Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes and FOS Standards
2.2. Sugarcane Syrup Preparation
2.3. Determination of Sugar Compositions
2.4. Enzyme Assays
2.5. Production of sc-FOS from Sugarcane Syrup Using Two Commercial Enzymes
2.6. Preparation of FOS SS Powder with Foam-Mat Drying
2.7. Characterization of SS, sc-FOS Syrup and the Syrup Powder
2.7.1. Color
2.7.2. Viscosity
2.7.3. Evaluation of Antioxidant Compounds
Total Phenolic Content (TPC) Determination
Radical-Scavenging-Activity-DPPH-Assay and ABTS Assay (EC50)
2.7.4. Caloric Value
3. Results and Discussion
3.1. Effect of Sucrose Concentration on sc-FOS Synthesis from Sugarcane Syrup
3.2. Effect of SS Cultivars and Enzyme Sources on sc-FOS Synthesis from Sugarcane Syrup
3.3. Characterization of Sugarcane and sc-FOS Syrup
3.4. Drying the Syrup Foam and Characteristic of FOS SS Powder
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crittenden, R.; Playne, M.J. Prebiotics. In Handbook of Probiotics and Prebiotics; Lee, Y.K., Salminen, S., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009; pp. 535–561. [Google Scholar] [CrossRef]
- Yoshikawa, J.; Amachi, S.; Shinoyama, H.; Fujii, T. Production of fructooligosaccharides by crude enzyme preparations of b-fructofuranosidase from Aureobasidium pullulans. FEMS Microbiol. Lett. 2008, 30, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Smaali, I.; Jazzar, S.; Soussi, A.; Muzard, M.; Aubry, N.; Marzouki, M.N. Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnol. Bioprocess Eng. 2012, 17, 385–392. [Google Scholar] [CrossRef]
- Vega-Paulino, R.J.; Zuniga-Hansen, M.E. Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J. Mol. Catal. B Enzym. 2012, 76, 44–51. [Google Scholar] [CrossRef]
- Hajar-Azhari, S.; Rahim, M.H.A.; Wan-Mohtar, W.A.A.Q.I.; Sarbini, S.R.; Saari, N. Novel fructooligosaccharide conversion from sugarcane syrup using a specialised enzymatic pH-stat bioreactor. Process Biochem. 2020, 95, 55–63. [Google Scholar] [CrossRef]
- Lorenzoni, A.S.; Aydos, L.F.; Klein, M.P.; Rodrigues, R.C.; Hertz, P.F. Fructooligosaccharides synthesis by highly stable immobilized-fructofuranosidase from Aspergillus aculeatus. Carbohydr. Polym. 2014, 103, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Veljković, M.B.; Modi, A.; Petrov, A.I.; Ćorović, M.M.; Milivojević, A.D.; Banjanac, K.M.; Simović, M.B.; Bezbradica, D.I. Enzymatic synthesis of fructo-oligosaccharides using Pectinex® Ultra SP-L: A study of experimental conditions. Food Feed. Res. 2021, 48, 201–211. [Google Scholar] [CrossRef]
- Csanádi, Z.; Sisak, C. Immobilization of Pectinex Ultra SP-L pectinase and its application to production of fructooligosaccharides. Acta Aliment. 2006, 35, 205–212. [Google Scholar] [CrossRef]
- Lorenzoni, A.S.; Aydos, L.F.; Klein, M.P.; Ayub, M.A.; Rodrigues, R.C.; Hertz, P.F. Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: Comparison between in fluidized and packed bed reactors. J. Mol. Catal. B Enzym. 2015, 111, 51–55. [Google Scholar] [CrossRef]
- Romano, N.; Sciammaro, L.; Mobili, P.; Puppo, M.C.; Gomez-Zavaglia, A. Flour from mature Prosopis nigra pods as suitable substrate for the synthesis of prebiotic fructo-oligosaccharides and stabilization of dehydrated Lactobacillus delbrueckii subsp. bulgaricus. Food Res. Int. 2019, 121, 561–567. [Google Scholar] [CrossRef]
- Yoshikawa, J.; Amachi, S.; Shinoyama, H.; Fujii, T. Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiol. Lett. 2006, 265, 159–163. [Google Scholar] [CrossRef]
- Magri, N.T.C.; Sartori, J.A.d.S.; Jara, J.L.P.; Eberlin, M.N.; Aguiar, C.L. Precipitation of nonsugars as a model of color reduction in sugarcane juice (Saccharum spp.) submitted to the hydrogen peroxide clarification of the crystal sugar process. J. Food Process. Preserv. 2019, 43, e14137. [Google Scholar] [CrossRef]
- Fard, A.E.; Dinani, S.T.; Moallemi-Oreh, A. An investigation on the effects of concentration and temperature on the time-independent rheological behavior of peach syrup. J. Food Meas. Charact. 2018, 12, 1303–1315. [Google Scholar] [CrossRef]
- Iqbal, E.; Abu Salim, K.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ.-Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Eggleston, G.; Boue, S.; Bett-Garber, K.; Verret, C.; Triplett, A.; Bechtel, P. Phenolic contents, antioxidant potential and associated colour in sweet sorghum syrups compared to other commercial syrup sweeteners. J. Sci. Food Agric. 2021, 101, 613–623. [Google Scholar] [CrossRef]
- Boue, S.M.; Shih, B.Y.; Burow, M.E.; Eggleston, G.; Lingle, S.; Pan, Y.-B.; Daigle, K.; Bhatnagar, D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agric. Food Chem. 2013, 61, 8412–8419. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, G.; Triplett, A.; Bett-Garber, K.; Boue, S.; Bechtel, P. Macronutrient and mineral contents in sweet sorghum syrups compared to other commercial syrup sweeteners. J. Agric. Food Res. 2022, 7, 100276. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Caloric value of inulin and oligofructose. J. Nutr. 1999, 129, 1436S–1437S. [Google Scholar] [CrossRef]
- Singh, J.; Rasane, P.; Kaur, S.; Kumar, V.; Dhawan, K.; Mahato, D.K.; Malhotra, S.; Sarma, C.; Kaur, D.; Bhattacharya, J. Nutritional Interventions and Considerations for the development of low calorie or sugar free foods. Curr. Diabetes Rev. 2020, 16, 301–312. [Google Scholar] [CrossRef]
- Hidaka, H.; Hirayama, M.; Sumi, N. A Fructooligosaccharide-producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 1988, 52, 1181–1187. [Google Scholar] [CrossRef]
- Hirayama, M.; Sumi, N.; Hidaka, H. Purification and properties of a fructooligosaccharides-producing b-fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 1989, 53, 667–673. [Google Scholar] [CrossRef]
- Contesini, F.J.; de Lima, E.A.; Mandelli, F.; Borin, G.P.; Alves, R.F.; Terrasan, C.R.F. Carbohydrate active enzymes applied in the production of functional oligosaccharides. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 30–34. [Google Scholar] [CrossRef]
- Flores-Maltos, D.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Teixeira, J.A.; Aguilar, C.N. Biotechnological production and application of fructo-oligosaccharides. Crit. Rev. Biotechnol. 2016, 36, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.; Palai, T.; Bhattacharya, P.K. Kinetics and model development for enzymatic synthesis of fructo-oligosaccharides using fructosyltransferase. Bioprocess Biosyst. Eng. 2015, 38, 2417–2426. [Google Scholar] [CrossRef] [PubMed]
- Vega, R.; Zuniga-Hansen, M. A new mechanism and kinetic model for the enzymatic synthesis of short-chain fruc-tooligosaccharides from sucrose. Biochem. Eng. J. 2014, 82, 158–165. [Google Scholar] [CrossRef]
- Ghazi, I.; Fernandez-Arrojo, L.; De Segura, A.G.; Alcalde, M.; Plou, F.J.; Ballesteros, A. Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides. J. Agric. Food Chem. 2006, 54, 2964–2968. [Google Scholar] [CrossRef]
- Hang, Y.D.; Woodams, E.E. Fructosyltransferase activity of commercial enzyme preparations used in fruit juice processing. Biotechnol. Lett. 1995, 17, 741–744. [Google Scholar] [CrossRef]
- Duan, K.J.; Chen, J.S.; Sheu, D.C. Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzym. Microb. Technol. 1994, 16, 334–339. [Google Scholar] [CrossRef]
- Alves, M.J.; Cavalcanti, V.; de Resende, M.M.; Cardoso, V.L.; Reis, M.H. Biodiesel dry purification with sugarcane bagasse. Ind. Crops Prod. 2016, 89, 119–127. [Google Scholar] [CrossRef]
- Ali, S.E.; El Gedaily, R.A.; Mocan, A.; Farag, M.A.; El-Seedi, H.R. Profiling metabolites and biological activities of sugarcane (Saccharum officinarum Linn.) juice and its product molasses via a multiplex metabolomics approach. Molecules 2019, 24, 934. [Google Scholar] [CrossRef]
- Kerdchan, K.; Srihanam, P. Fractionation of sugarcane extracts and determination of phenolic compounds and their antioxidant activity. Asian J. Chem. 2022, 34, 284–288. [Google Scholar] [CrossRef]
Sugarcane Variety | Sugar Content (mg/mL) | ||
---|---|---|---|
Fructose | Glucose | Sucrose | |
Khon Kaen 3 | 11.32 ± 0.20 b | 13.81 ± 0.24 b | 759.14 ± 0.36 |
Suphanburi 50 | 20.75 ± 0.42 a | 28.51 ± 0.18 a | 755.36 ± 0.53 |
Enzyme | Uf | Ut | Uh |
---|---|---|---|
Viscozyme L | 26.89 ± 1.509 | 20.62 ± 1.24 | 1.07 ± 0.19 |
Pectinex Ultra SP-L | 14.32 ± 0.61 | 12.59 ± 0.43 | nd |
Sample | °Brix | ICUMSA Color | Viscosity (mPa.S) | Total Phenolic (mgGAE/100 mL) | EC50 Values for DPPH Assay (mg/mL) | EC50 Values for ABTS Assay (mg/mL) | Caloric Value (Kcal/100 mL) |
---|---|---|---|---|---|---|---|
SS (Khon Kaen) | 68 ± 0.12 c | 6676.41 ± 84.41 e | 128.53 ± 0.55 f | 196.70 ± 5.93 d | 7.03 ± 0.25 c | 4.34 ± 0.01 d | 313.71 ± 0.03 b |
SS (Suphanburi) | 68 ± 0.11 c | 6505.85 ± 73.10 f | 131.93 ± 0.60 e | 179.08 ± 1.66 e | 6.30 ± 0.17 d | 4.07 ± 0.02 e | 321.85 ± 0.03 a |
FOS SS: 20% # | 70 ± 0.11 b | 7285.58 ± 42.20 d | 132.33 ± 0.55 e | 233.31 ± 2.92 c | 8.39 ± 0.05 b | 5.80 ± 0.06 c | 137.64 ± 2.92 e |
FOS SS: 40% # | 70 ± 0.06 b | 7602.34 ± 73.10 c | 135.83 ± 0.60 c | 237.64 ± 0.88 b | 8.66 ± 0.11 ab | 6.04 ± 0.10 b | 144.82 ± 2.20 e |
Commercial FOS syrup | 77 ± 0.06 a | 603.86 ± 41.84 g | 158.60 ± 0.46 a | 36.32 ± 0.76 f | 0.41 ± 0.01 e | 1.91 ± 0.05 f | 289.52 ± 7.25 c |
Sample | Moisture Content (%) | Sugar Composition (g/g, db) | Antioxidant Capacity | Total Phenolic (mg GAE/g db) | Calories (cal/g db) | ||||
---|---|---|---|---|---|---|---|---|---|
Sucrose (GF) | GF2 | GF3 | GF4 | DPPH Assay (mg eq Trolox/g db) | ABTS Assay (mg eq Trolox/ g db) | ||||
SS | 2.00 ± 0.19 b | 0.80 ± 0.00 | nd | nd | nd | 3.39 ± 0.22 a | 6.45 ± 0.22 a | 1.76 ± 0.04 a | 3.40 ± 0.00 b |
FOS SS | 2.24 ± 0.39 b | 0.11 ± 0.00 | 0.37 ± 0.00 | 0.11 ± 0.00 | Trace | 3.36 ± 0.12 a | 6.33 ± 0.17 a | 1.77 ± 0.03 a | 2.21 ± 0.01 c |
Sucrose | 3.58 ± 0.25 a | 0.87 ± 0.00 | nd | nd | nd | 1.86 ± 0.10 b | 1.85 ± 0.18 b | 0.25 ± 0.02 b | 3.46 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamchonemenukool, S.; Buasum, W.; Weerawatanakorn, M.; Thongsook, T. Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder. Foods 2023, 12, 2895. https://doi.org/10.3390/foods12152895
Kamchonemenukool S, Buasum W, Weerawatanakorn M, Thongsook T. Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder. Foods. 2023; 12(15):2895. https://doi.org/10.3390/foods12152895
Chicago/Turabian StyleKamchonemenukool, Sudthida, Warathep Buasum, Monthana Weerawatanakorn, and Tipawan Thongsook. 2023. "Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder" Foods 12, no. 15: 2895. https://doi.org/10.3390/foods12152895
APA StyleKamchonemenukool, S., Buasum, W., Weerawatanakorn, M., & Thongsook, T. (2023). Short-Chain Fructooligosaccharide Synthesis from Sugarcane Syrup with Commercial Enzyme Preparations and Some Physical and Antioxidation Properties of the Syrup and Syrup Powder. Foods, 12(15), 2895. https://doi.org/10.3390/foods12152895