The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Propagation and Cell Culture
2.2. Preparation of Disinfectant Solutions
2.3. Quantitative Disk Carrier Test Method ASTM E2197
2.4. Quantification of Virus Infectivity Using TCID50 Assay
2.5. Statistical Analyses
3. Results
3.1. Effect of Hard Water and pH of 200 ppm NaOCl against SARS-CoV-2 on Stainless Steel at One Minute Contact Time
3.2. Effect of Hard Water and pH of 200 ppm PAA against SARS-CoV-2 on Stainless Steel at One Minute Contact Time
3.3. Comparing NaOCl to PAA Effect on SARS-CoV-2 on Contaminated Stainless Steel
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worobey, M.; Levy, J.I.; Malpica Serrano, L.; Crits-Christoph, A.; Pekar, J.E.; Goldstein, S.A.; Rasmussen, A.L.; Kraemer, M.U.G.; Newman, C.; Koopmans, M.P.G.; et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022, 377, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.; Lau, S.K.; Yuen, K.Y. Infectious diseases emerging from Chinese wet-markets: Zoonotic origins of severe respiratory viral infections. Curr. Opin. Infect. Dis. 2006, 19, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Newman, C.; Buesching, C.D.; Macdonald, D.W.; Zhou, Z.M. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci. Rep. 2021, 11, 11898. [Google Scholar] [CrossRef]
- Dyal, J.W.; Grant, M.P.; Broadwater, K.; Bjork, A.; Waltenburg, M.A.; Gibbins, J.D.; Hale, C.; Silver, M.; Fischer, M.; Steinberg, J.; et al. COVID-19 Among Workers in Meat and Poultry Processing Facilities—19 States, April 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 557–561. [Google Scholar] [CrossRef]
- Pedreira, A.; Taskin, Y.; Garcia, M.R. A Critical Review of Disinfection Processes to Control SARS-CoV-2 Transmission in the Food Industry. Foods 2021, 10, 283. [Google Scholar] [CrossRef]
- Caserta, L.C.; Martins, M.; Butt, S.L.; Hollingshead, N.A.; Covaleda, L.M.; Ahmed, S.; Everts, M.R.R.; Schuler, K.L.; Diel, D.G. White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc. Natl. Acad. Sci. USA 2023, 120, e2215067120. [Google Scholar] [CrossRef]
- Martins, M.; Boggiatto, P.M.; Buckley, A.; Cassmann, E.D.; Falkenberg, S.; Caserta, L.C.; Fernandes, M.H.V.; Kanipe, C.; Lager, K.; Palmer, M.V.; et al. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog. 2022, 18, e1010197. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; DeLiberto, T.J.; et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, e2114828118. [Google Scholar] [CrossRef]
- Hale, V.L.; Dennis, P.M.; McBride, D.S.; Nolting, J.M.; Madden, C.; Huey, D.; Ehrlich, M.; Grieser, J.; Winston, J.; Lombardi, D.; et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature 2022, 602, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.O.E.; Routhwick, S.; Scuderi, B.; Howlett, D.; Caputo, L. Hunting in America: An Economic Force for Conservation. Available online: https://www.fishwildlife.org/application/files/3815/3719/7536/Southwick_Assoc_-_NSSF_Hunting_Econ.pdf (accessed on 3 June 2023).
- Bloomfield, S.F.; Scott, E.A. Developing an effective policy for home hygiene: A risk-based approach. Int. J. Environ. Health Res. 2003, 13 (Suppl. S1), S57–S66. [Google Scholar] [CrossRef]
- Featherstone, A.; Brown, A.C.; Chitlapilly Dass, S. Understanding how different surfaces and environmental biofilms found in food processing plants affect the spread of COVID-19. PLoS ONE 2023, 18, e0286659. [Google Scholar] [CrossRef]
- Jung, S.; Kim, D.H.; Ahn, H.S.; Go, H.J.; Wang, Z.; Yeo, D.; Woo, S.; Seo, Y.; Hossain, M.I.; Choi, I.S.; et al. Stability and inactivation of SARS-CoV-2 on food contact surfaces. Food Control 2023, 143, 109306. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Yeo, D.; Wang, Z.; Woo, S.; Seo, Y.; Hossain, M.I.; Choi, C. Viability of SARS-CoV-2 on lettuce, chicken, and salmon and its inactivation by peracetic acid, ethanol, and chlorine dioxide. Food Microbiol. 2023, 110, 104164. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.K.; Nims, R.W.; Zhou, S.S.; Whitehead, K.; Srinivasan, V.; Kapes, T.; Fanuel, S.; Epstein, J.H.; Daszak, P.; Rubino, J.R.; et al. Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Sci. Rep. 2021, 11, 5626. [Google Scholar] [CrossRef]
- Walker, M.D.; Vincent, J.C.; Benson, L.; Stone, C.A.; Harris, G.; Ambler, R.E.; Watts, P.; Slatter, T.; Lopez-Garcia, M.; King, M.F.; et al. Effect of Relative Humidity on Transfer of Aerosol-Deposited Artificial and Human Saliva from Surfaces to Artificial Finger-Pads. Viruses 2022, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Behzadinasab, S.; Chin, A.W.H.; Hosseini, M.; Poon, L.L.M.; Ducker, W.A. SARS-CoV-2 virus transfers to skin through contact with contaminated solids. Sci. Rep. 2021, 11, 22868. [Google Scholar] [CrossRef]
- Eifert, J.a.S.G. Chemistry of Chlorine Sanitizers in Food Processing. Dairy Food Environ. Sanit. 2002, 22, 534–538. [Google Scholar]
- Gombas, D.; Luo, Y.; Brennan, J.; Shergill, G.; Petran, R.; Walsh, R.; Hau, H.; Khurana, K.; Zomorodi, B.; Rosen, J.; et al. Guidelines To Validate Control of Cross-Contamination during Washing of Fresh-Cut Leafy Vegetables. J. Food Prot. 2017, 80, 312–330. [Google Scholar] [CrossRef] [Green Version]
- USDA. Peracetic Acid. Available online: https://www.ams.usda.gov/sites/default/files/media/Peracetic%20Acid%20TR%203_3_2016%20Crops%20Final.pdf (accessed on 5 August 2023).
- Vinneras, B.; Holmqvist, A.; Bagge, E.; Albihn, A.; Jonsson, H. The potential for disinfection of separated faecal matter by urea and by peracetic acid for hygienic nutrient recycling. Bioresoure Technol. 2003, 89, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Liberti, L.; Lopez, A.; Notarnicola, M. Disinfection with peracetic acid for domestic sewage re-use in agriculture. Water Environ. J. 1999, 13, 262–269. [Google Scholar] [CrossRef]
- Malchesky, P.S. Peracetic acid and its application to medical instrument sterilization. Artif. Organs 1993, 17, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lim, J.Y.C.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing agents for virus inactivation and disinfection. View 2020, 1, e16. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoellner, C.; Aguayo-Acosta, A.; Siddiqui, M.W.; Dávila-Aviña, J.E. Chapter 2—Peracetic Acid in Disinfection of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 53–66. [Google Scholar]
- Shen, X.; Sheng, L.; Gao, H.; Hanrahan, I.; Suslow, T.V.; Zhu, M.J. Enhanced Efficacy of Peroxyacetic Acid Against Listeria monocytogenes on Fresh Apples at Elevated Temperature. Front. Microbiol. 2019, 10, 1196. [Google Scholar] [CrossRef]
- Ercken, D.; Verelst, L.; Declerck, P.; Duvivier, L.; Van Damme, A.; Ollevier, F. Effects of peracetic acid and monochloramine on the inactivation of Naegleria lovaniensis. Water Sci. Technol. 2003, 47, 167–171. [Google Scholar] [CrossRef]
- Lopez-Galvez, F.; Tudela, J.A.; Allende, A.; Gil, M.I. Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control. Innov. Food Sci. Emerg. 2019, 51, 211–219. [Google Scholar] [CrossRef]
- Schmidt, R.H. Basic Elements of Equipment Cleaning and Sanitizing in Food Processing and Handling Operations; University of Florida/IFAS Extension: Gainesville, FL, USA, 2012. [Google Scholar]
- Jellesen, M.S.; Rasmussen, A.A.; Hilbert, L.R. A review of metal release in the food industry. Mater. Corros. 2006, 57, 387–393. [Google Scholar] [CrossRef]
- ASTM E2197-17e1; Standard Quantitative Disk Carrier Test Method for Determining Bactericidal, Virucidal, Fungicidal, Mycobactericidal, and Sporicidal Activities of Chemicals. ASTM: West Conshohocken, PA, USA, 2018.
- SOP Number: MB-39-01; Standard Operating Procedure for Standard Practice to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces Using Human Coronavirus. EPA: Washington, DC, USA, 2020.
- Pangloli, P.; Hung, Y.-C. Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 2013, 32, 626–631. [Google Scholar] [CrossRef]
- Esseili, M.A.; Mann, A.; Narwankar, R.; Kassem, I.I.; Diez-Gonzalez, F.; Hogan, R.J. SARS-CoV-2 remains infectious for at least a month on artificially-contaminated frozen berries. Food Microbiol. 2022, 107, 104084. [Google Scholar] [CrossRef]
- Esseili, M.A.; Saif, L.J.; Farkas, T.; Wang, Q. Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce. Appl. Environ. Microbiol. 2015, 81, 5085–5092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SOP Number: MB-30-02; Standard Operating Procedure for Preparation of Hard Water and Other Diluents for Preparation of Antimicrobial Products. EPA: Washington, DC, USA, 2019.
- Cromeans, T.; Park, G.W.; Costantini, V.; Lee, D.; Wang, Q.; Farkas, T.; Lee, A.; Vinjé, J. Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Appl. Environ. Microbiol. 2014, 80, 5743–5751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuel, C.S.; Moore, M.D.; Jaykus, L.A. Efficacy of a disinfectant containing silver dihydrogen citrate against GI.6 and GII.4 human norovirus. J. Appl. Microbiol. 2017, 122, 78–86. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Oswin, H.P.; Haddrell, A.E.; Otero-Fernandez, M.; Mann, J.F.S.; Cogan, T.A.; Hilditch, T.G.; Tian, J.; Hardy, D.A.; Hill, D.J.; Finn, A.; et al. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. USA 2022, 119, e2200109119. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, M.J.; Capato, C.F.; de Castro-Jorge, L.A.; de Souza, W.M.; Arruda, E.; Figueiredo, L.T.M. Stability of SARS-CoV-2 and other airborne viruses under different stress conditions. Arch. Virol. 2022, 167, 183–187. [Google Scholar] [CrossRef]
- Chan, K.H.; Sridhar, S.; Zhang, R.R.; Chu, H.; Fung, A.Y.F.; Chan, G.; Chan, J.F.W.; To, K.K.W.; Hung, I.F.N.; Cheng, V.C.C.; et al. Factors affecting stability and infectivity of SARS-CoV-2. J. Hosp. Infect. 2020, 106, 226–231. [Google Scholar] [CrossRef]
- Xiao, S.; Yuan, Z.; Huang, Y. Disinfectants against SARS-CoV-2: A Review. Viruses 2022, 14, 1721. [Google Scholar] [CrossRef]
- Sagripanti, J.L.; Bonifacino, A. Comparative sporicidal effects of liquid chemical agents. Appl. Environ. Microbiol. 1996, 62, 545–551. [Google Scholar] [CrossRef]
- Ghostlaw, T.; Corradini, M.G.; Autio, W.R.; Kinchla, A.J. Impact of various postharvest wash water conditions on the performance of peracetic acid against Escherichia coli O157:H7 over time. Food Control 2020, 109, 106891. [Google Scholar] [CrossRef]
- Yuan, Z.; Ni, Y.; van Heiningen, A.R.P. Kinetics of the peracetic acid decomposition: Part II: pH effect and alkaline hydrolysis. Can. J. Chem. Eng. 1997, 75, 42–47. [Google Scholar] [CrossRef]
- Marchand, P.A.; Straus, D.L.; Wienke, A.; Pedersen, L.F.; Meinelt, T. Effect of water hardness on peracetic acid toxicity to zebrafish, Danio rerio, embryos. Aquac. Int. 2013, 21, 679–686. [Google Scholar] [CrossRef]
- Vaddu, S.; Kataria, J.; Rama, E.N.; Moller, A.E.; Gouru, A.; Singh, M.; Thippareddi, H. Impact of pH on efficacy of peroxy acetic acid against Salmonella, Campylobacter, and Escherichia coli on chicken wings. Poult. Sci. 2021, 100, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Sagripanti, J.L.; Bonifacino, A. Effects of salt and serum on the sporicidal activity of liquid disinfectants. J. AOAC Int. 1997, 80, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Hilgren, J.; Swanson, K.M.; Diez-Gonzalez, F.; Cords, B. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Appl. Environ. Microbiol. 2007, 73, 6370–6377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Virus Reduction (Log10TCID50/mL) | |||
---|---|---|---|
Disinfectant | Hardness | 150 ppm | 300 ppm |
NaOCl | pH 5 | 1.18 ± 0.1 a | 0.6 ± 0.2 a |
pH 6 | 0.7 ± 0.11 a | 0.6 ± 0.2 a | |
pH 7 | 1.12 ± 0.27 a | 0.79 ± 0.2 a | |
pH 8 | 0.95 ± 0.36 a | 0.52 ± 0.26 a | |
PAA | pH 5 | 1.19 ± 0.26 a | 2.08 ± 0.34 a |
pH 6 | 0.85 ± 0.15 a | 1.93 ± 0.37 a | |
pH 7 | 0.63 ± 0.3 a | 1.36 ± 0.44 a | |
pH 8 | 0.47 ± 0.22 a | 1.93 ± 0.44 a * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, J.N.; Esseili, M.A. The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces. Foods 2023, 12, 2981. https://doi.org/10.3390/foods12162981
Morris JN, Esseili MA. The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces. Foods. 2023; 12(16):2981. https://doi.org/10.3390/foods12162981
Chicago/Turabian StyleMorris, Julianna N., and Malak A. Esseili. 2023. "The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces" Foods 12, no. 16: 2981. https://doi.org/10.3390/foods12162981
APA StyleMorris, J. N., & Esseili, M. A. (2023). The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces. Foods, 12(16), 2981. https://doi.org/10.3390/foods12162981