Formulation Study on Edible Film from Waste Grape and Red Cabbage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extraction Methods
2.3. The Characterization of Extracts
2.4. Film Preparation
2.5. Rheological Characterization
2.6. Scanning Electron Microscopy (SEM)
2.7. Color Measurements
3. Results
3.1. The Extraction of Total Phenols and Anthocyanins
3.2. Supercritical Extraction with Carbon Dioxide
3.3. The Rheological Characterization of the FFS
3.4. Film Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural Anthocyanins: Sources, Extraction, Characterization, and Suitability for Smart Packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent Advances in the Preparation, Physical and Functional Properties, and Applications of Anthocyanins-Based Active and Intelligent Packaging Films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Bring Some Colour to Your Package: Freshness Indicators Based on Anthocyanin Extracts. Trends Food Sci. Technol. 2021, 111, 495–505. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Nunes, A.; Borges, A.; Matias, A.; Bronze, M.; Oliveira, J. Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules 2022, 27, 368. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Mortas, M.; Farcaş, A.; Mihai, M.; Danciu, C.; Stanilă, A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery—A Review. Plants 2023, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Ghafoor, K.; Park, J.; Choi, Y.-H. Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Grape (Vitis labrusca B.) Peel by Using Response Surface Methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Yousefi, S.; Heydari, M.; Seyedfatehi, F.; Jafarzadeh, S.; Mohammadi, R.; Rouhi, M.; Garavand, F. Application of Red Cabbage Anthocyanins as PH-Sensitive Pigments in Smart Food Packaging and Sensors. Polymers 2022, 14, 1629. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Yao, Q.; Jin, Z.; Wang, Y.-C. Intelligent Films Based on Pectin, Sodium Alginate, Cellulose Nanocrystals, and Anthocyanins for Monitoring Food Freshness. Food Chem. 2023, 404, 134528. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an Intelligent PH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, X.; Qin, Y.-R.; Zhang, Y.-H.; Wang, X.-P.; Wang, J.-Y.; Ning, Z.-X.; Ruan, Q.-J.; Zhang, Y.-S. Preparation and Characterization of a Novel Colorimetric Indicator Film Based on Gelatin/Polyvinyl Alcohol Incorporating Mulberry Anthocyanin Extracts for Monitoring Fish Freshness. Food Res. Int. 2019, 126, 108604. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q. V Starch-Based Films: Major Factors Affecting Their Properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Menzel, C. Improvement of Starch Films for Food Packaging through a Three-Principle Approach: Antioxidants, Cross-Linking and Reinforcement. Carbohydr. Polym. 2020, 250, 116828. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Shah, M.A.; Siddiqui, M.W.; Dar, B.N.; Mir, S.A.; Ali, A. Recent Trends in Extraction Techniques of Anthocyanins from Plant Materials. J. Food Meas. Charact. 2020, 14, 3508–3519. [Google Scholar] [CrossRef]
- Revilla, E.; Ryan, J.-M.; Martín-Ortega, G. Comparison of Several Procedures Used for the Extraction of Anthocyanins from Red Grapes. J. Agric. Food Chem. 1998, 46, 4592–4597. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of Phenolic Compounds from Elder Berry and Different Grape Marc Varieties Using Organic Solvents and/or Supercritical Carbon Dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Baldino, N.; Carnevale, I.; Mileti, O.; Aiello, D.; Lupi, F.R.; Napoli, A.; Gabriele, D. Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Appl. Sci. 2022, 12, 11921. [Google Scholar] [CrossRef]
- Ribeiro Sanches, M.A.; Camelo-Silva, C.; da Silva Carvalho, C.; Rafael de Mello, J.; Barroso, N.G.; Lopes da Silva Barros, E.; Silva, P.P.; Pertuzatti, P.B. Active Packaging with Starch, Red Cabbage Extract and Sweet Whey: Characterization and Application in Meat. LWT 2021, 135, 110275. [Google Scholar] [CrossRef]
- Kupina, S.; Fields, C.; Roman, M.; Brunelle, S. Determination of Total Phenolic Content Using the Folin-C Assay: Single-Laboratory Validation, First Action 2017.13. J. AOAC Int. 2018, 101, 1466–1472. [Google Scholar] [CrossRef]
- De Paola, M.G.; Mammolenti, D.; Lupi, F.R.; De Santo, M.P.; Gabriele, D.; Calabrò, V. Formulation and Process Investigation of Glycerol/Starch Suspensions for Edible Films Production by Tape Casting. Chem. Pap. 2021, 76, 1525–1538. [Google Scholar] [CrossRef]
- Gabriele, D.; de Cindio, B.; D’Antona, P. A Weak Gel Model for Foods. Rheol. Acta 2001, 40, 120–127. [Google Scholar] [CrossRef]
- Velásquez Herrera, J.D.; Lucas Aguirre, J.C.; Quintero Castaño, V.D. Physical-Chemical Characteristics Determination of Potato (Solanum phureja Juz. & Bukasov) Starch. Acta Agron. 2017, 66, 323–330. [Google Scholar] [CrossRef]
- Wu, C.; Tian, J.; Li, S.; Wu, T.; Hu, Y.; Chen, S.; Sugawara, T.; Ye, X. Structural Properties of Films and Rheology of Film-Forming Solutions of Chitosan Gallate for Food Packaging. Carbohydr. Polym. 2016, 146, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Garofulić, I.E.; Bakić, M.T.; Ščetar, M.; Uzelac, V.D.; Galić, K. Development and Evaluation of a Novel Antioxidant and PH Indicator Film Based on Chitosan and Food Waste Sources of Antioxidants. Food Hydrocoll. 2018, 84, 238–246. [Google Scholar] [CrossRef]
- Li, X.; Qiu, C.; Ji, N.; Sun, C.; Xiong, L.; Sun, Q. Mechanical, Barrier and Morphological Properties of Starch Nanocrystals-Reinforced Pea Starch Films. Carbohydr. Polym. 2015, 121, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liu, Y.; Yong, H.; Liu, J.; Zhang, X.; Liu, J. Preparation and Characterization of Active and Intelligent Packaging Films Based on Cassava Starch and Anthocyanins from Lycium Ruthenicum Murr. Int. J. Biol. Macromol. 2019, 134, 80–90. [Google Scholar] [CrossRef]
- Mileti, O.; Baldino, N.; Carmona, J.A.; Lupi, F.R.; Muñoz, J.; Gabriele, D. Shear and Dilatational Rheological Properties of Vegetable Proteins at the Air/Water Interface. Food Hydrocoll. 2022, 126, 107472. [Google Scholar] [CrossRef]
- Peressini, D.; Bravin, B.; Lapasin, R.; Rizzotti, C.; Sensidoni, A. Starch–Methylcellulose Based Edible Films: Rheological Properties of Film-Forming Dispersions. J. Food Eng. 2003, 59, 25–32. [Google Scholar] [CrossRef]
- Cerruti, P.; Santagata, G.; Gomez d’Ayala, G.; Ambrogi, V.; Carfagna, C.; Malinconico, M.; Persico, P. Effect of a Natural Polyphenolic Extract on the Properties of a Biodegradable Starch-Based Polymer. Polym. Degrad. Stab. 2011, 96, 839–846. [Google Scholar] [CrossRef]
- Du, J.; Yao, F.; Zhang, M.; Khalifa, I.; Li, K.; Li, C. Effect of Persimmon Tannin on the Physicochemical Properties of Maize Starch with Different Amylose/Amylopectin Ratios. Int. J. Biol. Macromol. 2019, 132, 1193–1199. [Google Scholar] [CrossRef]
- Jamal, T.; Sapuan, S.; Abdan, K. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta arundinacea) Starch Biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Kan, J.; Liu, J. Active/Intelligent Packaging Films Developed by Immobilizing Anthocyanins from Purple Sweetpotato and Purple Cabbage in Locust Bean Gum, Chitosan and κ-Carrageenan-Based Matrices. Int. J. Biol. Macromol. 2022, 211, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yan, X.; Cui, Y.; Han, M.; Wang, Y.; Wang, J.; Zhang, R.; Wang, X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers 2022, 14, 1214. [Google Scholar] [CrossRef] [PubMed]
ID Sample | Glycerol (g) | Starch (g) | Water (mL) | Anthocyanin Solution (mL) |
---|---|---|---|---|
G0.5 | 1 | 10 | 189 | 0 |
G1 | 2 | 10 | 188 | 0 |
G1.5 | 3 | 10 | 187 | 0 |
G2.5 | 5 | 10 | 185 | 0 |
G1.5_50 | 3 | 10 | 93.5 | 93.5 |
G1.5_75 | 3 | 10 | 46.75 | 140.25 |
G1.5_100 | 3 | 10 | 0 | 187 |
ID Sample | A, Pa*s1/z | z, - | k, Pa*sn | n, - |
---|---|---|---|---|
G2.5 | 34.9 ± 0.8 | 3.8 ± 0.1 | 7.90 ± 0.10 | 0.28 ± 0.01 |
G1.5 | 38.7 ± 0.6 | 3.9 ± 0.3 | 9.90 ± 1.00 | 0.34 ± 0.02 |
G1 | 45.6 ± 4 | 3.3 ± 0.1 | 7.60 ± 0.70 | 0.28 ± 0.02 |
G0.5 | 46.0 ± 3.0 | 4.1 ± 0.2 | 11.00 ± 1.00 | 0.34 ± 0.03 |
G1.5_50 | 68.6 ± 0.3 | 5.3 ± 0.1 | 6.10 ± 0.10 | 0.35 ± 0.01 |
G1.5_75 | 73.0 ± 3.0 | 5.0 ± 0.2 | 6.60 ± 0.20 | 0.38 ± 0.01 |
G1.5_100 | - | - | 0.50 ± 0.01 | 0.49 ± 0.01 |
ID Sample | E, MPa | EAB%, - |
---|---|---|
G0.5 | 660 ± 40 | - |
G1 | 150 ± 30 | - |
G1.5 | 1.9 ± 0.3 | 154 ± 8 |
G2.5 | 1.1 ± 0.4 | 114 ± 1 |
G1.5_50 | 4.8 ± 0.9 | 146 ± 20 |
G1.5_75 | 7.3 ± 0.7 | 126 ± 21 |
G1.5_100 | - | - |
ID Sample | L*, - | a*, - | b*, - | ΔE, - | Thickness |
---|---|---|---|---|---|
G1.5 | 91.8 ± 0.1 | 3.24 ± 0.01 | −4.42 ± 0.01 | - | 0.07 ± 0.01 |
G1.5_50 | 79.5 ± 0.7 | 6.8 ± 0.1 | −7.4 ± 0.2 | 13.1 ± 0.8 | 0.06 ± 0.01 |
G1.5_75 | 75 ± 1 | 15.3 ± 0.8 | −10.0 ± 0.3 | 21 ± 1 | 0.13 ± 0.01 |
G1.5_100 | 69.0 ± 0.7 | 19.8 ± 0.5 | −10.4 ± 0.1 | 28.7 ± 0.9 | 0.16 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileti, O.; Baldino, N.; Filice, F.; Lupi, F.R.; Sinicropi, M.S.; Gabriele, D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023, 12, 2804. https://doi.org/10.3390/foods12142804
Mileti O, Baldino N, Filice F, Lupi FR, Sinicropi MS, Gabriele D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods. 2023; 12(14):2804. https://doi.org/10.3390/foods12142804
Chicago/Turabian StyleMileti, Olga, Noemi Baldino, Francesco Filice, Francesca R. Lupi, Maria Stefania Sinicropi, and Domenico Gabriele. 2023. "Formulation Study on Edible Film from Waste Grape and Red Cabbage" Foods 12, no. 14: 2804. https://doi.org/10.3390/foods12142804
APA StyleMileti, O., Baldino, N., Filice, F., Lupi, F. R., Sinicropi, M. S., & Gabriele, D. (2023). Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods, 12(14), 2804. https://doi.org/10.3390/foods12142804