of Variable Selection: Application to near-Infrared Spectra. Chemom. Intell. Lab. Syst. 2019, 185, 114–121. [Google Scholar] [CrossRef]
- Mishra, P.; Nordon, A.; Roger, J.-M. Improved Prediction of Tablet Properties with Near-Infrared Spectroscopy by a Fusion of Scatter Correction Techniques. J. Pharm. Biomed. Anal. 2021, 192, 113684. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline Correction Using Adaptive Iteratively Reweighted Penalized Least Squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Skogholt, J.; Liland, K.H.; Indahl, U.G. Baseline and Interferent Correction by the Tikhonov Regularization Framework for Linear Least Squares Modeling. J. Chemom. 2018, 32, e2962. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Yu, J.; Guo, Y.; Cao, W. Deep Learning Based Radiomics (DLR) and Its Usage in Noninvasive IDH1 Prediction for Low Grade Glioma. Sci. Rep. 2017, 7, 5467. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kim, S.; Zhong, S.; Zhong, Z.; Kato, I.; Zhang, X. Coherent Point Drift Peak Alignment Algorithms Using Distance and Similarity Measures for Two-dimensional Gas Chromatography Mass Spectrometry Data. J. Chemom. 2020, 34, e3236. [Google Scholar] [CrossRef]
- Deng, B.; Kim, S.; Li, H.; Heath, E.; Zhang, X. Global Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry Using Point Matching Algorithms. J. Bioinform. Comput. Biol. 2016, 14, 1650032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Bro, R.; Gallagher, N.B. PARASIAS: A New Method for Analyzing Higher-Order Tensors with Shifting Profiles. Anal. Chim. Acta 2022, 1238, 339848. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New Data Preprocessing Trends Based on Ensemble of Multiple Preprocessing Techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable Selection in Regression—A Tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of Olive Oil Adulteration with Waste Cooking Oil via Raman Spectroscopy Combined with IPLS and SiPLS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Trevino, V.; Hoseini, S.S.; Belciug, S.; Boopathi, A.M.; Zhang, P.; Gorunescu, F.; Subha, V.; Dai, S. Variable Selection in Logistic Regression Model with Genetic Algorithm. Ann. Transl. Med. 2018, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Lu, C.; Li, M.; Ye, Y.; Wei, X.; Tong, H. Identification of Key Aromatic Compounds in Congou Black Tea by Partial Least-square Regression with Variable Importance of Projection Scores and Gas Chromatography–Mass Spectrometry/Gas Chromatography–Olfactometry. J. Sci. Food Agric. 2018, 98, 5278–5286. [Google Scholar] [CrossRef]
- Kvalheim, O.M. Variable Importance: Comparison of Selectivity Ratio and Significance Multivariate Correlation for Interpretation of Latent-variable Regression Models. J. Chemom. 2020, 34, e3211. [Google Scholar] [CrossRef] [Green Version]
- Azizan, A.; Lee, A.X.; Abdul Hamid, N.A.; Maulidiani, M.; Mediani, A.; Abdul Ghafar, S.Z.; Zolkeflee, N.K.Z.; Abas, F. Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods 2020, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Tleis, M.; Callieris, R.; Roma, R. Segmenting the Organic Food Market in Lebanon: An Application of k-Means Cluster Analysis. Br. Food J. 2017, 119, 1423–1441. [Google Scholar] [CrossRef]
- Moro, M.K.; dos Santos, F.D.; Folli, G.S.; Romao, W.; Filgueiras, P.R. A Review of Chemometrics Models to Predict Crude Oil Properties from Nuclear Magnetic Resonance and Infrared Spectroscopy. Fuel 2021, 303, 121283. [Google Scholar] [CrossRef]
- Lee, G.; Lee, K. Feature Selection Using Distributions of Orthogonal PLS Regression Vectors in Spectral Data. BioData Min. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Vong, R.; Geladi, P.; Wold, S.; Esbensen, K. Source Contributions to Ambient Aerosol Calculated by Discriminat Partial Least Squares Regression (PLS). J. Chemom. 1988, 2, 281–296. [Google Scholar] [CrossRef]
- Bro, R. Multiway Calibration. Multilinear Pls. J. Chemom. 1996, 10, 47–61. [Google Scholar] [CrossRef]
- Yu, H.; Guo, L.; Kharbach, M.; Han, W. Multi-Way Analysis Coupled with near-Infrared Spectroscopy in Food Industry: Models and Applications. Foods 2021, 10, 802. [Google Scholar] [CrossRef]
- Rocha, W.F.d.C.; do Prado, C.B.; Blonder, N. Comparison of Chemometric Problems in Food Analysis Using Non-Linear Methods. Molecules 2020, 25, 3025. [Google Scholar] [CrossRef]
- Ausati, S.; Amanollahi, J. Assessing the Accuracy of ANFIS, EEMD-GRNN, PCR, and MLR Models in Predicting PM 2.5. Atmos. Environ. 2016, 142, 465–474. [Google Scholar] [CrossRef]
- Li, L.-N.; Liu, X.-F.; Yang, F.; Xu, W.-M.; Wang, J.-Y.; Shu, R. A Review of Artificial Neural Network Based Chemometrics Applied in Laser-Induced Breakdown Spectroscopy Analysis. Spectrochim. Acta Part B Spectrosc. 2021, 180, 106183. [Google Scholar] [CrossRef]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Branden, K.V.; Hubert, M. Robust Classification in High Dimensions Based on the SIMCA Method. Chemom. Intell. Lab. Syst. 2005, 79, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS Discriminant Analysis: Combining the Strengths of PLS-DA and SIMCA Classification. J. Chemom. A J. Chemom. Soc. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Zhao, Y.; Huang, Y.; Xiong, Y.; Min, S. Fourier Transform Infrared Spectroscopy and Chemometrics for the Discrimination of Paper Relic Types. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 219, 8–14. [Google Scholar] [CrossRef]
- Luts, J.; Ojeda, F.; Van de Plas, R.; De Moor, B.; Van Huffel, S.; Suykens, J.A.K. A Tutorial on Support Vector Machine-Based Methods for Classification Problems in Chemometrics. Anal. Chim. Acta 2010, 665, 129–145. [Google Scholar] [CrossRef]
- De Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the Mixture Analysis Problem. Anal. Methods 2014, 6, 4964–4976. [Google Scholar] [CrossRef]
- Jaumot, J.; Tauler, R. MCR-BANDS: A User Friendly MATLAB Program for the Evaluation of Rotation Ambiguities in Multivariate Curve Resolution. Chemom. Intell. Lab. Syst. 2010, 103, 96–107. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and Applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Yu, H.; Bro, R. PARAFAC2 and Local Minima. Chemom. Intell. Lab. Syst. 2021, 219, 104446. [Google Scholar] [CrossRef]
- ten Berge, J.M.F.; Kiers, H.A.L. Some Uniqueness Results for PARAFAC2. Psychometrika 1996, 61, 123–132. [Google Scholar] [CrossRef]
- Yu, H.; Augustijn, D.; Bro, R. Accelerating PARAFAC2 Algorithms for Non-Negative Complex Tensor Decomposition. Chemom. Intell. Lab. Syst. 2021, 214, 104312. [Google Scholar] [CrossRef]
- Gamela, R.R.; Pereira-Filho, E.R.; Pereira, F.M.V. Minimal-Invasive Analytical Method and Data Fusion: An Alternative for Determination of Cu, K, Sr, and Zn in Cocoa Beans. Food Anal. Methods 2021, 14, 545–551. [Google Scholar] [CrossRef]
- Sperança, M.A.; Mayorquín-Guevara, J.E.; da Cruz, M.C.P.; de Almeida Teixeira, G.H.; Pereira, F.M.V. Biofortification Quality in Bananas Monitored by Energy-Dispersive X-ray Fluorescence and Chemometrics. Food Chem. 2021, 362, 130172. [Google Scholar] [CrossRef] [PubMed]
- Priyashantha, H.; Höjer, A.; Saedén, K.H.; Lundh, Å.; Johansson, M.; Bernes, G.; Geladi, P.; Hetta, M. Use of Near-Infrared Hyperspectral (NIR-HS) Imaging to Visualize and Model the Maturity of Long-Ripening Hard Cheeses. J. Food Eng. 2020, 264, 109687. [Google Scholar] [CrossRef]
- Darnay, L.; Králik, F.; Oros, G.; Koncz, Á.; Firtha, F. Monitoring the Effect of Transglutaminase in Semi-Hard Cheese during Ripening by Hyperspectral Imaging. J. Food Eng. 2017, 196, 123–129. [Google Scholar] [CrossRef]
- Lu, B.; Sun, J.; Yang, N.; Hang, Y. Fluorescence Hyperspectral Image Technique Coupled with HSI Method to Predict Solanine Content of Potatoes. J. Food Process. Preserv. 2019, 43, e14198. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; He, Y. Rapid Screen of the Color and Water Content of Fresh-Cut Potato Tuber Slices Using Hyperspectral Imaging Coupled with Multivariate Analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.-Y.; Aheto, J.H.; Bai, J.-W.; Dai, C.; Ren, Y.; Chang, X. Quantitative Analysis and Visualization of Moisture and Anthocyanins Content in Purple Sweet Potato by Vis–NIR Hyperspectral Imaging. J. Food Process. Preserv. 2021, 45, e15128. [Google Scholar] [CrossRef]
- Li, B.; Cobo-Medina, M.; Lecourt, J.; Harrison, N.; Harrison, R.J.; Cross, J. V Application of Hyperspectral Imaging for Nondestructive Measurement of Plum Quality Attributes. Postharvest Biol. Technol. 2018, 141, 8–15. [Google Scholar] [CrossRef]
- He, H.-J.; Chen, Y.; Li, G.; Wang, Y.; Ou, X.; Guo, J. Hyperspectral Imaging Combined with Chemometrics for Rapid Detection of Talcum Powder Adulterated in Wheat Flour. Food Control 2023, 144, 109378. [Google Scholar] [CrossRef]
- Kim, G.; Lee, H.; Baek, I.; Cho, B.-K.; Kim, M.S. Quantitative Detection of Benzoyl Peroxide in Wheat Flour Using Line-Scan Short-Wave Infrared Hyperspectral Imaging. Sens. Actuators B Chem. 2022, 352, 130997. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, D.; Liu, L.; Wang, Z. How to Predict the Sugariness and Hardness of Melons: A near-Infrared Hyperspectral Imaging Method. Food Chem. 2017, 218, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lv, D.; Dong, N.; Wang, S.; Liu, J. Application of Near-Infrared Spectroscopy for Screening the Potato Flour Content in Chinese Steamed Bread. Food Sci. Biotechnol. 2019, 28, 955–963. [Google Scholar] [CrossRef]
- Du, C.; Sun, L.; Bai, H.; Zhao, Z.; Li, X.; Gai, Z. Quantitative Detection of Talcum Powder in Wheat Flour Based on Near-Infrared Spectroscopy and Hybrid Feature Selection. Infrared Phys. Technol. 2022, 123, 104185. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Mouazen, A.M.; Masithoh, R.E.; Mishra, P.; Lohumi, S.; Cho, B.-K.; Lee, H. Sequential Data-Fusion of near-Infrared and Mid-Infrared Spectroscopy Data for Improved Prediction of Quality Traits in Tuber Flours. Infrared Phys. Technol. 2022, 127, 104371. [Google Scholar] [CrossRef]
- Kamboj, U.; Guha, P.; Mishra, S. Comparison of PLSR, MLR, SVM Regression Methods for Determination of Crude Protein and Carbohydrate Content in Stored Wheat Using near Infrared Spectroscopy. Mater. Today Proc. 2022, 48, 576–582. [Google Scholar] [CrossRef]
- Liang, P.-S.; Haff, R.P.; Hua, S.-S.T.; Munyaneza, J.E.; Mustafa, T.; Sarreal, S.B.L. Nondestructive Detection of Zebra Chip Disease in Potatoes Using Near-Infrared Spectroscopy. Biosyst. Eng. 2018, 166, 161–169. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; Chen, Q. Quantitative Detection of Fatty Acid Value during Storage of Wheat Flour Based on a Portable Near-Infrared (NIR) Spectroscopy System. Infrared Phys. Technol. 2020, 109, 103423. [Google Scholar] [CrossRef]
- Ning, H.; Wang, J.; Jiang, H.; Chen, Q. Quantitative Detection of Zearalenone in Wheat Grains Based on Near-Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 280, 121545. [Google Scholar] [CrossRef] [PubMed]
- Câmara, A.B.F.; de Oliveira, K.G.; Santos, M.C.D.; de Lima, R.R.S.; de Lima, K.M.G.; de Carvalho, L.S. Multivariate Assessment for Predicting Antioxidant Activity from Clove and Pomegranate Extracts by MCR-ALS and PLS Models Combined to IR Spectroscopy. Food Chem. 2022, 384, 132321. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M.; Páscoa, R.N.M.J. Comparison of near Infrared Spectroscopy and Raman Spectroscopy for the Identification and Quantification through MCR-ALS and PLS of Peanut Oil Adulterants. Talanta 2021, 230, 122373. [Google Scholar] [CrossRef]
- Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M.; Páscoa, R.N.M.J. Near Infrared Spectroscopy Coupled to MCR-ALS for the Identification and Quantification of Saffron Adulterants: Application to Complex Mixtures. Food Control 2021, 123, 107776. [Google Scholar] [CrossRef]
- Li, S.; Xing, B.; Lin, D.; Yi, H.; Shao, Q. Rapid Detection of Saffron (Crocus sativus L.) Adulterated with Lotus Stamens and Corn Stigmas by near-Infrared Spectroscopy and Chemometrics. Ind. Crops. Prod. 2020, 152, 112539. [Google Scholar] [CrossRef]
- Li, S.; Shao, Q.; Lu, Z.; Duan, C.; Yi, H.; Su, L. Rapid Determination of Crocins in Saffron by Near-Infrared Spectroscopy Combined with Chemometric Techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 283–289. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Li, Q.; Gao, J.; Tan, X.; Bian, X. Rapid Identification and Quantification of Panax Notoginseng with Its Adulterants by near Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 23–30. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid Determination of Phytosterols by NIRS and Chemometric Methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [Google Scholar] [CrossRef]
- Joshi, R.; Baek, I.; Joshi, R.; Kim, M.S.; Cho, B.-K. Detection of Fabricated Eggs Using Fourier Transform Infrared (FT-IR) Spectroscopy Coupled with Multivariate Classification Techniques. Infrared Phys. Technol. 2022, 123, 104163. [Google Scholar] [CrossRef]
- Mazivila, S.J.; Páscoa, R.N.M.J.; Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M. Detection of Melamine and Sucrose as Adulterants in Milk Powder Using Near-Infrared Spectroscopy with DD-SIMCA as One-Class Classifier and MCR-ALS as a Means to Provide Pure Profiles of Milk and of Both Adulterants with Forensic Evidence: A Short Communication. Talanta 2020, 216, 120937. [Google Scholar]
- Novianty, I.; Gilang Baskoro, R.; Iqbal Nurulhaq, M.; Achirul Nanda, M. Empirical Mode Decomposition of Near-Infrared Spectroscopy Signals for Predicting Oil Content in Palm Fruits. Inf. Process. Agric. 2022; in press. [Google Scholar]
- Başar, B.; Özdemir, D. Determination of Honey Adulteration with Beet Sugar and Corn Syrup Using Infrared Spectroscopy and Genetic-algorithm-based Multivariate Calibration. J. Sci. Food Agric. 2018, 98, 5616–5624. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Kim, M.S.; Chao, K.; Gonzalez, M.; Cho, B.-K. Quantitative Detection of Benzoyl Peroxide in Wheat Flour Using Line-Scan Macroscale Raman Chemical Imaging. Appl. Spectrosc. 2017, 71, 2469–2476. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, M.; Huang, S.; Zhao, J.; Tao, J. Classification and Detection of Testosterone Propionate and Nandrolone Residues in Duck Meat Using Surface-Enhanced Raman Spectroscopy Coupled with Multivariate Analysis. Poult. Sci. 2021, 100, 296–301. [Google Scholar] [CrossRef]
- Ning, X.; Mu-Hua, L.; Hai-Chao, Y.; Shuang-Gen, H.; Xiao, W.; Jin-Hui, Z.; Jian, C.; Ting, W.; Wei, H.; Yi-Xin, S. Classification of Sulfadimidine and Sulfapyridine in Duck Meat by Surface Enhanced Raman Spectroscopy Combined with Principal Component Analysis and Support Vector Machine. Anal. Lett. 2020, 53, 1513–1524. [Google Scholar] [CrossRef]
- Hara, R.; Ishigaki, M.; Kitahama, Y.; Ozaki, Y.; Genkawa, T. Excitation Wavelength Selection for Quantitative Analysis of Carotenoids in Tomatoes Using Raman Spectroscopy. Food Chem. 2018, 258, 308–313. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Mendes, T.; Manzolli Rodrigues, B.V.; Simas Porto, B.L.; Alves da Rocha, R.; de Oliveira, M.A.L.; de Castro, F.K.; dos Anjos, V.d.C.; Bell, M.J.V. Raman Spectroscopy as a Fast Tool for Whey Quantification in Raw Milk. Vib. Spectrosc. 2020, 111, 103150. [Google Scholar] [CrossRef]
- Czaja, T.; Baranowska, M.; Mazurek, S.; Szostak, R. Determination of Nutritional Parameters of Yoghurts by FT Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 413–417. [Google Scholar] [CrossRef]
- Tian, H.; Chen, S.; Li, D.; Lou, X.; Chen, C.; Yu, H. Simultaneous Detection for Adulterations of Maltodextrin, Sodium Carbonate, and Whey in Raw Milk Using Raman Spectroscopy and Chemometrics. J. Dairy. Sci. 2022, 105, 7242–7252. [Google Scholar] [CrossRef]
- Bērziņš, K.; Harrison, S.D.L.; Leong, C.; Fraser-Miller, S.J.; Harper, M.J.; Diana, A.; Gibson, R.S.; Houghton, L.A.; Gordon, K.C. Qualitative and Quantitative Vibrational Spectroscopic Analysis of Macronutrients in Breast Milk. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 118982. [Google Scholar] [CrossRef]
- de Sá Oliveira, K.; de Souza Callegaro, L.; Stephani, R.; Almeida, M.R.; de Oliveira, L.F.C. Analysis of Spreadable Cheese by Raman Spectroscopy and Chemometric Tools. Food Chem. 2016, 194, 441–446. [Google Scholar] [CrossRef]
- Puertas, G.; Vázquez, M. Cholesterol Determination in Egg Yolk by UV-VIS-NIR Spectroscopy. Food Control 2019, 100, 262–268. [Google Scholar] [CrossRef]
- Wang, X.; Esquerre, C.; Downey, G.; Henihan, L.; O’Callaghan, D.; O’Donnell, C. Development of Chemometric Models Using Vis-NIR and Raman Spectral Data Fusion for Assessment of Infant Formula Storage Temperature and Time. Innov. Food Sci. Emerg. Technol. 2021, 67, 102551. [Google Scholar] [CrossRef]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Detection of Honey Adulteratio—The Potential of UV-VIS and NIR Spectroscopy Coupled with Multivariate Analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Galvan, D.; Tanamati, A.A.C.; Casanova, F.; Danieli, E.; Bona, E.; Killner, M.H.M. Compact Low-Field NMR Spectroscopy and Chemometrics Applied to the Analysis of Edible Oils. Food Chem. 2021, 365, 130476. [Google Scholar] [CrossRef]
- Barreto, M.C.; Braga, R.G.; Lemos, S.G.; Fragoso, W.D. Determination of Melamine in Milk by Fluorescence Spectroscopy and Second-Order Calibration. Food Chem. 2021, 364, 130407. [Google Scholar] [CrossRef]
- Gu, H.; Lv, R.; Huang, X.; Chen, Q.; Dong, Y. Rapid Quantitative Assessment of Lipid Oxidation in a Rapeseed Oil-in-Water (o/w) Emulsion by Three-Dimensional Fluorescence Spectroscopy. J. Food Compos. Anal. 2022, 114, 104762. [Google Scholar] [CrossRef]
- Tarhan, İ. A Comparative Study of ATR-FTIR, UV–Visible and Fluorescence Spectroscopy Combined with Chemometrics for Quantification of Squalene in Extra Virgin Olive Oils. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 241, 118714. [Google Scholar] [CrossRef]
- Wu, X.; Bian, X.; Lin, E.; Wang, H.; Guo, Y.; Tan, X. Weighted Multiscale Support Vector Regression for Fast Quantification of Vegetable Oils in Edible Blend Oil by Ultraviolet-Visible Spectroscopy. Food Chem. 2021, 342, 128245. [Google Scholar] [CrossRef]
- Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A Unique Quantitative Method of Acid Value of Edible Oils and Studying the Impact of Heating on Edible Oils by UV–Vis Spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.; Callejón, R.M. Assessment of UV–Visible Spectroscopy as a Useful Tool for Determining Grape-Must Caramel in High-Quality Wine and Balsamic Vinegars. Food Chem. 2020, 323, 126792. [Google Scholar] [CrossRef]
- Cavdaroglu, C.; Ozen, B. Prediction of Vinegar Processing Parameters with Chemometric Modelling of Spectroscopic Data. Microchem. J. 2021, 171, 106886. [Google Scholar] [CrossRef]
- Santos, P.M.; Pereira-Filho, E.R.; Colnago, L.A. Detection and Quantification of Milk Adulteration Using Time Domain Nuclear Magnetic Resonance (TD-NMR). Microchem. J. 2016, 124, 15–19. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Tan, Z.; Hou, Q.; Liu, R. Detecting the Content of the Bright Blue Pigment in Cream Based on Deep Learning and Near-Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120757. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Yang, P. Combination of LF-NMR and BP-ANN to Monitor Water States of Typical Fruits and Vegetables during Microwave Vacuum Drying. LWT 2019, 116, 108548. [Google Scholar] [CrossRef]
- Hajjar, G.; Haddad, L.; Rizk, T.; Akoka, S.; Bejjani, J. High-Resolution 1H NMR Profiling of Triacylglycerols as a Tool for Authentication of Food from Animal Origin: Application to Hen Egg Matrix. Food Chem. 2021, 360, 130056. [Google Scholar] [CrossRef]
- Jiang, L.; Mehedi Hassan, M.; Jiao, T.; Li, H.; Chen, Q. Rapid Detection of Chlorpyrifos Residue in Rice Using Surface-Enhanced Raman Scattering Coupled with Chemometric Algorithm. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 261, 119996. [Google Scholar] [CrossRef]
- Haddad, L.; Francis, J.; Rizk, T.; Akoka, S.; Remaud, G.S.; Bejjani, J. Cheese Characterization and Authentication through Lipid Biomarkers Obtained by High-Resolution 1H NMR Profiling. Food Chem. 2022, 383, 132434. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.-L.; Long, W.-J.; Hu, Y.; Cheng, L.; Chen, A.-Q.; Yu, R.-Q. Rapid Identification and Quantification of Cheaper Vegetable Oil Adulteration in Camellia Oil by Using Excitation-Emission Matrix Fluorescence Spectroscopy Combined with Chemometrics. Food Chem. 2019, 293, 348–357. [Google Scholar] [CrossRef]
- Richardson, P.I.C.; Muhamadali, H.; Ellis, D.I.; Goodacre, R. Rapid Quantification of the Adulteration of Fresh Coconut Water by Dilution and Sugars Using Raman Spectroscopy and Chemometrics. Food Chem. 2019, 272, 157–164. [Google Scholar] [CrossRef]
- Galvan, D.; de Andrade, J.C.; Effting, L.; Lelis, C.A.; Melquiades, F.L.; Bona, E.; Conte-Junior, C.A. Energy-Dispersive X-ray Fluorescence Combined with Chemometric Tools Applied to Tomato and Sweet Pepper Classification. Food Control 2023, 143, 109326. [Google Scholar] [CrossRef]
- Scatigno, C.; Festa, G. A First Elemental Pattern and Geo-Discrimination of Italian EVOO by Energy Dispersive X-ray Fluorescence and Chemometrics. Microchem. J. 2021, 171, 106863. [Google Scholar] [CrossRef]
- Panebianco, S.; Mazzoleni, P.; Barone, G.; Musumarra, A.; Pellegriti, M.G.; Pulvirenti, A.; Scordino, A.; Cirvilleri, G. Feasibility Study of Tomato Fruit Characterization by Fast XRF Analysis for Quality Assessment and Food Traceability. Food Chem. 2022, 383, 132364. [Google Scholar] [CrossRef] [PubMed]
- Allegretta, I.; Squeo, G.; Gattullo, C.E.; Porfido, C.; Cicchetti, A.; Caponio, F.; Cesco, S.; Nicoletto, C.; Terzano, R. TXRF Spectral Information Enhanced by Multivariate Analysis: A New Strategy for Food Fingerprint. Food Chem. 2023, 401, 134124. [Google Scholar] [CrossRef] [PubMed]
- Vitali Čepo, D.; Karoglan, M.; Borgese, L.; Depero, L.E.; Marguí, E.; Jablan, J. Application of Benchtop Total-Reflection X-ray Fluorescence Spectrometry and Chemometrics in Classification of Origin and Type of Croatian Wines. Food Chem. X 2022, 13, 100209. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W. Detection of Early Bruises on Peaches (Amygdalus persica L.) Using Hyperspectral Imaging Coupled with Improved Watershed Segmentation Algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- He, P.; Wu, Y.; Wang, J.; Ren, Y.; Ahmad, W.; Liu, R.; Ouyang, Q.; Jiang, H.; Chen, Q. Detection of Mites Tyrophagus putrescentiae and Cheyletus eruditus in Flour Using Hyperspectral Imaging System Coupled with Chemometrics. J. Food Process. Eng. 2020, 43, e13386. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of Deep Learning and Snapshot Hyperspectral Imaging for Classification of Species in Meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Q.; Zhang, W.; Sun, Y.; Hu, P.; Tu, K. Detection of Cold Injury in Peaches by Hyperspectral Reflectance Imaging and Artificial Neural Network. Food Chem. 2016, 192, 134–141. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, X.; Sun, K.; Hu, H.; Xu, M.; Wang, Z.; Tu, K.; Pan, L. Hyperspectral Reflectance Imaging Combined with Chemometrics and Successive Projections Algorithm for Chilling Injury Classification in Peaches. LWT 2017, 75, 557–564. [Google Scholar] [CrossRef]
- Babellahi, F.; Paliwal, J.; Erkinbaev, C.; Amodio, M.L.; Chaudhry, M.M.A.; Colelli, G. Early Detection of Chilling Injury in Green Bell Peppers by Hyperspectral Imaging and Chemometrics. Postharvest Biol. Technol. 2020, 162, 111100. [Google Scholar] [CrossRef]
- Cen, H.; Lu, R.; Zhu, Q.; Mendoza, F. Nondestructive Detection of Chilling Injury in Cucumber Fruit Using Hyperspectral Imaging with Feature Selection and Supervised Classification. Postharvest Biol. Technol. 2016, 111, 352–361. [Google Scholar] [CrossRef]
- Carreiro Soares, S.F.; Medeiros, E.P.; Pasquini, C.; de Lelis Morello, C.; Harrop Galvão, R.K.; Ugulino Araújo, M.C. Classification of Individual Cotton Seeds with Respect to Variety Using Near-Infrared Hyperspectral Imaging. Anal. Methods 2016, 8, 8498–8505. [Google Scholar] [CrossRef]
- Fan, S.; Li, C.; Huang, W.; Chen, L. Detection of Blueberry Internal Bruising over Time Using NIR Hyperspectral Reflectance Imaging with Optimum Wavelengths. Postharvest Biol. Technol. 2017, 134, 55–66. [Google Scholar] [CrossRef]
- Sun, Y.; Pessane, I.; Pan, L.; Wang, X. Hyperspectral Characteristics of Bruised Tomatoes as Affected by Drop Height and Fruit Size. LWT 2021, 141, 110863. [Google Scholar] [CrossRef]
- Susič, N.; Žibrat, U.; Širca, S.; Strajnar, P.; Razinger, J.; Knapič, M.; Vončina, A.; Urek, G.; Gerič Stare, B. Discrimination between Abiotic and Biotic Drought Stress in Tomatoes Using Hyperspectral Imaging. Sens. Actuators B Chem. 2018, 273, 842–852. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Que, H.; Sun, X.; Zhu, Q.; Huang, M. Hybrid Convolutional Network Based on Hyperspectral Imaging for Wheat Seed Varieties Classification. Infrared Phys. Technol. 2022, 125, 104270. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, S.; Zhang, C.; Feng, X.; Feng, L.; He, Y. Application of Hyperspectral Imaging and Chemometrics for Variety Classification of Maize Seeds. RSC Adv. 2018, 8, 1337–1345. [Google Scholar] [CrossRef]
- Tsouvaltzis, P.; Babellahi, F.; Amodio, M.L.; Colelli, G. Early Detection of Eggplant Fruit Stored at Chilling Temperature Using Different Non-Destructive Optical Techniques and Supervised Classification Algorithms. Postharvest Biol. Technol. 2020, 159, 111001. [Google Scholar] [CrossRef]
- Huang, F.; Song, H.; Guo, L.; Guang, P.; Yang, X.; Li, L.; Zhao, H.; Yang, M. Detection of Adulteration in Chinese Honey Using NIR and ATR-FTIR Spectral Data Fusion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 235, 118297. [Google Scholar] [CrossRef]
- De Girolamo, A.; von Holst, C.; Cortese, M.; Cervellieri, S.; Pascale, M.; Longobardi, F.; Catucci, L.; Porricelli, A.C.R.; Lippolis, V. Rapid Screening of Ochratoxin A in Wheat by Infrared Spectroscopy. Food Chem. 2019, 282, 95–100. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z. Non-Destructive Identification of Native Egg by near-Infrared Spectroscopy and Data Driven-Based Class-Modeling. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Marquetti, I.; Link, J.V.; Lemes, A.L.G.; Scholz, M.B.d.S.; Valderrama, P.; Bona, E. Partial Least Square with Discriminant Analysis and near Infrared Spectroscopy for Evaluation of Geographic and Genotypic Origin of Arabica Coffee. Comput. Electron. Agric. 2016, 121, 313–319. [Google Scholar] [CrossRef]
- Miao, X.; Miao, Y.; Tao, S.; Liu, D.; Chen, Z.; Wang, J.; Huang, W.; Yu, Y. Classification of Rice Based on Storage Time by Using near Infrared Spectroscopy and Chemometric Methods. Microchem. J. 2021, 171, 106841. [Google Scholar] [CrossRef]
- Rovira, G.; Miaw, C.S.W.; Martins, M.L.C.; Sena, M.M.; de Souza, S.V.C.; Callao, M.P.; Ruisánchez, I. One-Class Model with Two Decision Thresholds for the Rapid Detection of Cashew Nuts Adulteration by Other Nuts. Talanta 2023, 253, 123916. [Google Scholar] [CrossRef]
- Visconti, L.G.; Rodríguez, M.S.; Di Anibal, C. V Determination of Grated Hard Cheeses Adulteration by near Infrared Spectroscopy (NIR) and Multivariate Analysis. Int. Dairy J. 2020, 104, 104647. [Google Scholar] [CrossRef]
- Xie, L.-H.; Tang, S.-Q.; Wei, X.-J.; Sheng, Z.-H.; Shao, G.-N.; Jiao, G.-A.; Hu, S.-K.; Wang-Lin; Hu, P.-S. Simultaneous Determination of Apparent Amylose, Amylose and Amylopectin Content and Classification of Waxy Rice Using near-Infrared Spectroscopy (NIRS). Food Chem. 2022, 388, 132944. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Leitenberger, M.; Longin, C.F.H.; Würschum, T.; Carle, R.; Schweiggert, R.M. Near-Infrared Reflectance Spectroscopy for the Rapid Discrimination of Kernels and Flours of Different Wheat Species. J. Food Compos. Anal. 2016, 51, 30–36. [Google Scholar] [CrossRef]
- Rozali, N.L.; Azizan, K.A.; Singh, R.; Syed Jaafar, S.N.; Othman, A.; Weckwerth, W.; Ramli, U.S. Fourier Transform Infrared (FTIR) Spectroscopy Approach Combined with Discriminant Analysis and Prediction Model for Crude Palm Oil Authentication of Different Geographical and Temporal Origins. Food Control 2022, 146, 109509. [Google Scholar] [CrossRef]
- Márquez, C.; López, M.I.; Ruisánchez, I.; Callao, M.P. FT-Raman and NIR Spectroscopy Data Fusion Strategy for Multivariate Qualitative Analysis of Food Fraud. Talanta 2016, 161, 80–86. [Google Scholar] [CrossRef]
- Unuvar, A.; Boyaci, I.H.; Koksel, H. A Novel Approach for Rapid Discrimination of Common and Durum Wheat Flours Using Spectroscopic Analyses Combined with Chemometrics. J. Cereal Sci. 2021, 100, 103269. [Google Scholar] [CrossRef]
- Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. Raman Spectroscopy Based Analysis of Milk Using Random Forest Classification. Vib. Spectrosc. 2018, 99, 124–129. [Google Scholar] [CrossRef]
- de Oliveira Mendes, T.; Porto, B.L.S.; Almeida, M.R.; Fantini, C.; Sena, M.M. Discrimination between Conventional and Omega-3 Fatty Acids Enriched Eggs by FT-Raman Spectroscopy and Chemometric Tools. Food Chem. 2019, 273, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, M.K.; Holroyd, S.E.; McGoverin, C.M.; Simpson, M.C.; Williams, D.E. Raman Spectroscopy as an Effective Screening Method for Detecting Adulteration of Milk with Small Nitrogen-Rich Molecules and Sucrose. J. Dairy Sci. 2016, 99, 2520–2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Fraser-Miller, S.J.; Jessep, W.T.; Bain, W.E.; Hicks, T.M.; Ward, J.F.; Craigie, C.R.; Loeffen, M.; Gordon, K.C. Rapid Discrimination of Intact Beef, Venison and Lamb Meat Using Raman Spectroscopy. Food Chem. 2021, 343, 128441. [Google Scholar] [CrossRef]
- Tian, F.; Tan, F.; Li, H. An Rapid Nondestructive Testing Method for Distinguishing Rice Producing Areas Based on Raman Spectroscopy and Support Vector Machine. Vib. Spectrosc. 2020, 107, 103017. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Gao, S.; Niu, Y.; Zhang, X.; Du, Z.; Liu, H.; Zhang, Y. Botanical Origin Identification and Adulteration Quantification of Honey Based on Raman Spectroscopy Combined with Convolutional Neural Network. Vib. Spectrosc. 2022, 123, 103439. [Google Scholar] [CrossRef]
- Yao, S.; Li, T.; Li, J.; Liu, H.; Wang, Y. Geographic Identification of Boletus Mushrooms by Data Fusion of FT-IR and UV Spectroscopies Combined with Multivariate Statistical Analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 257–263. [Google Scholar] [CrossRef]
- Antônio, D.C.; de Assis, D.C.S.; Botelho, B.G.; Sena, M.M. Detection of Adulterations in a Valuable Brazilian Honey by Using Spectrofluorimetry and Multiway Classification. Food Chem. 2022, 370, 131064. [Google Scholar] [CrossRef]
- Fang, H.; Wu, H.-L.; Wang, T.; Long, W.-J.; Chen, A.-Q.; Ding, Y.-J.; Yu, R.-Q. Excitation-Emission Matrix Fluorescence Spectroscopy Coupled with Multi-Way Chemometric Techniques for Characterization and Classification of Chinese Lager Beers. Food Chem. 2021, 342, 128235. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Lozano, V.A.; Olivieri, A.C. Comparative Chemometric Analysis of Fluorescence and near Infrared Spectroscopies for Authenticity Confirmation and Geographical Origin of Argentinean Extra Virgin Olive Oils. Food Control 2019, 96, 22–28. [Google Scholar] [CrossRef]
- Meng, X.; Yin, C.; Yuan, L.; Zhang, Y.; Ju, Y.; Xin, K.; Chen, W.; Lv, K.; Hu, L. Rapid Detection of Adulteration of Olive Oil with Soybean Oil Combined with Chemometrics by Fourier Transform Infrared, Visible-near-Infrared and Excitation-Emission Matrix Fluorescence Spectroscopy: A Comparative Study. Food Chem. 2023, 405, 134828. [Google Scholar] [CrossRef]
- Yuan, L.; Meng, X.; Xin, K.; Ju, Y.; Zhang, Y.; Yin, C.; Hu, L. A Comparative Study on Classification of Edible Vegetable Oils by Infrared, near Infrared and Fluorescence Spectroscopy Combined with Chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 288, 122120. [Google Scholar] [CrossRef] [PubMed]
- Uncu, O.; Ozen, B. A Comparative Study of Mid-Infrared, UV–Visible and Fluorescence Spectroscopy in Combination with Chemometrics for the Detection of Adulteration of Fresh Olive Oils with Old Olive Oils. Food Control 2019, 105, 209–218. [Google Scholar] [CrossRef]
- Gonçalves, T.R.; Rosa, L.N.; Gonçalves, R.P.; Torquato, A.S.; Março, P.H.; Marques Gomes, S.T.; Matsushita, M.; Valderrama, P. Monitoring the Oxidative Stability of Monovarietal Extra Virgin Olive Oils by UV–Vis Spectroscopy and MCR–ALS. Food Anal. Methods 2018, 11, 1936–1943. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Peaberry Coffee Discrimination Using UV-Visible Spectroscopy Combined with SIMCA and PLS-DA. Int. J. Food Prop. 2017, 20, S331–S339. [Google Scholar] [CrossRef]
- Torrecilla, J.S.; Aroca-Santos, R.; Cancilla, J.C.; Matute, G. Linear and Non-Linear Modeling to Identify Vinegars in Blends through Spectroscopic Data. LWT-Food Sci. Technol. 2016, 65, 565–571. [Google Scholar] [CrossRef]
- Cavdaroglu, C.; Ozen, B. Detection of Vinegar Adulteration with Spirit Vinegar and Acetic Acid Using UV–Visible and Fourier Transform Infrared Spectroscopy. Food Chem. 2022, 379, 132150. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Martyna, A.; Karpińska, J.; Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Quality Control of Mint Species Based on UV-VIS and FTIR Spectral Data Supported by Chemometric Tools. Food Control 2021, 129, 108228. [Google Scholar] [CrossRef]
- Botoran, O.R.; Ionete, R.E.; Miricioiu, M.G.; Costinel, D.; Radu, G.L.; Popescu, R. Amino Acid Profile of Fruits as Potential Fingerprints of Varietal Origin. Molecules 2019, 24, 4500. [Google Scholar] [CrossRef] [Green Version]
- Consonni, R.; Polla, D.; Cagliani, L.R. Organic and Conventional Coffee Differentiation by NMR Spectroscopy. Food Control 2018, 94, 284–288. [Google Scholar] [CrossRef]
- de Moura Ribeiro, M.V.; Boralle, N.; Redigolo Pezza, H.; Pezza, L.; Toci, A.T. Authenticity of Roasted Coffee Using1H NMR Spectroscopy. J. Food Compos. Anal. 2017, 57, 24–30. [Google Scholar] [CrossRef] [Green Version]
- da Silva, L.A.; Flumignan, D.L.; Tininis, A.G.; Pezza, H.R.; Pezza, L. Discrimination of Brazilian Lager Beer by 1H NMR Spectroscopy Combined with Chemometrics. Food Chem. 2019, 272, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, L.; da Costa, G.; Guyon, F.; Richard, T. 1H NMR Metabolomics Applied to Bordeaux Red Wines. Food Chem. 2019, 301, 125257. [Google Scholar] [CrossRef]
- Marseglia, A.; Acquotti, D.; Consonni, R.; Cagliani, L.R.; Palla, G.; Caligiani, A. HR MAS 1H NMR and Chemometrics as Useful Tool to Assess the Geographical Origin of Cocoa Beans–Comparison with HR 1H NMR. Food Res. Int. 2016, 85, 273–281. [Google Scholar] [CrossRef]
- Milani, M.I.; Rossini, E.L.; Catelani, T.A.; Pezza, L.; Toci, A.T.; Pezza, H.R. Authentication of Roasted and Ground Coffee Samples Containing Multiple Adulterants Using NMR and a Chemometric Approach. Food Control 2020, 112, 107104. [Google Scholar] [CrossRef]
- Rachineni, K.; Rao Kakita, V.M.; Awasthi, N.P.; Shirke, V.S.; Hosur, R.V.; Chandra Shukla, S. Identifying Type of Sugar Adulterants in Honey: Combined Application of NMR Spectroscopy and Supervised Machine Learning Classification. Curr. Res. Food Sci. 2022, 5, 272–277. [Google Scholar] [CrossRef]
- Shi, T.; Zhu, M.; Chen, Y.; Yan, X.; Chen, Q.; Wu, X.; Lin, J.; Xie, M. 1H NMR Combined with Chemometrics for the Rapid Detection of Adulteration in Camellia Oils. Food Chem. 2018, 242, 308–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Shen, G.; Zhong, S.; Feng, J. NMR Spectroscopy in Conjugation with Multivariate Statistical Analysis for Distinguishing Plant Origin of Edible Oils. J. Food Compos. Anal. 2018, 69, 140–148. [Google Scholar] [CrossRef]
- Borgese, L.; Bilo, F.; Tsuji, K.; Fernández-Ruiz, R.; Margui, E.; Streli, C.; Pepponi, G.; Stosnach, H.; Yamada, T.; Vandenabeele, P.; et al. First Total Reflection X-ray Fluorescence Round-Robin Test of Water Samples: Preliminary Results. Spectrochim. Acta Part B Spectrosc. 2014, 101, 6–14. [Google Scholar] [CrossRef]
- Xue, X.; Chen, Z.; Wu, H.; Gao, H. Identification of Guiboutia Species by NIR-HSI Spectroscopy. Sci. Rep. 2022, 12, 11507. [Google Scholar] [CrossRef]
- Tao, F.; Ngadi, M. Recent Advances in Rapid and Nondestructive Determination of Fat Content and Fatty Acids Composition of Muscle Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 1565–1593. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sun, D.-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A Review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Sha, M.; Zhang, D.; Zhang, Z.; Wei, J.; Chen, Y.; Wang, M.; Liu, J. Improving Raman Spectroscopic Identification of Rice Varieties by Feature Extraction. J. Raman Spectrosc. 2020, 51, 702–710. [Google Scholar] [CrossRef]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of Minced Beef Adulteration with Turkey Meat by UV–Vis, NIR and MIR Spectroscopy. LWT-Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Tammer, M.G. Sokrates: Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Wiley: Chichester, UK, 2004. [Google Scholar]
- Mehrnia, M.-A.; Jafari, S.-M.; Makhmal-Zadeh, B.S.; Maghsoudlou, Y. Rheological and Release Properties of Double Nano-Emulsions Containing Crocin Prepared with Angum Gum, Arabic Gum and Whey Protein. Food Hydrocoll. 2017, 66, 259–267. [Google Scholar] [CrossRef]
- Cai, C.; Huang, J.; Zhao, L.; Liu, Q.; Zhang, C.; Wei, C. Heterogeneous Structure and Spatial Distribution in Endosperm of High-Amylose Rice Starch Granules with Different Morphologies. J. Agric. Food Chem. 2014, 62, 10143–10152. [Google Scholar] [CrossRef]
- Jääskeläinen, A.-S.; Holopainen-Mantila, U.; Tamminen, T.; Vuorinen, T. Endosperm and Aleurone Cell Structure in Barley and Wheat as Studied by Optical and Raman Microscopy. J. Cereal Sci. 2013, 57, 543–550. [Google Scholar] [CrossRef]
- Piot, O.; Autran, J.-C.; Manfait, M. Spatial Distribution of Protein and Phenolic Constituents in Wheat Grain as Probed by Confocal Raman Microspectroscopy. J. Cereal Sci. 2000, 32, 57–71. [Google Scholar] [CrossRef]
- Nakajima, S.; Kuroki, S.; Ikehata, A. Selective Detection of Starch in Banana Fruit with Raman Spectroscopy. Food Chem. 2023, 401, 134166. [Google Scholar] [CrossRef]
- Czaja, T.; Mazurek, S.; Szostak, R. Quantification of Gluten in Wheat Flour by FT-Raman Spectroscopy. Food Chem. 2016, 211, 560–563. [Google Scholar] [CrossRef]
- Tay, M.; Fang, G.; Chia, P.L.; Li, S.F.Y. Rapid Screening for Detection and Differentiation of Detergent Powder Adulteration in Infant Milk Formula by LC–MS. Forensic Sci. Int. 2013, 232, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Taylan, O.; Cebi, N.; Tahsin Yilmaz, M.; Sagdic, O.; Bakhsh, A.A. Detection of Lard in Butter Using Raman Spectroscopy Combined with Chemometrics. Food Chem. 2020, 332, 127344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lonergan, S.M.; Yu, C. Rapid Determination of Pork Sensory Quality Using Raman Spectroscopy. Meat Sci. 2012, 91, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.M.; Hopkins, D.L.; Torley, P.J.; Gill, H.; Blanch, E.W. Investigation of Chemical Composition of Meat Using Spatially Off-Set Raman Spectroscopy. Analyst 2019, 144, 2618–2627. [Google Scholar]
- Karunathilaka, S.R.; Yakes, B.J.; He, K.; Brückner, L.; Mossoba, M.M. First Use of Handheld Raman Spectroscopic Devices and On-Board Chemometric Analysis for the Detection of Milk Powder Adulteration. Food Control 2018, 92, 137–146. [Google Scholar] [CrossRef]
- Aykas, D.P.; Shotts, M.-L.; Rodriguez-Saona, L.E. Authentication of Commercial Honeys Based on Raman Fingerprinting and Pattern Recognition Analysis. Food Control 2020, 117, 107346. [Google Scholar] [CrossRef]
- Kelis Cardoso, V.G.; Poppi, R.J. Cleaner and Faster Method to Detect Adulteration in Cassava Starch Using Raman Spectroscopy and One-Class Support Vector Machine. Food Control 2021, 125, 107917. [Google Scholar] [CrossRef]
- Figueiredo, L.P.; Borém, F.M.; Almeida, M.R.; de Oliveira, L.F.C.; de Carvalho Alves, A.P.; dos Santos, C.M.; Rios, P.A. Raman Spectroscopy for the Differentiation of Arabic Coffee Genotypes. Food Chem. 2019, 288, 262–267. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Osorio, M.T.; Koidis, A.; González-Casado, A.; Cuadros-Rodríguez, L. Chemometric Classification and Quantification of Olive Oil in Blends with Any Edible Vegetable Oils Using FTIR-ATR and Raman Spectroscopy. LWT 2017, 86, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Li, H.; Yin, Z.; Zhu, Y.; Lu, A.; Zhao, D.; Li, C. Application of Raman Spectroscopy in the Rapid Detection of Waste Cooking Oil. Food Chem. 2021, 362, 130191. [Google Scholar] [CrossRef]
- Trimigno, A.; Marincola, F.C.; Dellarosa, N.; Picone, G.; Laghi, L. Definition of Food Quality by NMR-Based Foodomics. Curr. Opin. Food Sci. 2015, 4, 99–104. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Ali, H.; Bilal, M. Potentiality of Using Front Face Fluorescence Spectroscopy for Quantitative Analysis of Cow Milk Adulteration in Buffalo Milk. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 225, 117518. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Shi, C.; Yang, X.; Han, D. FT-IR and Raman Spectroscopy Data Fusion with Chemometrics for Simultaneous Determination of Chemical Quality Indices of Edible Oils during Thermal Oxidation. LWT 2020, 119, 108906. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Xia, J.; Xiong, Y.; Min, S. Quantitative Analysis of Honey Adulteration by Spectrum Analysis Combined with Several High-Level Data Fusion Strategies. Vib. Spectrosc. 2020, 108, 103060. [Google Scholar] [CrossRef]
- Wang, W.; Paliwal, J. Near-Infrared Spectroscopy and Imaging in Food Quality and Safety. Sens. Instrum. Food Qual. Saf. 2007, 1, 193–207. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of Miniaturized and Portable near Infrared Spectroscopy (NIRS) for Inspection and Control of Meat and Meat Products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- McVey, C.; Elliott, C.T.; Cannavan, A.; Kelly, S.D.; Petchkongkaew, A.; Haughey, S.A. Portable Spectroscopy for High Throughput Food Authenticity Screening: Advancements in Technology and Integration into Digital Traceability Systems. Trends Food Sci. Technol. 2021, 118, 777–790. [Google Scholar] [CrossRef]
- Herrero, A.M. Raman Spectroscopy a Promising Technique for Quality Assessment of Meat and Fish: A Review. Food Chem. 2008, 107, 1642–1651. [Google Scholar] [CrossRef]
- Özbalci, B.; Boyaci, İ.H.; Topcu, A.; Kadılar, C.; Tamer, U. Rapid Analysis of Sugars in Honey by Processing Raman Spectrum Using Chemometric Methods and Artificial Neural Networks. Food Chem. 2013, 136, 1444–1452. [Google Scholar] [CrossRef]
- Prieto, N.; Dugan, M.E.R.; Juárez, M.; López-Campos, Ó.; Zijlstra, R.T.; Aalhus, J.L. Using Portable Near-Infrared Spectroscopy to Predict Pig Subcutaneous Fat Composition and Iodine Value. Can. J. Anim. Sci. 2017, 98, 221–229. [Google Scholar] [CrossRef]
- Mishra, P.; Sytsma, M.; Chauhan, A.; Polder, G.; Pekkeriet, E. All-in-One: A Spectral Imaging Laboratory System for Standardised Automated Image Acquisition and Real-Time Spectral Model Deployment. Anal. Chim. Acta 2022, 1190, 339235. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Nordon, A.; Asaari, M.S.M.; Lian, G.; Redfern, S. Fusing Spectral and Textural Information in Near-Infrared Hyperspectral Imaging to Improve Green Tea Classification Modelling. J. Food Eng. 2019, 249, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Bwambok, D.K.; Siraj, N.; Macchi, S.; Larm, N.E.; Baker, G.A.; Pérez, R.L.; Ayala, C.E.; Walgama, C.; Pollard, D.; Rodriguez, J.D. QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. Sensors 2020, 20, 6982. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef]
- Hassan, H.; Fan, M.; Zhang, T.; Yang, K. Prediction of Total Phenolics and Flavonoids Contents in Chinese Wild Rice (Zizania latifolia) Using FT-NIR Spectroscopy. Am. J. Food Technol. 2015, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, W.; Soladoye, O. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. Lwt Food Sci. Technol. 2021, 150, 111968. [Google Scholar] [CrossRef]
- Power, A.C.; Chapman, J.; Chandra, S.; Cozzolino, D. Ultraviolet-Visible Spectroscopy for Food Quality Analysis. In Evaluation Technologies for Food Quality; Woodhead Publishing: Sawston, UK, 2019; pp. 91–104. [Google Scholar]
- Ali, M.M.; Hashim, N. Non-Destructive Methods for Detection of Food Quality. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 645–667. [Google Scholar]
- Xu, W.; Liu, X.; Xie, L.; Ying, Y. Comparison of Fourier Transform Near-Infrared, Visible near-Infrared, Mid-Infrared, and Raman Spectroscopy as Non-Invasive Tools for Transgenic Rice Discrimination. Trans. ASABE 2014, 57, 141–150. [Google Scholar]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F.-V. The Discrimination of Honey Origin Using Melissopalynology and Raman Spectroscopy Techniques Coupled with Multivariate Analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Sato, K.; Abe, Y.; Sugimoto, N.; Akiyama, H. Quantification of Acesulfame Potassium in Processed Foods by Quantitative 1H NMR. Talanta 2015, 131, 712–718. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Hernández-Hierro, J.M. Comparative Study on the Use of Anthocyanin Profile, Color Image Analysis and near-Infrared Hyperspectral Imaging as Tools to Discriminate between Four Autochthonous Red Grape Cultivars from La Rioja (Spain). Talanta 2015, 131, 412–416. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Bouzembrak, Y.; Janssen, E.M.; van der Fels-Klerx, H.J.; van Asselt, E.D.; Kleter, G.A. A Holistic Approach to Food Safety Risks: Food Fraud as an Example. Food Res. Int. 2016, 89, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.A.; Cichy, K.; Lu, R.; Kelly, J.D. Evaluation of Canning Quality Traits in Black Beans (Phaseolus vulgaris L.) by Visible/near-Infrared Spectroscopy. Food Bioproc. Tech. 2014, 7, 2666–2678. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Pu, H.; Sun, D.-W.; Gao, W.; Xiong, Z. Use of Hyperspectral Imaging to Discriminate the Variety and Quality of Rice. Food Anal. Methods 2015, 8, 515–523. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR) Methods for Protein and Hardness Predictions Using the near-Infrared (NIR) Hyperspectral Images of Bulk Samples of Canadian Wheat. Food Bioproc. Tech. 2015, 8, 31–40. [Google Scholar] [CrossRef]
- Barbedo, J.; Guarienti, E.; Tibola, C. Detection of sprout damage in wheat kernels using NIR hyperspectral imaging. Biosyst. Eng. 2018, 175, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Sun, L.; Li, Y.; Li, J.; Liu, S.; Xu, X.; Yuantong, X. Non-destructive classification of defective potatoes based on hyperspectral imaging and support vector machine. Infrared Phys. Technol. 2019, 99, 71–79. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Xu, L.; Wang, S.; Zhou, M.; Yin, J.; Lu, A. Rapid Screening of Cadmium in Rice and Identification of Geographical Origins by Spectral Method. Int. J. Environ. Res. Public Health 2018, 15, 312. [Google Scholar] [CrossRef] [Green Version]
- Lamanna, R.; Cattivelli, L.; Miglietta, M.L.; Troccoli, A. Geographical Origin of Durum Wheat Studied by 1H-NMR Profiling. Magn. Reson. Chem. 2011, 49, 1–5. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Rutledge, D.N.; Roßmann, A.; Waiblinger, H.; Mahler, M.; Ilse, M.; Kuballa, T.; Lachenmeier, D.W. Determination of Rice Type by 1H NMR Spectroscopy in Combination with Different Chemometric Tools. J. Chemom. 2014, 28, 83–92. [Google Scholar] [CrossRef]
- Agelet, L.E.; Ellis, D.D.; Duvick, S.; Goggi, A.S.; Hurburgh, C.R.; Gardner, C.A. Feasibility of near Infrared Spectroscopy for Analyzing Corn Kernel Damage and Viability of Soybean and Corn Kernels. J. Cereal. Sci. 2012, 55, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Haughey, S.A.; Graham, S.F.; Cancouët, E.; Elliott, C.T. The Application of Near-Infrared Reflectance Spectroscopy (NIRS) to Detect Melamine Adulteration of Soya Bean Meal. Food Chem. 2013, 136, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, Y.; Dong, N.; Lai, C.; Zhao, G. Authentication of Lotus Root Powder Adulterated with Potato Starch and/or Sweet Potato Starch Using Fourier Transform Mid-Infrared Spectroscopy. Food Chem. 2013, 141, 3103–3109. [Google Scholar] [CrossRef] [PubMed]
- Kouvoutsakis, G.; Mitsi, C.; Tarantilis, P.A.; Polissiou, M.G.; Pappas, C.S. Geographical Differentiation of Dried Lentil Seed (Lens culinaris) Samples Using Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and Discriminant Analysis. Food Chem. 2014, 145, 1011–1014. [Google Scholar] [CrossRef]
- Serranti, S.; Cesare, D.; Bonifazi, G. The Development of a Hyperspectral Imaging Method for the Detection of Fusarium-Damaged, Yellow Berry and Vitreous Italian Durum Wheat Kernels. Biosyst. Eng. 2013, 115, 20–30. [Google Scholar] [CrossRef]
- Panero, J.; Silva, H.; Panero, P.; Smiderle, O.; Panero, F.; Faria, F.; Rodríguez, A. Separation of Cultivars of Soybeans by Chemometric Methods Using Near Infrared Spectroscopy. J. Agric. Sci. 2018, 10, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Herrero-Langreo, A.; Barreiro, P.; Roger, J.M.; Diezma, B.; Gorretta, N.; Lleó, L. Detection and Quantification of Peanut Traces in Wheat Flour by near Infrared Hyperspectral Imaging Spectroscopy Using Principal-Component Analysis. J. Near Infrared Spectrosc. 2015, 23, 15–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, E.; Fan, X.; Yang, C.; Ma, H.; Gilbert, R. The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocoll. 2020, 101, 105563. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Li, E.; Gilbert, R.; Xu, B. A molecular explanation of wheat starch physicochemical properties related to noodle eating quality. Food Hydrocoll. 2020, 108, 106035. [Google Scholar] [CrossRef]
- Corpaş, L.; Hădărugă, N.G.; David, I.; Pîrşan, P.; Hădărugă, D.I.; Isengard, H.-D. Karl Fischer Water Titration− Principal Component Analysis Approach on Wheat Flour. Food Anal. Methods 2014, 7, 1353–1358. [Google Scholar] [CrossRef]
- Dreher, J.; Blach, C.; Terjung, N.; Gibis, M.; Weiss, J. Influence of protein content on plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue. Food Hydrocoll. 2020, 106, 105864. [Google Scholar] [CrossRef]
- Nie, P.; Wu, D.; Yang, Y.; He, Y. Fast Determination of Boiling Time of Yardlong Bean Using Visible and near Infrared Spectroscopy and Chemometrics. J. Food Eng. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Galão, O.F.; Pallone, J.A.L.; Poppi, R.J. Comparison and Application of Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopy for Determination of Quality Parameters in Soybean Samples. Food Control 2014, 35, 227–232. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Pallone, J.A.L.; Poppi, R.J. Fourier Transform Near-Infrared Spectroscopy (FT-NIRS) Application to Estimate Brazilian Soybean [Glycine Max (L.) Merril] Composition. Food Res. Int. 2013, 51, 53–58. [Google Scholar] [CrossRef] [Green Version]
- López, A.; Arazuri, S.; Jarén, C.; Mangado, J.; Arnal, P.; de Galarreta, J.I.R.; Riga, P.; López, R. Crude Protein Content Determination of Potatoes by NIRS Technology. Procedia Technol. 2013, 8, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Rady, A.M.; Guyer, D.E.; Kirk, W.; Donis-González, I.R. The Potential Use of Visible/near Infrared Spectroscopy and Hyperspectral Imaging to Predict Processing-Related Constituents of Potatoes. J. Food Eng. 2014, 135, 11–25. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Moresco, R.; Coelho, B.; da Costa Nunes, E.; Peruch, L.A.M.; de Oliveira Neubert, E.; Rocha, M.; Maraschin, M. Metabolomics Combined with Chemometric Tools (PCA, HCA, PLS-DA and SVM) for Screening Cassava (Manihot esculenta Crantz) Roots during Postharvest Physiological Deterioration. Food Chem. 2014, 161, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, T.; Ceballos, H.; Dufour, D.; Ortiz, D.; Morante, N.; Calle, F.; Zum Felde, T.; Dominguez, M.; Davrieux, F. Prediction of Carotenoids, Cyanide and Dry Matter Contents in Fresh Cassava Root Using NIRS and Hunter Color Techniques. Food Chem. 2014, 151, 444–451. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Secondary Metabolites in Finished Feed and Maize—An Extensive Survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Cheli, F.; Battaglia, D.; Gallo, R.; Dell’Orto, V. EU Legislation on Cereal Safety: An Update with a Focus on Mycotoxins. Food Control 2014, 37, 315–325. [Google Scholar] [CrossRef]
- Yao, H.; Hruska, Z.; Kincaid, R.; Brown, R.L.; Bhatnagar, D.; Cleveland, T.E. Hyperspectral Image Classification and Development of Fluorescence Index for Single Corn Kernels Infected with Aspergillus Flavus. Trans. ASABE 2013, 56, 1977–1988. [Google Scholar]
- Twarużek, M.; Skrzydlewski, P.; Kosicki, R.; Grajewski, J. Mycotoxins survey in feed materials and feedingstuffs in years 2015–2020. Toxicon Off. J. Int. Soc. Toxinology 2021, 202, 27–39. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, S.H.; Anjum, M.A.; Rehman, A. A Cost Effective Preparative Thin Layer Chromatography Cleanup Method for High Performance Liquid Chromatography Analysis of Aflatoxins B1, B2 and G2. Adv. Life Sci. 2014, 2, 1–4. [Google Scholar]
- Sirisomboon, C.D.; Putthang, R.; Sirisomboon, P. Application of near Infrared Spectroscopy to Detect Aflatoxigenic Fungal Contamination in Rice. Food Control 2013, 33, 207–214. [Google Scholar] [CrossRef]
- Della Riccia Giacomo, D.Z.S. A Multivariate Regression Model for Detection of Fumonisins Content in Maize from near Infrared Spectra. Food Chem. 2013, 141, 4289–4294. [Google Scholar] [CrossRef] [PubMed]
- Kaya-Celiker, H.; Mallikarjunan, P.K.; Schmale III, D.; Christie, M.E. Discrimination of Moldy Peanuts with Reference to Aflatoxin Using FTIR-ATR System. Food Control 2014, 44, 64–71. [Google Scholar] [CrossRef]
- Kim, K.; Shim, W.; Kim, J.; Chung, D. Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. J. Food Sci. 2014, 79, M2048–M2055. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Identification of Insect-Damaged Wheat Kernels Using Short-Wave near-Infrared Hyperspectral and Digital Colour Imaging. Comput. Electron. Agric. 2010, 73, 118–125. [Google Scholar] [CrossRef]
- Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Detection of Insect-Damaged Wheat Kernels Using near-Infrared Hyperspectral Imaging. J. Stored Prod. Res. 2009, 45, 151–158. [Google Scholar] [CrossRef]
- Jenni, S.; Truco, M.; Michelmore, R. Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theor. Appl. Genet. 2013, 126, 3065–3079. [Google Scholar] [CrossRef]
- Bamberg, J.; Lombard, K.; Palta, J.; Workmaster, B.; Atucha, A. Survival of Solanum jamesii Tubers at Freezing Temperatures. Am. J. Potato Res. 2020, 97, 497–504. [Google Scholar] [CrossRef]
- Elbatawi, I.E. An Acoustic Impact Method to Detect Hollow Heart of Potato Tubers. Biosyst. Eng. 2008, 100, 206–213. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, S.; Li, X.; Zheng, J. Nondestructive Detection of Blackheart in Potato by Visible/near Infrared Transmittance Spectroscopy. J. Spectrosc. 2015, 2015, 786709. [Google Scholar] [CrossRef] [Green Version]
- Dacal-Nieto, A.; Formella, A.; Carrión, P.; Vazquez-Fernandez, E.; Fernández-Delgado, M. Non–Destructive Detection of Hollow Heart in Potatoes Using Hyperspectral Imaging. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Seville, Spain, 29–31 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 180–187. [Google Scholar]
- Vanoli, M.; Rizzolo, A.; Spinelli, L.; Parisi, B.; Torricelli, A. Non Destructive Detection of Internal Brown Spot in Potato Tubers by Time-Resolved Reflectance Spectroscopy: Preliminary Results on a Susceptible Cultivar. In Proceedings of the International Conference of Agricultural Engineering, CIGRAgeng 2012, Valencia, Spain, 8–12 July 2012. [Google Scholar]
Quantitative Analysis | ||||||
---|---|---|---|---|---|---|
Authors | Food Materials | Fingerprinting Technique | Analysed Components | Objectives | Chemometric Analysis | Ref. |
Gamela et al. | Cocoa beans | EDXRF | Cu, K, Sr and Zn | Cocoa beans | PLS | [56] |
Sperança et al. | Bananas | X-ray fluorescence | Zn | Determination Zn content in Banans | PLS | [57] |
Priyashantha et al. | Cheese | Near-infrared hyperspectral (NIR-HS) imaging | - | Explain the relationship between average spectra and cheese maturity | PLS | [58] |
Darnay et al. | Semi-hard cheese | HSI | Transglutaminase | Detection of the enzyme of transglutaminase in the cheese | PLS | [59] |
Lu et al. | Potatoes | Fluorescence HSI | Solanine | Predict the solanine content in potatoes | SVR | [60] |
Xiao et al. | Fresh-cut potato | HSI | Color parameters (bruising index) and water content | Assess the quality of potatoes | LS-SVM and PLS | [61] |
Tian et al. | Purple sweet potato | Vis-NIR HSI | Moisture and anthocyanins | Predict the critical indexes of moisture and anthocyanins in purple sweet potato | PLSR | [62] |
Li et al. | Plum | VNI-HSI | Nan | Predict the soluble solid contents and the color of two plums cultivars | PLS | [63] |
He et al. | Wheat flour | HSI | Talcum powder | Detection of talcum powder adulterated in wheat flour | SNV-CARS-PLS | [64] |
Kim et al. | Wheat flour | SWIR-HSI | Benzoyl peroxide | Detecting the bleaching agent of benzoyle peroxide in wheat flour | PLS | [65] |
Sun et al. | Melons | HSI | Nan | Predict the sugariness and hardness of melons | PLS, SVM and ANN | [66] |
Wang et al. | Chinese steamed bread | FT-NIR | Potato flour content | Predicting potato flour in Chinese steamed bread | PLS-R | [67] |
Tu et al. | Wheat flour | FT-NIR | Talcum powder | Quantitation of low content of talcum powder in wheat flour | Gradient-boosted decision tree (GBDT) | [68] |
Kandpal | Tuber flour | NIR and MIR | Chemical components:amylose, starch, protein, glucose, cellulose, and moisture contents | Prediction of quality traits in tuber traits by mean of Data fusion of FT-IR and FT-NIR | SOPLS | [69] |
Kamboj et al. | Wheat | FT-NIR | Crude protein and carbohydrate | Compare chemometrics for predicting the quality parameters of wheat | PLS, MLR, SVM | [70] |
Liang et al. | Potatoes | FT-NIR | Sugar content | Detection of zebra chip disease (ZC) in potatoes | PLS | [71] |
Jiang et al. | Wheat flour | Portable NIR | Fatty acid | Quantitation of fatty acids in wheat | Variable combination population analysis (VCPA), extreme learning machine (ELM) | [72] |
Ning et al. | Wheat grains | FT-NIR | Zearalenone | Detection of zearalenone in wheat | SVM | [73] |
Cámara et al. | Clove and pomegranate | IR | Antioxidant activity | Estimation of antioxidant activity in clove and pomegranate | MCR-ALS and PLS | [74] |
Castro et al. | Peanut oil | NIR and Raman | Adulterants (corn oil and vegetable oil) | Assessment of vibrational spectroscopy with chemometrics | MCR-ALS and PLS regression | [75] |
Castro et al. | Saffron | FT-NIR | Saffron adulterants (onion, calendula, pomegranate, and turmeric) | Detection of Saffron adulterants | MCR-ALS and PLS regression | [76] |
Li et al. | Saffron | FT-NIR | Saffron adulterants (lotus stamens and corn stigmas) | Detection of saffron adulterants | Synergistic interval PLS (SI-PLS), competitive adaptive reweighted sampling PLS (CARS-PLS) | [77] |
Li et al. | Saffron | FT-NIR | Corcin | Determination of corcin content in Saffron | PLS | [78] |
Liu et al. | Panax notoginseng | FT-NIR | Adulterants (hizoma curcumae, Curcuma longa and rhizoma alpiniae offcinarum) | Quantification of Panax notoginseng with its adulterants | PCR, PLS, ELM and SVR | [79] |
Liu et al. | Vegetable oils | FT-NIR | Phytosterols | Determination of phytosterols in vegetable oils | Pls | [80] |
Joshi et al. | Eggs | FTIR | Constituents of eggs (yolk and albumen) | Detection of fabricated eggs | PLS-DA and SVM | [81] |
Mazivila et al. | Milk | FT-NIR | Melamine and sucrose | Estimation the adulterant contents in the milk | MCR-ALS | [82] |
Novianty et al. | Palm fruit | FT-NIR | Oil content | Quantitation of oil content in palm fruit | EMD-ANN | [83] |
Basar et al. | Honey | FTIR | Adulterant (beet sugar and corn syrup) | Determination of honey adulteration | Genetic-algorithm-based inverse least squares (GILS) and (PLS) | [84] |
Qin et al. | Wheat flour | Raman chemical imaging | Benzoyl peroxide | Detection of benzoyle peroxide | PLS | [85] |
Yuan et al. | Duck meat | Surface-enhanced Raman | Testosterone propionate and nandrolone residues | Quantitation of residues in the duck meat | LS-SVR | [86] |
Nakajima et al. | Banana | Raman | Starch | Quantification of starch in banana | PLS | [87] |
Hara et al. | Tomatoes | Raman | Carotenoids | Determination of carotenoids in tomatoes | PLS | [88] |
De Olieveira mendes et al. | Raw milk | Raman | Whey | Quantitation of whey in raw milk | PLS | [89] |
Czaja et al. | Youghurts | Raman | Fat, lactose, and protein | Determination of nutritional parameters of yoghurts | PCA and PLS | [90] |
Tian et al. | Milk | Raman | Adulterants (maltodextrin, sodium carbonate, and whey) | Prediction of adulterants in raw milk | PLS | [91] |
Berzins et al. | Breast milk | Raman and FTIR | Macronutrients (protein, fat, and carbohydrate) | Determination of macronutrients in the breast milk | PLS | [92] |
De sa oliveira et al. | Spreadable cheese | Raman | Starch | Quantitation of starch in adulterated spreadable cheese | PLS | [93] |
Liu et al. | Edible oils | Raman and FT-IR data fusion | Peroxide values and acid values | Determination of chemical quality indices of edible oils during thermal oxidation | PLS | [89] |
Puertas et al. | Egg yolk | Data fusion of FTIR and UV-Vis | Cholesterol | Prediction of cholesterol in egg yolk | PLS and PCR | [94] |
Wang et al. | Infant formula | Vis-NIR and Raman data fusion | - | Assessment of infant formula storage temperature and time | SVM | [95] |
Valinger et al. | Honey | UV-Vis and NIR data fusion | Sugar syrups | Detection of honey adulteration | PLS and ANN | [96] |
Wang et al. | Camelia oil | Excitation-emission matrix fluorescence | Vegetable oils | Quantitation of adulterant in camelia oil | N-PLS and PARAFAC | [97] |
Baretto et al. | Milk | Fluorescence | Melamine | Determination of melamine in milk | PARAFAC and UPLS | [98] |
Gu et al. | Rapessed oil in water | Fluorescence | Lipid | Quantitative assessment of lipid oxidation in a rapeseed oil-in-water | GA-SVR | [99] |
Tarhan | Extra virgin olive oil (EVOO) | FTIR, UV–Vis and fluorescence | Squalene | Quantification of squalene in extra virgin olive oils | PLS | [100] |
Wu et al. | Edible blend oil | UV-Vis | Adulterant (vegetable oil) | Quantification of vegetable oils in edible blend oil | Weighted multiscale SVR | [101] |
Zhang et al. | Edible oils | UV-Vis | Acid value | Impact of heating on edible oils | PLS and PCR | [102] |
Rios-Reina et al. | Wine and balsamic vinegar | UV-Vis | Grape-must caramel (E-150d caramel) | Quantitation of grape-must caramel in wine and balsamic vinegars | PLS | [103] |
Cavdaroglu et al. | Vinegar | UV-Vis and MIR | Phenolic components, p-coumaric and syringic acids, citric and acetic acids, | Predict quality and chemical parameters of vinegar | PLS and OPLS | [104] |
Santos et al. | Milk | NMR | Adulterants (Whey, urea, hydrogen peroxide, synthetic urine and synthetic milk) | Quantification of milk adulteration | PLS | [105] |
Liu et al. | Cream | NMR | Artificial bright blue pigment | Detecting additives content in cream | PLS and MLR | [106] |
Sun et al. | Carrot, banana and pleurotus eryngii | NMR | Moisture | Monitor water states of typical fruits and vegetables during microwave vacuum drying | PLS, SVM and BP-ANN | [107] |
Hajjar et al. | Hen egg | NMR | Fatty acids | Quantification of fatty acids in hen eggs | PLS | [108] |
Galvan et al. | Edible oils | NMR | Fatty acids and iodine value | Analysis of edible oils | PLS and SVR | [109] |
Haddad et al. | Cheese | NMR | Fatty acids | Quantitation of individual fatty acids | PLS | [110] |
Jiang et al. | Rice | Surface-enhanced Raman scattering | Chlorpyrifos residue | Quantify chlorpyrifos residues in rice samples | GA-PLS, UVE-PLS, VCPA-PLS and CARS-PLS | [111] |
Richardson et al. | Coconut water | Raman | Sugars | Detection of adulteration in Coconut water | PLS | [112] |
Qualitative Analysis | ||||||
---|---|---|---|---|---|---|
Authors | Food Materials | Fingerprinting Technique | Analysed Components | Objectives | Chemometric Analysis | Ref. |
Galvan et al. | Tomato and sweet paper | EDXRF | - | Discrimination of tomato or sweet pepper samples effectively according to the agronomic production mode or geographical origin | PLS-DA | [113] |
Scatigno et al. | EVOO | EDXRF | Ni, Fe and Ti | Discrimination of EVOO | PCA | [114] |
Panebianco et al. | Tomato fruit | XRF | - | Establish an assessment procedure for the origin and quality assessment of Sicilian tomato fruits | PCA | [115] |
Allegretta | Beans | TXRF | - | Clustering of the seeds of beans according to their geographical origin | PCA and PLS-DA | [116] |
Vitali et al. | Croatian wines | TXRF | Contents of metals (K, Ca, Fe, Cu, Zn, Mn, Sr, Rb, Ba, Pb, Ni, Cr and V) | Classification of origin and type of Croatian wines | PCA and cluster analysis | [117] |
Li et al. | Peaches | Short-wave near-infrared (SW-NIR) and long-wave near-infrared (LW-NIR) hyperspectral imaging | - | Detection bruises in peaches | PCA | [118] |
He et al. | Flour | Vis-NIR HSI | Mites Tyrophagus putrescentiae and Cheyletus eruditus | Detection of mites Tyrophagus putrescentiae and Cheyletus eruditus in flour | Random forest and PCA-ANN | [119] |
Al-Sarayreh et al. | Meat | NIR-Vis HSI | - | Deep learning approach for red-meat classification by combining the spectral and spatial features of HSI data | CNN | [120] |
Pan et al. | Peaches | Hyperspectral reflectance imaging | - | Detection of cold injury in peaches | ANN | [121] |
Sun et al. | Peaches | Hyperspectral reflectance imaging | - | Characterization of chilling injury in peaches | PLS-DA, ANN and SVM | [122] |
Babellahi et al. | Green bell peppers | HSI | - | Detection of chilling injury in green bell peppers | PLS-DA | [123] |
Cen et al. | Cucumber fruit | HSI | - | Detection of chilling injury in cucumber fruit | SVM and KNN | [124] |
Carreiro Soares et al. | Cotton seeds | HSI | - | Discrimination of different varieties of seeds | PLS-DA | [125] |
Fan et al. | Blueberry | HSI | - | Detection of blueberry internal bruising over time | LS-SVM | [126] |
Sun et al. | Tomatoes | HSI | - | Characterization of bruised tomatoes | PLS-DA | [127] |
Susic et al. | Tomatoes | HSI | - | Discrimination between abiotic and biotic drought stress in tomatoes | PLS-DA PLS-SVM | [128] |
Zhao et al. | Wheat seeds | HSI | - | Characterization the purity of wheat seeds | CNN | [129] |
Zhao et al. | Maize seeds | HSI | - | Classification of maize seeds | Neural network | [130] |
Tsouvaltzis et al. | Eggplant fruit | FT-NIR and NIR-HSI | - | Evaluating the temperature effect on chilling injury of eggplant | PLS-DA, SVM and KNN | [131] |
Liang et al. | Potatoes | FT-NIR | Sucrose, glucose fructose | Detection of zebra chip disease (ZC) in potatoes | Canonical discriminant analysis | [71] |
Huang et al. | Honey | NIR and FTIR | Syrup adulterant | Distinguish the normal honey from adulterant one | SVM | [132] |
De Girolamo | Wheat | FT-MIR and FT-NIR | Ochratoxin A | Assessment of the adulteration of wheat by ochratoxin | PLS-DA and PC-LDA | [133] |
Chen et al. | Eggs | FT-NIR | - | Verifying the authenticity of native eggs | Data-driven-based class-modeling (DDCM), PCA | [134] |
Liu et al. | Panax notoginseng | FT-NIR | Adulterants (rhizoma curcuma, Curcuma longa and rhizoma alpiniae offcinarum) | Identification of panax notoginseng with its adulterants | PLS-DA and SVM | [79] |
Marquetti et al. | Arabica Coffee | FT-NIR | - | Evaluation of geographic and genotypic origin of arabica coffee | PLS-DA | [135] |
Mazivila et al. | Milk | FT-NIR | Melamine and sucrose | Discrimination of pure milk from the adulterant one | DD-SIMCA | [82] |
Miao et al. | Rice | FT-NIR | - | Classification of rice based on storage time | PCA, KNN and PLS-DA | [136] |
Rovira et al. | Cashew nuts | FT-NIR | Adulterants (peanuts) | Characterization of the adulterant cashew nuts by other nuts | SIMCA | [137] |
Visconti et al. | Cheese | FT-NIR | Cellulose and silicon dioxide | Determination of additives in the grated hard cheese | PLS-DA | [138] |
Xie et al. | Waxy rice | FT-NIR | Amylose and amylopectin | Determination of quality parameters by FT-NIR | Modified PLS (MPLS) | [139] |
Ziegler et al. | Kernels and flours | FT-NIR | - | Differentiation of flours and kernels of costly ancient species from less expensive bread wheat | PLS-DA | [140] |
Joshi et al. | Eggs | FTIR | Constituents of eggs (yolk and albumen) | Detection of fabricated eggs | PLS-DA and SVM | [81] |
Rozali et al. | Crude palm oil | FTIR | - | Authentication of different geographical and temporal origins of crude palm oils | OPLS-DA | [141] |
Li et al. | Hazelnuts | FT-Raman and NIR data fusion | Almonds adulterant | Discriminate the unadulterated hazelnuts from the adulterated hazelnuts with almonds | SIMCA | [142] |
Yuan et al. | Duck meat | Surface-enhanced Raman | Testosterone propionate and nandrolone residues | Classification of duck meat based on residues | Particle swarm optimization–support vector classification (PSO-SVC) | [86] |
Unuvar et al. | Durum wheat flour | Raman spectroscopy, FT-NIR, synchronous fluorescence spectroscopy (SFS), (ATR-FTIR) | - | Distinguishing common and durum wheat flour samples with different genotypes | PCA, PLS-DA | [143] |
Amjad et al. | Milk | Raman | Proteins, milk fats, lactose | Differentiation between milk samples of different species | Random forest classifier (RF), PCA | [144] |
De Oliveira et al. | Enriched eggs | Raman | Omega-3 fatty acids | Discrimination between conventional and omega-3-fatty acids enriched eggs | PLS-DA | [145] |
De sa oliveira et al. | Spreadable cheese | Raman | Starch | Classify spreadable cheese as adulterated or without starch | PLS-DA | [93] |
Nieuwoudt et al. | Milk | Raman spectroscopy | Nitrogen-rich molecules and sucrose | Detecting adulteration of milk | PLS-DA | [146] |
Ning et al. | Duck meat | Raman | Sulfadimidine and Sulphapyridine | Classification of duck meat based on Sulfadimidine and Sulphapyridine | SVM and PCA | [87] |
Robert et al. | Meat | Raman | - | Discrimination between different species of meat (intact beef, venison, and lamb meat) | PLS-DA | [147] |
Tian et al. | Milk | Raman spectroscopy | Adulterants ofaltodextrin, sodium carbonate, and whey | Distinguishing raw milk from the adulterated one | PLS-DA | [91] |
Tian et al. | Rice | Raman spectroscopy | - | Distinguishing rice based on producing areas | PCA-KNN, SPA-KNN, PCA-LS-SVM and SPA-LS-SVM | [148] |
Wu et al. | Honey | Raman spectroscopy | Adulterants (fructose corn syrup, rice syrup, maltose syrup, blended syrup) | Characterization of adulterant honey | CNN | [149] |
Wang et al. | Infant formula | Vis-NIR and Raman data fusion | - | Assessment of infant formula storage temperature and time | SVM | [95] |
Yao et al. | Boletus mushrooms | Data fusion of FT-IR and UV | - | Discrimination of different geographical origins of Boletus mushrooms | PLS-DA and SVM | [150] |
Antonio et al. | Honey | Spectrofluorimetry | Adulterants (corn syrup, sugar cane molasses and polyfloral honey) | Detection of adulterations in a valuable Brazilian honey | Multilinear PLS-DA (NPLS-DA), unfolded PLS-DA (UPLS-DA), PARAFAC | [151] |
Fang et al. | Chinese lager beers | Excitation-emission matrix fluorescence | - | Characterization and classification of Chinese pale lager beers produced by different manufacturers | PARAFAC-KNN | [152] |
Jiménez-Carvelo et al. | Extra virgin olive oils | Fluorescence and NIR | Adulterant (vegetable oil) | Authenticate the geographic origin of Argentinean EVOO samples | NPLS–DA | [153] |
Meng et al. | Olive oil | Excitation-emission matrix fluorescence | Adulterant (soybean) | Detection of adulteration of olive oil with soybean oil | Multiway-PCA (MPCA), ANN, PLS-DA | [154] |
Yuan et al. | Edible vegetable oils | Infrared, NIR and fluorescence | - | Identification of different vegetable oils | MPCA, NPLS-DA | [155] |
Uncu et al. | Fresh olive oils | Mid-infrared, UV–Vis and fluorescence | Adulterant (old olive oil) | Detection of adulteration of olive oil | OPLS-DA | [156] |
Gonçalves et al. | Monovarietal Extra Virgin Olive Oils | UV-Vis | Phenolic compounds | Monitor the behavior of autoxidative processes through the storage time in two packaging systems of different EVOO | MCR-ALS | [157] |
Suhandy et al. | Peaberry coffee | UV-Vis | - | Classify coffee samples as either pure peaberry or pure normal coffee | SIMCA and PLS-DA | [158] |
Torrecilla | Vinegar | UV-Vis | - | Characterization of vinegars produced from six different raw materials | PLS-DA and ANN | [159] |
Cavdaroglu et al. | Vinegar | UV-vis and FTIR | Adulterant (spirit vinegar and acetic acid) | Discrimination of non-adulterated vinegar from the adulterated | ANN | [160] |
Kucharska-Ambrożej et al. | Mint | UV-Vis and FTIR | Distinguish between two species of mint (peppermint or spearmint) | PLS-DA and SVM | [161] | |
Botoran et al. | Fruits | NMR | Amino acid | Differentiation of the fruit samples in varietal origin | PCA and LDA | [162] |
Consonni et al. | Coffee | NMR | Fatty acids, β-(1-3)-d-galactopyranose, quinic acid and its cyclic ester) | Characterizing organic roasted coffee from the conventional roasted coffee | OPLS-DA | [163] |
De Moura Ribeiro et al. | Roasted coffee | NMR | Adulterants (corn, coffee husks, barley, and soybean) | Investigating the authenticity of the roasted coffee | PCA | [164] |
Da Silva et al. | Larger beer | NMR | Carbohydrates | Discriminate lager beer samples from two different classes, according to their style and information provided on the label | PCA, PLS-DA | [165] |
Gougeon et al. | Wines | NMR | - | Classifying wines of different geographical origins | OSC-PLS-DA | [166] |
Marseglia et al. | Cocoa beans | NMR | Amino acids, polyalcohols, organic acids, sugars, methylxanthines, lipids | Assess the geographical origin of cocoa beans | OSC-PCA, OPLS-DA | [167] |
Milani | Ground coffee | NMR | Adulterants | Authentication of roasted and ground coffee based on adulterants | PCA, SIMCA | [168] |
Rachineni et al. | Honey | NMR | Adulterants (brown rice syrup, corn syrup, and jaggery syrup) | Identifying type of sugar adulterants in honey | Deep learning-based neural network | [169] |
Santos et al. | Milk | NMR | Adulterants (Whey, urea, hydrogen peroxide, synthetic urine and synthetic milk) | Detection of adulterated milk | SIMCA, KNN | [105] |
Shi et al. | Camelia oils | NMR | Adulterants (cheap vegetable oils) | Detection of adulteration in camellia oils | PCA, OPLS-DA | [170] |
Zhang et al. | Edible oils | NMR | Fatty acids | Distinguishing plant origin of edible oils | PCA, OPLS-DA | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023, 12, 2753. https://doi.org/10.3390/foods12142753
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods. 2023; 12(14):2753. https://doi.org/10.3390/foods12142753
Chicago/Turabian StyleKharbach, Mourad, Mohammed Alaoui Mansouri, Mohammed Taabouz, and Huiwen Yu. 2023. "Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches" Foods 12, no. 14: 2753. https://doi.org/10.3390/foods12142753
APA StyleKharbach, M., Alaoui Mansouri, M., Taabouz, M., & Yu, H. (2023). Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods, 12(14), 2753. https://doi.org/10.3390/foods12142753