Antidiabetic, Antioxidative and Antihyperlipidemic Effects of Strawberry Fruit Extract in Alloxan-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Strawberry Sampling and Extract Preparation
2.3. Animal’s Procurement, Housing and Handling
2.4. Experimental Design
2.5. Monitoring Parameter
2.6. Blood Chemistry Analysis
2.7. Antioxidant Parameters
2.8. Fasting Serum Glucose
2.9. Histopathology Study
2.10. Statistical Analysis
3. Results
3.1. Effect of Strawberry Extract on Body Weight, Serum Glucose and Insulin Level
3.2. Effect of Strawberry Extract on Liver Function
3.3. Effect of Strawberry Extract on Antioxidant Parameters
3.4. Effect of Strawberry Extract on Renal Functions
3.5. Effect of Strawberry Extract on Plasma Lipid Profile of Rats
3.6. Effect of Strawberry Extract on the Pancreas of Rats through Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, R.; Practice, C. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Deayu, P.M.; Wiboworini, B.; Dirgahayu, P. The effect of strawberry on type 2 diabetes mellitus. Int. J. Food Sci. Nutr. 2020, 5, 1–6. [Google Scholar] [CrossRef]
- Chatham, L.A.; Howard, J.E.; Juvik, J.A. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chem. 2018, 310, 125734. [Google Scholar] [CrossRef] [PubMed]
- Ganhão, R.; Pinheiro, J.; Tino, C.; Faria, H.; Gil, M.M. Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”,“Endurance”, and “Portola”) from Western Region of Portugal. Foods 2019, 8, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moazen, S.; Amani, R.; Rad, A.H.; Shahbazian, H.; Ahmadi, K.; Jalali, M.N. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: A randomized double-blind controlled trial. Ann. Nutr. Metab. 2013, 63, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Boubaker, J.; Toumia, B.I.; Sassi, A.; Bzouich-Mokded, I.; Ghoul, M.S.; Sioud, F.; Chekir, G.L. Antitumoral potency by immunomodulation of chloroform extract from leaves of Nitraria retusa, Tunisian medicinal plant, via its major compounds β-sitosterol and palmitic acid in BALB/c mice bearing induced tumor. Nutr. Cancer 2018, 70, 650–662. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Juśkiewicz, J.; Jurgonski, A.; Kołodziejczyk, K.; Kosmala, M.; Milala, J.; Zduńczyk, Z.; Fotschki, B.; Zary-Sikorska, N.S. Blood glucose lowering efficacy of strawberry extracts rich in ellagitannins with different degree of polymerization in rats. Pol. J. Food Nutr. Sci. 2016, 66, 109–117. [Google Scholar] [CrossRef]
- Ahmed, D.; Kumar, V.; Verma, A.; Shukla, G.S.; Sharma, S. Antidiabetic, antioxidant, antihyperlipidemic effect of extract of Euryale ferox salisb. with enhanced histopathology of pancreas, liver and kidney in streptozotocin induced diabetic rats. Springerplus 2015, 4, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Steel, R. Analysis of variance I: The one-way classification. In Principles and Procedures of Statistics a Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997; pp. 139–203. [Google Scholar]
- Mima, A. Diabetic nephropathy: Protective factors and a new therapeutic paradigm. J. Diabetes Complicat. 2013, 27, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Nazih, E.H.; Ouguerram, K.; Rabbani, I.; Zaneb, H.; Rehman, H.; Masood, I.; Huvelin, J.; Yousaf, M.; Tahir, A.; et al. The effects of Panax Ginseng root extract on carbohydrate and lipid disturbances associated with alloxan-induced diabetic rats. J. Anim. Plant Sci. 2016, 26, 1218–1225. [Google Scholar]
- Abdulazeez, S.S.; Ponnusamy, P. Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats. Pak. J. Pharm. Sci. 2016, 29, 255–261. [Google Scholar]
- Yuliwati, N.; Nugroho, R.F. The Potential of Strawberry, Rome Beauty Apple, and New Combination on Fasting Blood as Supporting Diet Therapy in Patients with Type II Diabetes Mellitus. Glob. Health Commun. 2021, 9, 69–75. [Google Scholar] [CrossRef]
- Mandave, P.; Rani, S.; Kuvalekar, A.; Ranjekar, P. Antiglycation, Antioxidant and Antidiabetic Activity of Mature Strawberry (Fragaria× Ananassa) Fruits. Int. J. Appl. Biol. Pharm. 2013, 4, 168–177. [Google Scholar]
- Zaefarian, F.; Abdollahi, R.; Cowieson, A.; Ravindran, V. Avian liver: The forgotten organ. Animals 2019, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.S.; Na, K.Y.; Chae, W.; Kim, Y.S.; Kim, S.; Chin, H.J. High serum bilirubin is associated with the reduced risk of diabetes mellitus and diabetic nephropathy. Tohoku J. Exp. Med. 2010, 221, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.; Zhang, Z.; Miao, Y.; Xu, Y.; Zhu, J.; Wan, D.; Syndrome, M. Physiological serum total bilirubin concentrations were inversely associated with diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: A cross-sectional study. Diabetol. Metab. Syndr. 2019, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aju, B.; Rajalakshmi, R.; Mini, S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon 2019, 5, e02935. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Rehman, M.U.; Amin, I.; Ahmad, S.B.; Farooq, A.; Muzamil, S.; Hussain, I.; Masoodi, M.; Fatima, B. Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: Probable role of NF-kB activation. Saudi Pharm. J. 2018, 26, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
Groups | Body Weight | Serum Glucose | ||
---|---|---|---|---|
Baseline | 28th Day | Baseline | 28th Day | |
G0 | 155.04 B ± 7.44 | 205.89 aA ± 7.56 | 87.23 a ± 3.06 | 88.3 e ± 4.50 |
G1 | 158.42 A ± 6.53 | 137.51 efB ± 4.37 | 409.65 bB ± 18.87 | 474.85 aA ± 20.01 |
G2 | 154.03 A ± 7.54 | 142.8 deB ± 2.56 | 413.25 bA ± 17.35 | 369.21 bB ± 17.02 |
G3 | 157.01 ± 7.23 | 148.84 cd ± 4.56 | 392.53 bA ± 20.26 | 197.48 dB ± 13.52 |
G4 | 156.04 ± 7.42 | 147.7 b ± 3.15 | 402.41 bA ± 19.51 | 231.41 cdB ± 9.22 |
G5 | 155.04 A ± 7.34 | 138.43 fB ± 3.61 | 397.34 bA ± 16.03 | 269.97 cB ± 14.53 |
Liver Function Test (LFT) Parameters (mg/dL) | Control Groups | Diabetic Groups | ||||
---|---|---|---|---|---|---|
G0 | G1 | G2 | G3 | G4 | G5 | |
Bilirubin Total | 0.24 ± 0.02 a | 0.16 ± 0.03 d | 0.18 ± 0.01 b | 0.20 ± 0.04 bc | 0.19 ± 0.02 bc | 0.19 ± 0.06 bc |
A.L.T (S.G.P.T) | 43.31 ± 1.23 c | 56.44 ± 1.04 a | 50.32 ± 0.99 b | 45.96 ± 0.75 c | 46.11 ± 0.76 c | 51.45 ± 1.19 b |
A.S.T (S.G.O.T) | 74.50 ± 1.98 d | 219.71 ± 0.78 a | 212.50 ± 1.20 b | 199.47 ± 1.90 c | 199.47 ± 1.90 c | 214.22 ± 0.99 b |
Alkaline Phosphatase | 152.00 ± 7.81 e | 347.33 ± 4.51 a | 186.67 ± 2.08 b | 164.54 ± 1.94 d | 164.53 ± 2.04 d | 246.00 ± 4.36 c |
Protein Total * | 6.51 ± 0.01 a | 6.41 ± 0.01 c | 6.45 ± 0.03 b | 6.52 ± 0.02 a | 6.52 ± 0.01 a | 6.45 ± 0.01 b |
Albumin * | 3.42 ± 0.02 a | 3.00 ± 0.02 c | 3.18 ± 0.02 b | 3.41 ± 0.01 a | 3.43 ± 0.02 b | 3.19 ± 0.05 b |
Globulins * | 1.28 ± 0.77 c | 1.23 ± 0.25 c | 1.31 ± 0.56 b | 1.32 ± 0.58 b | 1.42 ± 0.29 a | 1.25 ± 0.13 c |
A/G Ratio | 2.67 ± 0.01 a | 2.44 ± 0.13 c | 2.42 ± 0.31 c | 2.58 ± 0.04 b | 2.41 ± 0.03 c | 2.55 ± 0.07 b |
Parameters (U/mL) | Groups | |||||
---|---|---|---|---|---|---|
Control | Diabetic | |||||
G0 | G1 | G2 | G3 | G4 | G5 | |
Glutathione Peroxidase (GPx) | 2.83 ± 0.21 a | 0.82 ± 0.21 e | 0.95 ± 0.01 c | 1.54 ± 0.21 b | 1.72 ± 0.34 b | 0.87 ± 0.36 d |
Superoxide dismutase (SOD) | 7.53 ± 0.31 a | 2.54 ± 0.26 e | 4.13 ± 0.18 c | 4.74 ± 0.23 c | 5.49 ± 0.32 b | 2.72 ± 0.41 d |
Parameters (mg/dL) | Control | Diabetic Groups | ||||
---|---|---|---|---|---|---|
G0 | G1 | G2 | G3 | G4 | G5 | |
Serum Total cholesterol | 71.00 ± 1.00 bc | 75.21 ± 1.02 a | 71.34 ± 1.48 bc | 69.45 ± 0.98 c | 69.24 ± 1.01 c | 72.25 ± 1.430 b |
Serum Triglycerides | 103.33 ± 1.15 e | 135.33 ± 1.53 a | 121.33 ± 1.53 c | 115.33 ± 1.53 d | 116.33 ± 1.53 d | 126.67 ± 2.08 b |
Serum High-density lipoprotein cholesterol | 24.24 ± 1.30 a | 15.21 ± 1.09 b | 17.23 ± 1.02 b | 23.13 ± 1.73 a | 23.67 ± 1.15 a | 18.03 ± 1.05 b |
Serum (Low-density lipoprotein cholesterol) | 14.41 ± 1.2 c | 21.67 ± 0.54 a | 18.22 ± 1.42 b | 13.56 ± 1.41 c | 13.54 ± 1.32 c | 17.02 ± 1.65 b |
Serum (Non-high-density lipoprotein cholesterol) | 46.45 ± 1.43 b | 51.63 ± 1.21 a | 51.24 ± 1.52 a | 43.42 ± 1.28 b | 43.36 ± 1.53 b | 51.33 ± 1.53 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallhi, I.Y.; Sohaib, M.; Khan, A.U.; Rabbani, I. Antidiabetic, Antioxidative and Antihyperlipidemic Effects of Strawberry Fruit Extract in Alloxan-Induced Diabetic Rats. Foods 2023, 12, 2911. https://doi.org/10.3390/foods12152911
Mallhi IY, Sohaib M, Khan AU, Rabbani I. Antidiabetic, Antioxidative and Antihyperlipidemic Effects of Strawberry Fruit Extract in Alloxan-Induced Diabetic Rats. Foods. 2023; 12(15):2911. https://doi.org/10.3390/foods12152911
Chicago/Turabian StyleMallhi, Iftikhar Younis, Muhammad Sohaib, Azmat Ullah Khan, and Imtiaz Rabbani. 2023. "Antidiabetic, Antioxidative and Antihyperlipidemic Effects of Strawberry Fruit Extract in Alloxan-Induced Diabetic Rats" Foods 12, no. 15: 2911. https://doi.org/10.3390/foods12152911