The Effect of Imidacloprid on the Volatile Organic Compound Profile of Strawberries: New Insights from Flavoromics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Treatment
2.2. GC×GC-TOFMS Analysis
2.3. Qualitative Analysis and Quantitation Assurance
2.4. Sensory Evaluation and Statistical Analysis
3. Results and Discussion
3.1. GC×GC–TOFMS Topographic Plots of Strawberries under Different Treatments
3.2. Identification of Volatile Components in Strawberries under Different Treatments
3.3. Profile of the Volatile Components in Strawberries under Different Treatments
3.4. Determination of Key Volatile Compounds Accounting for the Aroma Characteristics of Strawberries in the Non-IMI Treatment and IMI Treatment Groups
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.; Quiles, J.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- FAO. Gross Production Value (Current Thousand US$)—Strawberries (1961–2020); Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. Available online: https://www.fao.org/faostat/en/#data/QV/visualize (accessed on 20 July 2023).
- Melovic, B.; Ćirović, D.; Backović, T.; Dudic, B.a.Z.; Gubiniova, K. Attracting Green Consumers as a Basis for Creating Sustainable Marketing Strategy on the Organic Market—Relevance for Sustainable Agriculture Business Development. Foods 2020, 9, 1552. [Google Scholar] [CrossRef]
- Fotiric Aksic, M.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants 2019, 4, 205. [Google Scholar] [CrossRef] [Green Version]
- Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Vahčić, N.; Babojelić, M.S.; Levaj, B. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chem. 2015, 181, 94–100. [Google Scholar] [CrossRef]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.-E. Antioxidant Levels and Inhibition of Cancer Cell Proliferation in Vitro by Extracts from Organically and Conventionally Cultivated Strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Ronningen, I.; Miller, M.; Xia, Y.; Peterson, D.G. Identification and Validation of Sensory-Active Compounds from Data-Driven Research: A Flavoromics Approach. J. Agric. Food Chem. 2018, 66, 2473–2479. [Google Scholar] [CrossRef]
- Ulrich, D.; Kecke, S.; Olbricht, K. What Do We Know about the Chemistry of Strawberry Aroma? J. Agric. Food Chem. 2018, 66, 3291–3301. [Google Scholar] [CrossRef]
- Cannon, R.; Agyemang, D.; Curto, N.; Yusuf, A.; Chen, M.; Janczuk, A. In-depth analysis of Ciflorette strawberries (Fragaria × ananassa ‘Ciflorette’) by multidimensional gas chromatography and gas chromatography-olfactometry: In-depth analysis of Ciflorette strawberries. Flavour Fragr. J. 2015, 30, 302–319. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Z.; Zhao, C.; Kong, H.; Lu, X.; Xu, G. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and multivariate data analysis. J. Chromatogr. A 2013, 1313, 245–252. [Google Scholar] [CrossRef]
- Ao, X.; Mu, Y.; Li, L.; Liu, D.; Lv, Z. Roasting intervention for the volatile composition of three varieties of nuts originating from Torreya yunnanensis. J. Food Biochem. 2022, 46, e14044. [Google Scholar] [CrossRef]
- Reis, L.; Forney, C.; Jordan, M.; Pennell, K.; Fillmore, S.A.E.; Orane Schemberger, M.; Ayub, R. Metabolic Profile of Strawberry Fruit Ripened on the Plant Following Treatment With an Ethylene Elicitor or Inhibitor. Front. Plant Sci. 2020, 11, 995. [Google Scholar] [CrossRef]
- Yue, N. Residue of Imidacloprid in Strawberries and its Effect on Quality. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar] [CrossRef]
- JMPR. Pesticide Residues in Food 2008 (Evaluations—PART 1). 2009. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation08/Imidacloprid.pdf (accessed on 20 July 2023).
- Shahid, M.; Khan, M.S.; Ahmed, B.; Syed, A.; Bahkali, A.H. Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation. Chemosphere 2021, 262, 128388. [Google Scholar] [CrossRef]
- Liu, N.; Li, J.; Lv, J.; Yu, J.; Xie, J.; Wu, Y.; Tang, Z. Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification. Ecotoxicol. Environ. Saf. 2021, 217, 112248. [Google Scholar] [CrossRef]
- Touzout, N.; Mehallah, H.; Moralent, R.; Moulay, M.; Nemmiche, S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). Ecotoxicology 2021, 30, 1126–1137. [Google Scholar] [CrossRef]
- Arbid, Y.; Sleiman, M.; Richard, C. Photochemical interactions between pesticides and plant volatiles. Sci. Total Environ. 2022, 807, 150716. [Google Scholar] [CrossRef] [PubMed]
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs. Registered Data-Imidacloprid 10% China Pesticide Information Network. 2023. Available online: http://www.chinapesticide.org.cn/zgnyxxw/eng/dataCenter?hash=reg-info (accessed on 20 July 2023).
- Drake, M.A. Sensory Evaluation. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 572–576. [Google Scholar]
- Ikegaya, A.; Ohba, S.; Toyoizumi, T.; Arai, E. Quality Evaluation of Strawberries Grown in Various Regions by Singaporeans and Japanese. Int. J. Fruit Sci. 2021, 21, 883–895. [Google Scholar] [CrossRef]
- Yan, J.-w.; Ban, Z.-j.; Lu, H.-y.; Li, D.; Poverenov, E.; Luo, Z.-s.; Li, L. The aroma volatile repertoire in strawberry fruit: A review. J. Sci. Food Agric. 2018, 98, 4395–4402. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, J.; Wang, F.; Wang, S.; Feng, H.; Xie, X.; Hao, F.; Zhang, L.; Fang, C. Volatile constituents and ellagic acid formation in strawberry fruits of selected cultivars. Food Res. Int. 2020, 138, 109767. [Google Scholar] [CrossRef]
- Parra-Palma, C.; Úbeda, C.; Gil, M.; Ramos, P.; Castro, R.I.; Morales-Quintana, L. Comparative study of the volatile organic compounds of four strawberry cultivars and it relation to alcohol acyltransferase enzymatic activity. Sci. Hortic. 2019, 251, 65–72. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, W.; Ji, M.-l.; Yang, C.; Li, L.; Gao, D.-s.; Fu, X.-l. Effects of molybdenum on nutrition, quality, and flavour compounds of strawberry (Fragaria × ananassa Duch. cv. Akihime) fruit. J. Integr. Agric. 2017, 16, 1502–1512. [Google Scholar] [CrossRef]
- Scott, G.; Williams, C.; Wallace, R.W.; Du, X. Exploring Plant Performance, Fruit Physicochemical Characteristics, Volatile Profiles, and Sensory Properties of Day-Neutral and Short-Day Strawberry Cultivars Grown in Texas. J. Agric. Food Chem. 2021, 69, 13299–13314. [Google Scholar] [CrossRef] [PubMed]
- Myung, K.; Hamilton-Kemp, T.R.; Archbold, D.D. Biosynthesis of trans-2-Hexenal in Response to Wounding in Strawberry Fruit. J. Agric. Food Chem. 2006, 54, 1442–1448. [Google Scholar] [CrossRef]
- Hamilton-Kemp, T.R.; Archbold, D.D.; Collins, R.W.; Yu, K. Emission patterns of wound volatile compounds following injury of ripe strawberry fruit. J. Sci. Food Agric. 2003, 83, 283–288. [Google Scholar] [CrossRef]
- Sharma, A.; Yuan, H.; Kumar, V.; Ramakrishnan, M.; Kohli, S.K.; Kaur, R.; Thukral, A.K.; Bhardwaj, R.; Zheng, B. Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol. Environ. Saf. 2019, 179, 50–61. [Google Scholar] [CrossRef]
- Zhou, Q.; Cheng, X.; Wang, S.; Liu, S.; Chaoling, W. Effects of Chemical Insecticide Imidacloprid on the Release of C6 Green Leaf Volatiles in Tea Plants (Camellia sinensis). Sci. Rep. 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Jan, S.; Singh, B.; Bhardwaj, R.; Kapoor, D.; Kour, J.; Singh, R.; Alam, P.; Noureldeen, A.; Darwish, H. Application of melatonin and PGPR alleviates thiamethoxam induced toxicity by regulating the TCA cycle in Brassica juncea L. Saudi J. Biol. Sci. 2022, 29, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Forney, C.; Kalt, W.; Jordan, M. The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage. HortScience 2000, 35, 1022–1025. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ji, M.-L.; Chen, M.; Sun, M.-y.; Fu, X.-l.; Li, L.; Gao, D.-S.; Zhu, C.-Y. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food Sci. Nutr. 2016, 4, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yan, R.; Chen, Q.; Fu, M. Analysis of flavor and taste attributes differences treated by chemical preservatives: A case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. J. Food Sci. Technol 2020, 57, 4371–4382. [Google Scholar] [CrossRef]
- Maoz, I.; Rikanati, R.D.; Schlesinger, D.; Bar, E.; Gonda, I.; Levin, E.; Kaplunov, T.; Sela, N.; Lichter, A.; Lewinsohn, E. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries. Plant Science 2018, 274, 223–230. [Google Scholar] [CrossRef]
- Misran, A.; Padmanabhan, P.; Sullivan, J.; Khanizadeh, S.; Gopinadhan, G. Composition of phenolics and volatiles in strawberry cultivars and influence of preharvest hexanal treatment on their profiles. Can. J. Plant Sci. 2014, 95, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Sokołowska, B.; Połaska, M.; Dekowska, A.; Woźniak, Ł.; Roszko, M. Degradation of Preservatives with the Formation of Off-Odor Volatile Compounds—The Case of Strawberry-Flavored Bottled Water. Beverages 2020, 6, 67. [Google Scholar] [CrossRef]
- Peinado, I.; Rosa, E.; Heredia, A.; Escriche, I.; Andrés, A. Influence of processing on the volatile profile of strawberry spreads made with isomaltulose. Food Chem. 2013, 138, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-H.; Kim, K.-H.; Szulejko, J.; Parker, D. Quantitative Analysis of Fragrance and Odorants Released from Fresh and Decaying Strawberries. Sensors 2013, 13, 7939–7978. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-X.; Fukuhara, K.; Hayata, Y. Concentrations of Character Impact Odorants in ‘Toyonoka’ Strawberries Quantified by Standard Addition Method and PQ Column Extraction with GC-MS Analysis. J. Jpn. Soc. Hortic. Sci. 2009, 78, 200–205. [Google Scholar] [CrossRef] [Green Version]
- USDA. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List. U.S. Food and Drug Administration. 2019. Available online: https://www.fda.gov/tobacco-products/rules-regulations-and-guidance/harmful-and-potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-established-list (accessed on 20 July 2023).
- Sleiman, M.; Logue, J.M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef] [Green Version]
- Rietjens, I.M.C.M.; Michael, A.; Bolt, H.M.; Siméon, B.; Andrea, H.; Nils, H.; Christine, K.; Angela, M.; Gloria, P.; Daniel, R.; et al. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch. Toxicol. 2022, 96, 1297–1352. [Google Scholar] [CrossRef]
- Negri, A.; Allegra, D.; Simoni, L.; Rusconi, F.; Tonelli, C.; Espen, L.; Galbiati, M. Comparative analysis of fruit aroma patterns in the domesticated wild strawberries “Profumata di Tortona” (F. moschata) and “Regina delle Valli” (F. vesca). Front. Plant Sci. 2015, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Jelen, H.; Krawczyk, J.; Larsen, T.O.; Jarosz, A.; Gołebniak, B. Main compounds responsible for off-odour of strawberries infected by Phytophthora cactorum. Lett. Appl. Microbiol. 2005, 40, 255–259. [Google Scholar] [CrossRef]
- Pérez, A.G.; Olías, R.; Sanz, C.; Olías, J.M. Furanones in Strawberries: Evolution during Ripening and Postharvest Shelf Life. J. Agric. Food Chem. 1996, 44, 3620–3624. [Google Scholar] [CrossRef]
- Smouse, T.H.; Chang, S.S. A systematic characterization of the reversion flavor of soybean oil. J. Am. Oil Chem. Soc. 1967, 44, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ban, Z.; Wang, K.; Li, D.; Li, D.; Poverenov, E.; Li, L.; Luo, Z. Aroma volatiles, sensory and chemical attributes of strawberry (Fragaria × ananassa Duch.) achenes and receptacle. Int. J. Food Sci. Technol. 2017, 52, 2614–2622. [Google Scholar] [CrossRef]
Compounds | Standard Curve | Correlation Coefficient (R2) | LOD (ng/g) | LOQ (ng/g) | Average Absolute Recovery (%) | |||
---|---|---|---|---|---|---|---|---|
0.5 (µg/g) | 0.2 (µg/g) | 0.1 (µg/g) | RSD (%) | |||||
2-Heptanone | y = 261.48x + 19,966 | 0.9741 | 0.024 | 0.08 | 91.89 | 97.12 | 132.48 | 4.43–9.09 |
Benzaldehyde | y = 492.68x + 35,838 | 0.9777 | 0.043 | 0.14 | 64.76 | 84.08 | 101.73 | 4.74–16.87 |
1-Heptanol | y = 325.99x + 125.2 | 0.9916 | 0.16 | 0.55 | 70.54 | 85.03 | 103.45 | 4.97–8.99 |
1-Decene | y = 469.76x + 56,524 | 0.9772 | 0.044 | 0.15 | 72.71 | 108.57 | 130.47 | 5.00–14.38 |
Ethyl Hexanoate | y = 906.61x + 111,217 | 0.9297 | 0.069 | 0.23 | 79.49 | 126.98 | 85.04 | 0.48–2.88 |
DMMF | y = 521.59x + 4945.2 | 0.9923 | 0.036 | 0.13 | 82.73 | 110.27 | 89.82 | 3.52–12.25 |
Eugenol | y = 610.89x − 6562.2 | 0.9887 | 0.13 | 0.42 | 69.09 | 74.17 | 83.75 | 11.57–21.17 |
1-Teradecanol | y = 340.58x − 11,455 | 0.9685 | 0.053 | 0.18 | 69.64 | 79.36 | 96.03 | 5.83–10.49 |
Category | Compounds | CAS Number | VIP Value | Relative Content | Aroma Description | Odor Threshold (mg/kg) | Medium | |
---|---|---|---|---|---|---|---|---|
Non-IMI | IMI | |||||||
Esters | Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester | 77-68-9 | 1.08 | 0.015 ± 0.001 | 0.016 ± 0.001 | 0.58 d | air | |
Methyl 3-hydroxyoctanoate | 7367-87-5 | 1.15 | 0.011 ± 0.003 | 0.055 ± 0.006 | ||||
3-Methylheptyl acetate | 72218-58-7 | 2.02 | 0.011 ± 0.002 | 0.012 ± 0.006 | ||||
Methyl 3-hydroxytetradecanoate | 55682-83-2 | 1.00 | 0.011 ± 0.002 | 0.030 ± 0.007 | ||||
Pentyl hexanoate | 540-07-8 | 2.16 | 0.009 ± 0.001 | 0.039 ± 0.004 | floral, fresh, rose | |||
Octyl 2-methylbutyrate | 29811-50-5 | 1.00 | 0.017 ± 0.003 | 0.011 ± 0.002 | ||||
Butanoic acid, hexyl ester | 2639-63-6 | 1.58 | 0.547 ± 0.046 | 0.615 ± 0.022 | pineapple | 0.203 d | water | |
S-Methyl 3-methylbutanethioate | 23747-45-7 | 1.02 | 0.053 ± 0.006 | 0.037 ± 0.011 | ||||
Methyl 3-hydroxyhexanoate | 21188-58-9 | 1.02 | 0.029 ± 0.004 | 0.067 ± 0.006 | 0.05 | oil | ||
4-Octenoic acid, methyl ester | 1732-00-9 | 1.28 | 0.053 ± 0.014 | / | ||||
Acetic acid, phenylmethyl ester | 140-11-4 | 2.15 | 0.140 ± 0.014 | 0.442 ± 0.046 | floral | |||
Methyl salicylate | 119-36-8 | 2.24 | 0.087 ± 0.017 | 0.388 ± 0.026 | holly leaf, fresh | 0.04 | water | |
2-Buten-1-ol, 3-methyl-, acetate | 1191-16-8 | 1.41 | 0.013 ± 0.004 | 0.032 ± 0.015 | ||||
Acetic acid, octyl ester | 112-14-1 | 1.43 | 0.124 ± 0.038 | 0.224 ± 0.047 | 0.047 d | water | ||
Acetic acid, heptyl ester | 112-06-1 | 1.47 | 0.017 ± 0.004 | 0.050 ± 0.007 | 0.42 d | water | ||
Methyl hexanoate | 106-70-7 | 0.88 | 4.694 ± 1.934 | 2.389 ± 0.492 | fruity, pineapple | 0.07 | water | |
Hexanoic acid, 2-methylpropyl ester | 105-79-3 | 1.07 | 0.008 ± 0.002 | 0.002 ± 0.001 | ||||
Ethylene glycol di-n-butyrate | 105-72-6 | 1.11 | 0.062 ± 0.021 | 0.030 ± 0.005 | ||||
Acetic acid, 2-phenylethyl ester | 103-45-7 | 1.41 | 0.013 ± 0.002 | 0.034 ± 0.004 | 0.24959 d | water | ||
Butanoic acid, decyl ester | 1298317 | 1.06 | 0.002 ± 0.001 | 0.042 ± 0.004 | ||||
Ketones | Methyl nicotinate | 93-60-7 | 2.05 | 0.122 ± 0.023 | 0.331 ± 0.100 | |||
2-Nonanone | 821-55-6 | 1.27 | 0.078 ± 0.016 | 0.231 ± 0.017 | floral, oils and herbs | 0.04 d | water | |
Nona-3,5-dien-2-one | 80387-31-1 | 1.36 | 0.070 ± 0.015 | 0.225 ± 0.058 | green grassy | |||
1-Octen-3-one | 4312-99-6 | 1.20 | 0.027 ± 0.004 | 0.073 ± 0.010 | soap, gasoline | 0.000003 d | water | |
2-Undecanone | 112-12-9 | 1.30 | 0.005 ± 0.002 | 0.030 ± 0.002 | green, citrus, fresh | 0.0055 d | water | |
γ-Dodecalactone | 2305-05-7 | 1.20 | 0.024 ± 0.005 | 0.310 ± 0.043 | peach, milk peach | 0.00043 d | water | |
Terpenes | D-Limonene | 5989-27-5 | 2.51 | 0.399 ± 0.169 | / | citrus, mint | 0.034 d | water |
β-Cyclocitral | 432-25-7 | 1.17 | 0.049 ± 0.011 | 0.065 ± 0.004 | tobacco, floral | 0.003 | water | |
β-Myrcene | 123-35-3 | 2.53 | 0.005 ± 0.002 | 0.017 ± 0.006 | sweet orange, balsam | 0.0012 d | water | |
nerol | 106-25-2 | 1.22 | 0.007 ± 0.001 | 0.012 ± 0.001 | lemon | 0.68 d | water | |
Acids | Acetohydroxamic acid | 546-88-3 | 1.29 | 0.015 ± 0.007 | / | |||
Aldehydes | (Z)-4-Heptenal | 6728-31-0 | 1.05 | 0.004 ± 0.001 | 0.003 ± 0.002 | |||
(E)-2-Hexenal | 6728-26-3 | 1.08 | 2.963 ± 2.687 | 1.732 ± 1.576 | fruity, fresh, green | 0.0885 d | water | |
(E,Z)-2,6-Nonadienal | 557-48-2 | 1.11 | 0.471 ± 0.099 | 0.389 ± 0.026 | cucumber | 0.0008 d | water | |
Benzaldehyde, 4-ethyl- | 4748-78-1 | 1.00 | 0.006 ± 0.003 | 0.007 ± 0.004 | bitter almond | 0.013 d | air | |
(Z)-2-Decenal | 2497-25-8 | 1.35 | 0.081 ± 0.007 | 0.102 ± 0.023 | tallow, waxy, fatty | |||
Benzeneacetaldehyde | 122-78-1 | 1.08 | 0.122 ± 0.020 | 0.183 ± 0.022 | hyacinth, almond and cherry | 0.004 d | water | |
Decanal | 112-31-2 | 1.38 | 0.530 ± 0.113 | 0.481 ± 0.044 | thrill | 0.003 | water | |
4-Oxononanal | 74327-29-0 | 1.22 | 0.006 ± 0.001 | / | ||||
Cycloalkanes | 1,7-Dimethyl-4-(1-methylethyl)cyclodecane | 645-10-3 | 1.98 | 0.009 ± 0.004 | / | |||
Furanone | 5-(acetyloxy)dihydro-5-methyl-2(3H)-furanone | 57681-51-3 | 1.05 | 0.002 ± 0.001 | / | |||
2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) | 4077-47-8 | 1.51 | 2.157 ± 0.291 | 0.022 ± 0.007 | strawberry-like, floral, fruity, | 0.00003 d | water | |
Alcohols | 2-Hexen-1-ol | 56922-75-9 | 1.04 | 2.468 ± 0.720 | 4.343 ± 1.994 | |||
1-Nonanol | 143-08-8 | 1.46 | 0.344 ± 0.071 | 0.365 ± 0.019 | sweet orange, sweet and green rose | 0.001 | ||
1-Decanol | 112-30-1 | 1.54 | 0.009 ± 0.001 | 0.082 ± 0.005 | fatty | 0.0066 d | water | |
1-Heptanol | 111-70-6 | 1.02 | 0.040 ± 0.007 | 0.077 ± 0.007 | fat, pungent, citrus | 0.0054 d | water | |
3-Nonen-1-ol, (Z)- | 10340-23-5 | 1.63 | 0.007 ± 0.001 | 0.012 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, N.; Wang, H.; Li, C.; Zhang, C.; Li, S.; Wang, J.; Jin, F. The Effect of Imidacloprid on the Volatile Organic Compound Profile of Strawberries: New Insights from Flavoromics. Foods 2023, 12, 2914. https://doi.org/10.3390/foods12152914
Yue N, Wang H, Li C, Zhang C, Li S, Wang J, Jin F. The Effect of Imidacloprid on the Volatile Organic Compound Profile of Strawberries: New Insights from Flavoromics. Foods. 2023; 12(15):2914. https://doi.org/10.3390/foods12152914
Chicago/Turabian StyleYue, Ning, Hongping Wang, Chunmei Li, Chen Zhang, Simeng Li, Jing Wang, and Fen Jin. 2023. "The Effect of Imidacloprid on the Volatile Organic Compound Profile of Strawberries: New Insights from Flavoromics" Foods 12, no. 15: 2914. https://doi.org/10.3390/foods12152914
APA StyleYue, N., Wang, H., Li, C., Zhang, C., Li, S., Wang, J., & Jin, F. (2023). The Effect of Imidacloprid on the Volatile Organic Compound Profile of Strawberries: New Insights from Flavoromics. Foods, 12(15), 2914. https://doi.org/10.3390/foods12152914