Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing
Abstract
:1. Introduction
2. Properties of Laser Light
3. Mechanism of Laser Light-Induced Food Processing
4. Application of Laser Irradiation
4.1. Laser Pretreatment
4.2. Microbial Inactivation
Mechanism of Microbial Inactivation
4.3. Laser-Assisted Cooking
4.4. Laser Ablation
4.5. Meat Marination
4.6. Food Packaging
4.7. Laser Perforation
4.8. Laser Transmission Welding
4.9. Laser Application in Non-Destructive Testing
5. Limitations in the Application of Laser in Food Processing
6. Laser Light Technology’s Role in Food Nutrition and Safety
7. Future Prospect
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pandiselvam, R.; Mayookha, V.P.; Kothakota, A.; Ramesh, S.V.; Thirumdas, R.; Juvvi, P. Biospeckle laser technique—A novel non-destructive approach for food quality and safety detection. Trends Food Sci. Technol. 2020, 97, 1–13. [Google Scholar] [CrossRef]
- Rodgers, S. Minimally Processed Functional Foods: Technological and Operational Pathways. J. Food Sci. 2016, 81, R2309–R2319. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Koutsoumanis, K.P. Challenges and perspectives of advanced technologies in processing, distribution and storage for improving food safety. Curr. Opin. Food Sci. 2016, 12, 63–69. [Google Scholar] [CrossRef]
- Waghmare, R.; Kumar, M.; Yadav, R.; Mhatre, P.; Sonawane, S.; Sharma, S.; Gat, Y.; Chandran, D.; Radha; Hasan, M.; et al. Application of ultrasonication as pre-treatment for freeze drying: An innovative approach for the retention of nutraceutical quality in foods. Food Chem. 2023, 404, 134571. [Google Scholar] [CrossRef]
- Ozdemir, M. A new and emerging technology: Laser-induced surface modification of polymers. Trends Food Sci. Technol. 1998, 9, 159–167. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S. Potential application of laser technology in food processing. Trends Food Sci. Technol. 2021, 118, 711–722. [Google Scholar] [CrossRef]
- Singh, S.; Argument, M.; Tsui, Y.Y.; Fedosejevs, R. Effect of ambient air pressure on debris redeposition during laser ablation of glass. J. Appl. Phys. 2005, 98, 113520. [Google Scholar] [CrossRef]
- Winotapun, C.; Aontee, A.; Inyai, J.; Pinsuwan, B.; Daud, W. Laser perforation of polyethylene terephthalate/polyethylene laminated film for fresh produce packaging application. Food Packag. Shelf Life 2021, 28, 100677. [Google Scholar] [CrossRef]
- Blutinger, J.D.; Meijers, Y.; Chen, P.Y.; Zheng, C.; Grinspun, E.; Lipson, H. Characterization of dough baked via blue laser. J. Food Eng. 2018, 232, 56–64. [Google Scholar] [CrossRef]
- Ravi-Kumar, S.; Lies, B.; Zhang, X.; Lyu, H.; Qin, H. Laser ablation of polymers: A review. Polym. Int. 2019, 68, 1391–1401. [Google Scholar] [CrossRef]
- Tangwarodomnukun, V.; Likhitangsuwat, P.; Tevinpibanphan, O.; Dumkum, C. Laser ablation of titanium alloy under a thin and flowing water layer. Int. J. Mach. Tools Manuf. 2015, 89, 14–28. [Google Scholar] [CrossRef]
- Hoffman, J. The effect of recoil pressure in the ablation of polycrystalline graphite by a nanosecond laser pulse. J. Phys. D Appl. Phys. 2015, 48, 235201. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Guo, C.; Dan, W.; Devahastin, S. Laser-Induced Microporous Modified Atmosphere Packaging and Chitosan Carbon-Dot Coating as a Novel Combined Preservation Method for Fresh-Cut Cucumber. Food Bioprocess Technol. 2021, 14, 968–983. [Google Scholar] [CrossRef]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef]
- Veloso, G.; Simpson, R.; Núñez, H.; Ramírez, C.; Almonacid, S.; Jaques, A. Exploring the potential acceleration of the osmotic dehydration process via pretreatment with CO2-LASER microperforations. J. Food Eng. 2021, 306, 110610. [Google Scholar] [CrossRef]
- Ferraz, A.C.O.; Mittal, G.S.; Bilanski, W.K.; Abdullah, H.A. Mathematical modeling of laser based potato cutting and peeling. Biosystems 2007, 90, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Fujimaru, T.; Ling, Q.; Morrissey, M.T. Effects of Carbon Dioxide (CO 2) Laser Perforation as Skin Pretreatment to Improve Sugar Infusion Process of Frozen Blueberries. J. Food Sci. 2012, 77, 45–51. [Google Scholar] [CrossRef]
- Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-drying of blueberries: Effects of carbon dioxide (CO2) laser perforation as skin pretreatment to improve mass transfer, primary drying time, and quality. Foods 2020, 9, 211. [Google Scholar] [CrossRef]
- Byreddy, A.R.; Gupta, A.; Barrow, C.J.; Puri, M. Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar. Drugs 2015, 13, 5111–5127. [Google Scholar] [CrossRef]
- Patel, A.; Mikes, F.; Matsakas, L. An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef]
- McMillan, J.R.; Watson, I.A.; Ali, M.; Jaafar, W. Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 2013, 103, 128–134. [Google Scholar] [CrossRef]
- Abida, J.; Rayees, B.; Masoodi, F.A. Pulsed light technology: A novel method for food preservation. Int. Food Res. J. 2014, 21, 839–848. [Google Scholar]
- Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth. BioMed Res. Int. 2015, 2015, 436030. [Google Scholar] [CrossRef] [PubMed]
- Kohmura, Y.; Igami, N.; Tatsuno, I.; Hasegawa, T.; Matsumoto, T. Transient photothermal inactivation of Escherichia coli stained with visible dyes by using a nanosecond pulsed laser. Sci. Rep. 2020, 10, 17805. [Google Scholar] [CrossRef]
- Ali, L.M.; Saleh, S.S.; Ahmed, A.E.; Helmy El-Sayed Hasan, H.E.; Suliman AE, E. Novel postharvest management using laser irradiation to maintain the quality of strawberry. J. Food Meas. Charact. 2020, 14, 3615–3624. [Google Scholar] [CrossRef]
- Maktabi, S.; Watson, I.; Parton, R. Synergistic effect of UV, laser and microwave radiation or conventional heating on E. coli and on some spoilage and pathogenic bacteria. Innov. Food Sci. Emerg. Technol. 2011, 12, 129–134. [Google Scholar] [CrossRef]
- Gonca, S.; Polat, B.; Ozay, Y.; Ozdemir, S.; Kucukkara, I.; Atmaca, H.; Dizge, N. Investigation of diode laser effect on the inactivation of selected Gram-negative bacteria, Gram-positive bacteria and yeast and its disinfection on wastewater and natural milk. Environ. Technol. 2023, 44, 1238–1250. [Google Scholar] [CrossRef]
- Yasmin, N.; Hameed, S.; Javed, R.; Ahmed, S.; Imran, M. Inactivation of foodborne pathogens on food packaging and in cow milk by exposure to a Nd: YAG laser. Can. J. Phys. 2017, 95, 662–669. [Google Scholar] [CrossRef]
- Kompanets, V.; Shelygina, S.; Tolordava, E.; Kudryashov, S.; Saraeva, I.; Rupasov, A.; Baitsaeva, O.; Khmelnitskii, R.; Ionin, A.; Yushina, Y.; et al. Spectrally-selective mid-IR laser-induced inactivation of pathogenic bacteria. Biomed. Opt. Express 2021, 12, 6317. [Google Scholar] [CrossRef]
- Meire, M.A.; Coenye, T.; Nelis, H.J.; De Moor RJ, G. Evaluation of Nd: YAG and Er: YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int. Endod. J. 2012, 45, 482–491. [Google Scholar] [CrossRef]
- Astuty, S.D.; Suhariningsih Baktir, A.; Astuti, S.D. The efficacy of photodynamic inactivation of the diode laser in inactivation of the Candida albicans biofilms with exogenous photosensitizer of papaya leaf chlorophyll. J. Lasers Med. Sci. 2019, 10, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Suhem, K.; Matan, N.; Matan, N.; Danworaphong, S.; Aewsiri, T. Enhanced antifungal activity of michelia oil on the surface of bamboo paper packaging boxes using helium-neon (HeNe) laser and its application to brown rice snack bar. Food Control 2017, 73, 939–945. [Google Scholar] [CrossRef]
- Marouf AA, S.; Elmhal, S.I. Monitoring pH During Pasteurization of Raw Cow’s Milk using Nd:YAG Laser. Int. J. Adv. Res. Phys. Sci. 2017, 4, 1–4. [Google Scholar]
- Blutinger, J.D.; Meijers, Y.; Lipson, H. Selective laser broiling of Atlantic salmon. Food Res. Int. 2019, 120, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, M.; Fang, Z.; Liu, Y. Impact of processing parameters and post-treatment on the shape accuracy of 3D-printed baking dough. Int. J. Food Sci. Technol. 2019, 54, 68–74. [Google Scholar] [CrossRef]
- Fukuchi, K.; Tomiyama, A.; Jo, K.; Takao, S. Laser cooking: A novel culinary technique for dry heating using a laser cutter and vision technology. In Proceedings of the CEA 2012-Proceedings of the 2012 ACM Workshop on Multimedia for Cooking and Eating Activities, Co-Located with ACM Multimedia, Nara, Japan, 2 November 2012; pp. 55–58. [Google Scholar] [CrossRef]
- Blutinger, J.D.; Meijers, Y.; Chen, P.Y.; Zheng, C. Characterization of CO2 laser browning of dough. Innov. Food Sci. Emerg. Technol. 2019, 52, 145–157. [Google Scholar] [CrossRef]
- Chen, P.Y.; Blutinger, J.D.; Meijers, Y.; Zheng, C.; Grinspun, E.; Lipson, H. Visual modeling of laser-induced dough browning. J. Food Eng. 2018, 243, 9–21. [Google Scholar] [CrossRef]
- Blutinger, J.D.; Tsai, A.; Storvick, E.; Seymour, G.; Liu, E.; Samarelli, N.; Karthik, S.; Meijers, Y.; Lipson, H. Precision cooking for printed foods via multiwavelength lasers. NPJ Sci. Food 2021, 5, 24. [Google Scholar] [CrossRef]
- Ornela, R.E.; Cabrera, L.P.; Reyes, T.F.; Pe, A.; Caro, D.A.P.; De Posada, E.; Arronte, M. Removal of Opuntia thorns by pulsed laser ablation: Bromatological and microbiological analysis. J. Food Eng. 2016, 169, 38–43. [Google Scholar] [CrossRef]
- Panchev, I.N.; Kirtchev, N.A.; Dimitrov, D.D. Possibilities for application of laser ablation in food technologies. Innov. Food Sci. Emerg. Technol. 2011, 12, 369–374. [Google Scholar] [CrossRef]
- Beldjilali, S.A.; Hermann, J.; Baba-Hamed, T.; Belasri, A. Analyses of plasmas produced by laser ablation of fresh aliments. Adv. Mater. Res. 2011, 227, 49–52. [Google Scholar] [CrossRef]
- Picca, R.A.; Di Maria, A.; Riháková, L.; Volpe, A.; Sportelli, M.C.; Lugarà, P.M.; Ancona, A.; Cioffi, N. Laser Ablation Synthesis of Hybrid Copper/Silver Nanocolloids for Prospective Application as Nanoantimicrobial Agents for Food Packaging. MRS Adv. 2016, 1, 3735–3740. [Google Scholar] [CrossRef]
- Augusto, A.d.S.; Sperança, M.A.; Andrade, D.F.; Pereira-Filho, E.R. Nutrient and Contaminant Quantification in Solid and Liquid Food Samples Using Laser-Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS): Discussion of Calibration Strategies. Food Anal. Methods 2017, 10, 1515–1522. [Google Scholar] [CrossRef]
- Streubel, R.; Barcikowski, S.; Gökce, B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett. 2016, 41, 1486. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Izzi, M.; Volpe, A.; Clemente, M.; Picca, R.A.; Ancona, A.; Lugarà, P.M.; Palazzo, G.; Cioffi, N. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics 2018, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, N.; Vega-Castro, O.; Simpson, R.; Ramirez, C.; Nuñez, H. Effect of pulsed vacuum and laser microperforations on the potential acceleration of chicken meat marination. J. Food Process Eng. 2021, 44, e13627. [Google Scholar] [CrossRef]
- Figueroa, C.; Ramírez, C.; Núñez, H.; Jaques, A.; Simpson, R. Application of vacuum impregnation and CO2-laser microperforations in the potential acceleration of the pork marinating process. Innov. Food Sci. Emerg. Technol. 2020, 66, 102500. [Google Scholar] [CrossRef]
- Pagano, N.; Campana, G.; Fiorini, M.; Morelli, R. Laser transmission welding of polylactide to aluminium thin films for applications in the food-packaging industry. Opt. Laser Technol. 2017, 91, 80–84. [Google Scholar] [CrossRef]
- Karkantonis, T.; Gaddam, A.; See, T.L.; Joshi, S.S.; Dimov, S. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications. Surf. Coat. Technol. 2020, 399, 126166. [Google Scholar] [CrossRef]
- Grififths, J.; Dowding, C. Optimization of process parameters in laser transmission welding for food packaging applications. Procedia CIRP 2018, 74, 528–532. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, S. Use of Laser-Etched Pouches to Control the Volume Expansion of Kimchi Packages During Distribution: Impact of Packaging and Storage on Quality Characteristics. Food Sci. 2017, 82, 1876–1884. [Google Scholar] [CrossRef]
- Gisario, A.; Aversa, C.; Barletta, M.; Natali, S.; Veniali, F. Laser transmission welding of aluminum film coated with heat sealable co-polyester resin with polypropylene films for applications in food and drug packaging. Int. J. Adv. Manuf. Technol. 2022, 120, 2291–2309. [Google Scholar] [CrossRef]
- Dowding, C.; Dowding, R.; Franceschini, F.; Griffith, J. The Effect of Laser Power, Traverse Velocity and Spot Size on the Peel Resistance of a Polypropylene/Adhesive Bond. Packag. Technol. Sci. 2015, 28, 621–632. [Google Scholar] [CrossRef]
- Sarath, G.; Sedaghat, S.; Krishnakumar, A.; He, Z.; Wang, H.; Rahimi, R. Wireless humidity sensor for smart packaging via one-step laser-induced patterning and nanoparticle formation on metallized paper. Adv. Electron. Mater. 2022, 8, 2101149. [Google Scholar]
- Ovaska, S.S.; Leminen, V.; Tanninen, P.; Manninen, M.; Mielonen, K.; Matthews, S.; Lindell, H.; Backfolk, K. Characterisation of pulsed-fibre-laser-perforated polymeric food package films. Polym. Polym. Compos. 2018, 26, 273–282. [Google Scholar] [CrossRef]
- Mistriotis, A.; Briassoulis, D.; Giannoulis, A.; D’Aquino, S. Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biol. Technol. 2016, 111, 380–389. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A.; Giannoulis, A.; Giannopoulos, D. Optimized PLA-based EMAP systems for horticultural produce designed to regulate the targeted in-package atmosphere. Ind. Crops Prod. 2013, 48, 68–80. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; Vandemoortele, A.; Verguldt, E.; De Meulenaer, B.; Devlieghere, F. Use of biobased materials for modified atmosphere packaging of short and medium shelf-life food products. Innov. Food Sci. Emerg. Technol. 2014, 26, 319–329. [Google Scholar] [CrossRef]
- Sanchez PD, C.; Hashim, N.; Shamsudin, R.; Mohd Nor, M.Z. Applications of imaging and spectroscopy techniques for non-destructive quality evaluation of potatoes and sweet potatoes: A review. Trends Food Sci. Technol. 2020, 96, 208–221. [Google Scholar] [CrossRef]
- Mollazade, K.; Arefi, A. LightScatter: A comprehensive software package for non-destructive monitoring of horti-food products by monochromatic imaging-based spatially-resolved light scattering technology. Comput. Electron. Agric. 2017, 142, 597–606. [Google Scholar] [CrossRef]
- Mireei, S.A.; Mohtasebi, S.S.; Massudi, R.; Rafiee, S.; Arabanian, A.S. Feasibility of near infrared spectroscopy for analysis of date fruits. Int. Agrophysics 2010, 24, 351–356. [Google Scholar]
- Hashim, N.; Janius, R.B.; Rahman, R.A.; Osman, A.; Shitan, M.; Zude, M. Changes of backscattering parameters during chilling injury in Bananas. J. Eng. Sci. Technol. 2014, 9, 314–325. [Google Scholar]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying. Comput. Electron. Agric. 2018, 150, 178–187. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Mohtasebi, S.S. Principles and Applications of Light Backscattering Imaging in Quality Evaluation of Agro-food Products: A Review. Food Bioprocess Technol. 2012, 5, 1465–1485. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Hashim, N.; Hass, R.; Polley, N.; Regen, C. Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging. Postharvest Biol. Technol. 2019, 153, 161–168. [Google Scholar] [CrossRef]
- Mohd Ali, M. Characterization of Optical Parameters in Seeded and Seedless Watermelon Using Laserinduced Backscattering Imaging. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2017; p. 43. [Google Scholar] [CrossRef]
- Lorente, D.; Zude, M.; Idler, C.; Gómez-Sanchis, J.; Blasco, J. Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model. J. Food Eng. 2015, 154, 76–85. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Hass, R.; Reich, O.; Regen, C.; Münzberg, M.; Abdan, K.; Hanafi, M.; Zude-Sasse, M. Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear (Pyrus communis ‘Conference’)—An update when using diffusion theory. Postharvest Biol. Technol. 2017, 130, 56–63. [Google Scholar] [CrossRef]
- Lu, R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Zulkifli, N.; Hashim, N.; Abdan, K.; Hanafi, M. Application of laser-induced backscattering imaging for predicting and classifying ripening stages of “Berangan” bananas. Comput. Electron. Agric. 2019, 160, 100–107. [Google Scholar] [CrossRef]
- Jonkers, N.; van Dommelen, J.A.W.; Geers MG, D. Selective Laser Sintered food: A unit cell approach to design mechanical properties. J. Food Eng. 2022, 335, 111183. [Google Scholar] [CrossRef]
- Shabir, I.; Khan, S.; Dar, A.H.; Dash, K.K.; Shams, R.; Altaf, A.; Singh, A.; Fayaz, U.; Majeed, T.; Khan, S.A.; et al. Laser beam technology interventions in processing, packaging, and quality evaluation of foods. Meas. Food 2022, 8, 100062. [Google Scholar] [CrossRef]
- Rabal, H.J.; Braga, R.A., Jr. (Eds.) Dynamic Laser Speckle and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zdunek, A.; Adamiak, A.; Pieczywek, P.M.; Kurenda, A. The biospeckle method for the investigation of agricultural crops: A review. Opt. Lasers Eng. 2014, 52, 276–285. [Google Scholar] [CrossRef]
Working Conditions | Food/Microorganism | Inferences | Reference |
---|---|---|---|
Nd:YAG laser-355 and 266 nm, energy-185 mJ | Pathogenic bacteria, e.g.,: P. aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Listeria monocytogenes |
| [28] |
Mid-IR femtosecond laser radiation central wavelength: 5.8 and 3.4 μm pulse duration τ ≈ 130 f pulse energies of 10 μJ (6 μm) and 30 μJ (3 μm) repetition rate of 1 kHz | Pseudomonas aeruginosa bacteria |
| [29] |
Nd:YAG and Er laser-single pulse train mode Pulse energies-40–400 mJ Pulse lengths of 100–1000 μs Output power-15 W Frequency-100 Hz. Time-5–120 s. | Enterococcus faecalis, Candida albicans or Propionibacterium acnes |
| [30] |
445 nm and 650 nm laser activated the chlorophyll extract of the papaya leaf (0.5 mg/L) | Candida albicans |
| [31] |
Michelia oil (Michelia alba) (linalool and caryophyllene) (300–500 mg g−1) Helium-Neon (He-Ne) operating at 543, 594, 604, 612, and 633 nm for 1 min Storage: 8 weeks at 25 °C and 100% RH brown rice snack bars | Aspergillus niger, Aspergillus flavus, Penicillium sp., Rhizopus sp., Fusarium sp. and Cladosporium sp. |
| [32] |
Nd: YAG laser—1064 nm Power—10–50 Watt Time, 2 min | Food—raw cow milk |
| [33] |
Type of Laser | Packaging Material | Results | Reference |
---|---|---|---|
Laser transmission welding—low power pulsed wave fibre laser | Polylactide and aluminium |
| [49] |
Femtosecond laser processing and hot embossing technique Two types of topographies for Lubricating Intensive Surfaces (LIS)-single-scale sub-micron laser-induced periodic surface structures (LIPSS), multi-scale (MS) structures with both micron and sub-micron features | Polypropylene, polystyrene, stainless steel on water, milk, and honey |
| [50] |
Laser transmission welding | Polyethylene to polypropylene substrate |
| [51] |
Laser-etched pouches (gas control functions) | Kimchi |
| [52] |
High-power diode laser joining Laser transmission welding | Aluminum films coated with a polyester resin with polypropylene (PP) films |
| [53] |
Thermal activation using 27 W CO2 laser | Polypropylene substrate/adhesive coating |
| [54] |
Laser ablation | Laminated aluminum (Al) film on the parchment paper substrate |
| [55] |
The microperforation using a pulsed fibre laser technique Breathable polymeric packaging films—laser power-20 W pulse duration 200 ns. The numbers of holes (80 μm in diameter) 2000 holes/m2 and 4000 holes/m2. | Polymeric films |
| [56] |
Polyethylene terephthalate/polyethylene laminated film perforated Carbon dioxide (CO2) laser Infrared wavelength of 10.2 μm Pulse duration 3 to 200 μs Threshold PET −74.0 J/cm2, PE −92.5 J/cm2. | Mixed vegetable salad |
| [57] |
Application in Food Sector | Advantages | Disadvantages | Potential Issues |
---|---|---|---|
Laser cooking for precise and controlled heat application. | Lasers may supply the same heat for cooking with the best possible control, reproducibility for targeted energy, and the highest resolution. | It may thermally damage the food materials. | Risk of overcooking or undercooking due to high precision requirements. |
High-resolution heat processing in various food products | High-resolution heating is possible with lasers, suitable for a wide variety of food applications. | It has a significant initial capital cost of equipment. | High upfront costs and maintenance expenditures. |
Use in sterilization and decontamination processes. | Lasers may develop minimal contamination in the processed food. | Low efficiency of lasers. | Lower overall energy efficiency compared to conventional methods. |
Used in non-contact cutting or engraving processes in food preparation. | The noncontact nature of lasers helps to maintain the quality of the final processed product. | When the laser is not continually employed, energy is wasted via beam dumping. | Inefficient energy usage in intermittent processes |
Precision cutting in meat or fish industries. | The primary benefit of laser light is the ability to control beam power by adjusting the current flowing through the electric discharge. | A small heat-impacted zone will form along the cut edge of parts heated during high intensity laser processing. | Changes in product quality at the cut edges. |
Metal-free packaging cutting and engraving | Laser light has the benefit of having a minimum distortion and heat impacted zone. | High laser beam reflectivity on metals. All metals cannot be cut with a laser beam due to issues with beam reflections. | Limitations with metal-containing packaging materials. |
Emerging applications in custom 3D-printed foods. | Laser technology allows for the potential of 3D food printing. | The technology is still in the experimental stage and not yet widely adopted. | Consumer acceptance and regulatory considerations for 3D-printed foods. |
Quality assurance and process control in food industries | Lasers can assist in the monitoring and control of food processing parameters. | Requires complex sensor systems and data processing. | Implementation complexity and cost of sensor systems and data processing infrastructure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavan, P.; Yadav, R.; Sharma, P.; Jaiswal, A.K. Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing. Foods 2023, 12, 2983. https://doi.org/10.3390/foods12162983
Chavan P, Yadav R, Sharma P, Jaiswal AK. Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing. Foods. 2023; 12(16):2983. https://doi.org/10.3390/foods12162983
Chicago/Turabian StyleChavan, Prasad, Rahul Yadav, Pallavi Sharma, and Amit K. Jaiswal. 2023. "Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing" Foods 12, no. 16: 2983. https://doi.org/10.3390/foods12162983
APA StyleChavan, P., Yadav, R., Sharma, P., & Jaiswal, A. K. (2023). Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing. Foods, 12(16), 2983. https://doi.org/10.3390/foods12162983