Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oleogel Preparation
2.3. Preparation and Characterization of Cocoa Hazelnut Spreads
2.3.1. Rheological Properties
2.3.2. Oil Binding Capacity
2.3.3. Texture Measurements
2.3.4. Sensory Analysis
2.4. Experimental Design and Data Analysis
3. Results
3.1. Rheological Properties
3.2. Oil Binding Capacity
3.3. Texture Properties
3.4. Sensory Evaluation
3.5. Multivariable Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glicerina, V.; Balestra, F.; Pinnavaia, G.G.; Dalla Rosa, M.; Romani, S. Rheological characteristics of nut creams realized with different types and amount of fats. J. Food Qual. 2013, 36, 5. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Hogstrand, C. Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA J. 2018, 16, e05083. [Google Scholar] [PubMed]
- Goh, M.; Maulidiani, M.; Rudiyanto, R.; Abas, F.; Lai, O.M.; Nyam, K.L.; Alharthi, F.A.; Nehdi, I.A.; Tan, C.P. The detection of glycidyl ester in edible palm.based cooking oil using FTIR-chemometrics and H NMR analysis. Food Control 2021, 125, 108018. [Google Scholar] [CrossRef]
- Kovacs, A.; Kormendi, L.; Kerti, K.B. Palm oil substitution in hazelnut spread. Prog. Agric. Eng. Sci. 2021, 17, 111–117. [Google Scholar] [CrossRef]
- Aydemir, O. Utilization of different oils and fats in cocoa hazelnut cream production. J. Food Process. Preserv. 2019, 43, 13930. [Google Scholar] [CrossRef]
- Malvano, F.; Laudisio, M.; Albanese, D.; d’Amore, M.; Marra, F. Olive oil-based oleogel as fat replacer in a sponge cake: A comparative study and optimization. Foods 2022, 11, 2643. [Google Scholar] [CrossRef] [PubMed]
- Frolova, Y.; Sarkisyan, V.; Sobolev, R.; Makarenko, M.; Semin, M.; Kochetkova, A. The influence of Edible Oils’ composition on the properties of Beeswax-based oleogels. Gels 2022, 8, 48. [Google Scholar] [CrossRef]
- Zbikowska, A.; Onacik-Gur, S.; Kowalska, M.; Sowinski, M.; Szymanske, I.; Zbikowska, K.; Marciniak-Lukasiak, K.; Werpachowski, W. Analysis of stability, rheological and structural properties of oleogels obtained from peanut oil structured with yellow beeswax. Gels 2022, 8, 448. [Google Scholar] [CrossRef]
- Valloppi, F.; Calligaris, S.; Marangoni, A.G. Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols. Eur. J. Lipid Sci. Technol. 2017, 119, 1600252. [Google Scholar] [CrossRef]
- Alfutimie, A.; Al-Janabi, N.; Curtis, R.; Tiddy, G.J.T. The effect of monoglycerides on the crystallization of triglyceride. Colloids Surf. A Physicochem. Eng. 2016, 494, 170–179. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ogutcu, M. Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. Int. J. Food Sci. 2014, 79, 9. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocoll. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A review of current and potential applications. Foods 2019, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Vincente, A.A.; Cunha, R.L.; Pastrana, L.M. Omega-3 and polyunsaturated fatty acids-enriched hamburgers using sterol-based oleogels. Eur. J. Lipid Sci. Tech. 2019, 121, 1900111. [Google Scholar] [CrossRef]
- Moriano, M.E.; Alamprese, C. Organogels as novel ingredients for low saturated fat ice creams. LWT 2017, 86, 371–376. [Google Scholar] [CrossRef]
- Park, C.; Bemer, H.L.; Maleky, F. Oxidative stability of rice bran wax oleogels and an oleogel cream cheese product. J. Am. Oil Chem. Soc. 2018, 95, 1267–1275. [Google Scholar] [CrossRef]
- Doan, C.D.; Patel, A.R.; Tavernier, I.; De Clercq, N.; Van Raemdonck, K.; Van de Walle, D. The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. Eur. J. Lipid Sci. Tech. 2016, 118, 1903–1914. [Google Scholar] [CrossRef]
- Bascuas, S.; Espert, M.; Llorca, E.; Quiles, A.; Salvador, A.; Hernando, I. Structural and sensory studies on chocolate spreads with hydrocolloid-based oleogels as a fat alternative. LWT 2021, 135, 110228. [Google Scholar] [CrossRef]
- David, A.; David, M.; Lesniarek, P.; Corfias, E.; Pululu, Y.; Delample, M.; Snabre, P. Oleogelation of rapeseed oil with cellulose fibers as an innovative strategy for palm oil substitution in chocolate spreads. J. Food Eng. 2021, 292, 11031. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M.; Valoppi, F.; Barba, L.; Calligaris, S.; Nicoli, M.C. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 2017, 86, 523–529. [Google Scholar] [CrossRef]
- Borriello, A.; Miele, N.A.; Masi, P.; Cavella, S. Rheological Properties, Particle Size Distribution and Physical Stability of Novel Refined Pumpkin Seed Oil Creams with Oleogel and Lucuma Powder. Foods 2022, 11, 1844. [Google Scholar] [CrossRef] [PubMed]
- Kangchai, W.; Sangsirimonkolying, R.; Methacanon, P. Feasibility study of margarine substitute based on gelatin-oil emulsion gel. Chiang Mai J. Sci. 2018, 45, 505–514. [Google Scholar]
- Albanese, D.; Di Matteo, M.; Poiana, M.; Spagnamusso, S. Espresso coffee (EC) by POD: Study of thermal profile during extraction process and influence of water temperature on chemical-physical and sensorial properties. Int. Food Res. J. 2009, 42, 727–732. [Google Scholar] [CrossRef]
- ISO 3972: 2011; Sensory Analysis—Methodology—Method of Investigating Sensitivity of Taste. ISO: Geneva, Switzerland, 2011.
- ISO 5496: 2006; Sensory Analysis—Methodology—Initiation and Training of Assessors in the Detection and Recognition of Odours. ISO: Geneva, Switzerland, 2006.
- Sipos, L.; Nyitrai, A.; Hitka, G.; Friedrich, L.F.; Kókai, Z. Sensory Panel Performance Evaluation—Comprehensive Review of Practical Approaches. Appl. Sci. 2021, 11, 11977. [Google Scholar] [CrossRef]
- Mirani, A.; Goli, M. Production of the eggplant-fiber incorporated cupcake and evaluating its chemical, textural and colorimetric properties over a ten-day storage time. J. Food Process. Preserv. 2021, 45, 15311. [Google Scholar] [CrossRef]
- Borhan, F.P.; Gani, S.S.A.; Shamsuddin, R. The use of D-optimal mixture design in optimizing okara soap formulation for stratum corneum application. Sci. World J. 2014, 173979. [Google Scholar]
- Aidoo, R.P.; Depypere, F.; Afoakwa, E.O.; Dewettinck, K. Industrial manufacture of sugar-free chocolates—Applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci. Technol. 2013, 32, 84–96. [Google Scholar] [CrossRef]
- Lopez-Martinez, A.; Charò-Alonso, M.A.; Marangoni, A.G.; Toro-Vazquez, J.F. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 2015, 72, 37–46. [Google Scholar] [CrossRef]
- Abdolmaleki, K.; Alizadeh, L.; Nayebzadeh, K.; Baranowska, H.M.; Kowalczewski, P.L.; Khaneghah, A.M. Potential Application of Hydrocolloid-Based Oleogel and Beeswax Oleogel as Partial Substitutes of Solid Fat in Margarine. Appl. Sci. 2022, 12, 12136. [Google Scholar] [CrossRef]
- Lazic, Z.R. Design of Experiments in Chemical Engineering: A Practical Guide; Wiley: New York, NY, USA, 2004. [Google Scholar]
Parameters | Attribute Category | Evaluation |
---|---|---|
Fluidness | Non-oral texture | Dip the spoon in the cup and evaluate the rapidity of detachment |
Spreadability | Non-oral texture | Evaluate the ease with which the sample is spread. Use the biscuit and the knife to perform the test. |
Meltability | Oral texture | Place the sample between the tongue and palate and evaluate its melting rate |
Adhesiveness to mouth | Oral texture | After meltability assessment, evaluate the force required to remove the sample from the palate using the tongue |
Flavour | Gustative | Taste the cream and evaluate the intensity of the overall flavour |
Compositions | ||||
---|---|---|---|---|
Oleogel [%] | Fat Mixture [%] | |||
Formulation | x1 | x2 | z1 | z2 |
GMS_3PO_0 | 97.00 | 3.00 | 100.00 | 0.00 |
GMS_3PO_25 | 97.00 | 3.00 | 75.00 | 25.00 |
GMS_3PO_50 | 97.00 | 3.00 | 50.00 | 50.00 |
GMS_3PO_75 | 97.00 | 3.00 | 25.00 | 75.00 |
GMS_3.7PO_0 | 96.00 | 3.70 | 100.00 | 0.00 |
GMS_3.7PO_50 | 96.30 | 3.70 | 50.00 | 50.00 |
GMS_4.5PO_25 | 95.50 | 4.50 | 75.00 | 25.00 |
GMS_4.5PO_75 | 95.50 | 4.50 | 25.00 | 75.00 |
GMS_5.4PO_0 | 94.60 | 5.40 | 100.00 | 0.00 |
GMS_5.4PO_50 | 94.60 | 5.40 | 50.00 | 50.00 |
GMS_5.4PO_75 | 94.60 | 5.40 | 25.00 | 75.00 |
GMS_6PO_0 | 94.00 | 6.00 | 100.00 | 0.00 |
GMS_6PO_25 | 94.00 | 6.00 | 75.00 | 25.00 |
GMS_6PO_50 | 94.00 | 6.00 | 50.00 | 50.00 |
GMS_6PO_75 | 94.00 | 6.00 | 25.00 | 75.00 |
Formulation | ηCa [Pa s] | Spreadability [N mm] | OBC [%] |
---|---|---|---|
y1 | y2 | y3 | |
GMS_3PO_0 | 3.12 ± 0.50 a | 8.47 ± 0.11 a | 93.03 ± 0.21 a |
GMS_3PO_25 | 6.22 ± 0.35 d | 22.15 ± 1.81 b | 99.12 ± 0.11 d |
GMS_3PO_50 | 7.45 ± 0.72 e | 24.80 ± 0.08 b | 99.19 ± 0.26 d |
GMS_3PO_75 | 9.01 ± 1.01 f | 43.63 ± 1.29 e | 99.59 ± 0.23 d |
GMS_3.7PO_0 | 4.46 ± 0.23 b | 9.31 ± 1.48 a | 94.90 ± 0.74 b |
GMS_3.7PO_50 | 7.86 ± 0.45 e | 25.06 ± 0.33 b | 98.56 ± 0.54 c |
GMS_4.5PO_25 | 9.05 ± 0.89 f | 23.01 ± 2.75 b | 98.27 ± 0.39 c |
GMS_4.5PO_75 | 10.34 ± 1.00 f | 37.80 ± 1.96 d | 97.77 ± 0.57 c |
GMS_5.4PO_0 | 5.29 ± 0.34 c | 10.88 ± 0.49 a | 96.95 ± 0.73 c |
GMS_5.4PO_50 | 9.13 ± 0.41 f | 32.02 ± 0.80 c | 97.89 ± 0.18 c |
GMS_5.4PO_75 | 14.66 ± 1.11 g | 28.53 ± 3.12 b | 99.97 ± 0.01 d |
GMS_6PO_0 | 7.46 ± 0.25 e | 10.23 ± 1.07 a | 98.93 ± 0.23 c |
GMS_6PO_25 | 9.48 ± 0.41 f | 28.81 ± 1.60 b | 97.04 ± 0.06 c |
GMS_6PO_50 | 10.31 ± 0.67 f | 32.71 ± 1.66 c | 98.79 ± 0.17 c |
GMS_6PO_75 | 21.52 ± 0.87 h | 58.14 ± 0.02 f | 99.85 ± 0.04 d |
ηCa | Spreadability | OBC | |
---|---|---|---|
Model | Significant | Significant | Significant |
R2 | 0.9270 | 0.9475 | 0.9316 |
Adjusted R2 | 0.7956 | 0.8529 | 0.8084 |
p value | 0.0223 | 0.0103 | 0.0192 |
F value | 7.0538 | 10.0217 | 7.5632 |
Lack of fit | Not significant | Not significant | Not significant |
Standard deviation | 1.6560 | 6.4583 | 0.8603 |
ηca | Spreadability | OBC | ||||
---|---|---|---|---|---|---|
Regression Parameter | i = 1 | p Value | i = 2 | p Value | i = 3 | p Value |
6.4577 | 0.0007 | 24.6352 | 0.0091 | 97.7534 | <0.0001 | |
12.1929 | <0.0001 | 36.3712 | 0.0017 | 98.6873 | <0.0001 | |
−6.0255 | 0.2432 | −37.2292 | 0.2878 | −3.4975 | 0.2248 | |
(z2 = 0%) | −3.0657 | 0.0583 | −14.8467 | 0.1455 | −4.4319 | 0.0014 |
(z2 = 25%) | 0.6647 | 0.6466 | −0.2061 | 0.9833 | 1.7214 | 0.0718 |
(z2 = 50%) | 1.0190 | 0.4527 | 0.6260 | 0.9448 | 1.1973 | 0.1452 |
(z2 = 75%) | 1.3821 | 0.3581 | 14.4269 | 0.1455 | 1.5133 | 0.1022 |
(z2 = 0) | −4.4681 | 0.0138 | −20.4994 | 0.0558 | 0.3958 | 0.5785 |
(z2 = 25%) | −1.8108 | 0.2405 | −5.2821 | 0.5964 | −1.2925 | 0.1472 |
(z2 = 50%) | −1.3212 | 0.3228 | 1.9758 | 0.8208 | −0.5767 | 0.4275 |
(z2 = 75%) | 7.6002 | 0.0013 | 23.8057 | 0.0319 | 1.4733 | 0.0732 |
8.8654 | 0.3876 | 51.1299 | 0.4632 | 5.1963 | 0.3545 |
Sample | Casson’s Plastic Viscosity ηCa [Pa∙s] | Casson’s Yield Stress τCa [Pa] | R2 |
---|---|---|---|
GMS_3PO_0 | 3.12 ± 0.50 a | 39.67 ± 1.21 d | 0.98 |
GMS_3PO_25 | 6.22 ± 0.35 d | 38.76 ± 1.11 d | 0.97 |
GMS_3PO_50 | 7.45 ± 0.72 e | 33.23 ± 2.12 c | 0.98 |
GMS_3PO_75 | 9.01 ± 1.01 f | 30.35 ± 1.01 c | 0.99 |
GMS_3.7PO_0 | 4.46 ± 0.23 b | 23.97 ± 1.25 b | 0.99 |
GMS_3.7PO_50 | 7.86 ± 0.45 e | 54.82 ± 2.28 e | 0.98 |
GMS_4.5PO_25 | 9.05 ± 0.89 f | 50.18 ± 2.12 e | 0.99 |
GMS_4.5PO_75 | 10.34 ± 1.00 f | 52.61 ± 2.78 e | 0.96 |
GMS_5.4PO_0 | 5.29 ± 0.34 c | 14.88 ± 1.56 a | 0.99 |
GMS_5.4PO_25 | 9.13 ± 0.41 f | 21.67 ± 1.99 b | 0.99 |
GMS_5.4PO_50 | 14.66 ± 1.11 g | 48.99 ± 1.21 e | 0.97 |
GMS_6PO_0 | 7.46 ± 0.25 e | 25.78 ± 1.02 b | 0.99 |
GMS_6PO_25 | 9.48 ± 0.41 f | 26.83 ± 1.06 b | 0.98 |
GMS_6PO_50 | 10.31 ± 0.67 f | 68.28 ± 2.04 f | 0.99 |
GMS_6PO_75 | 21.52 ± 0.87 h | 48.35 ± 2.13 e | 0.98 |
Control | 6.77 ± 0.23 d | 85.19 ± 2.34 g | 0.97 |
Sample | OBC [%] |
---|---|
GMS_3PO_0 | 93.03 ± 0.21 a |
GMS_3PO_25 | 99.12 ± 0.11 d |
GMS_3PO_50 | 99.19 ± 0.26 d |
GMS_3PO_75 | 99.59 ± 0.23 d |
GMS_3.7PO_0 | 94.90 ± 0.74 b |
GMS_3.7PO_50 | 98.56 ± 0.54 c |
GMS_4.5PO_25 | 98.27 ± 0.39 c |
GMS_4.5PO_75 | 97.77 ± 0.57 c |
GMS_5.4PO_0 | 96.95 ± 0.73 c |
GMS_5.4PO_25 | 97.89 ± 0.18 c |
GMS_5.4PO_50 | 99.97 ± 0.01 d |
GMS_6PO_0 | 98.93 ± 0.23 c |
GMS_6PO_25 | 97.04 ± 0.06 c |
GMS_6PO_50 | 98.79 ± 0.17 c |
GMS_6PO_75 | 99.85 ± 0.04 d |
Control | 99.95 ± 0.03 d |
Sample | Hardness [N] | Spreadability [N mm] |
---|---|---|
GMS_3PO_0 | 2.84 ± 0.11 a | 8.47 ± 0.11 a |
GMS_3PO_25 | 6.65 ± 0.43 b | 22.15 ± 1.81 b |
GMS_3PO_50 | 7.13 ± 0.14 b | 24.80 ± 0.08 b |
GMS_3PO_75 | 12.78 ± 0.28 c | 43.63 ± 1.29 e |
GMS_3.7PO_0 | 3.03 ± 1.22 a | 9.31 ± 1.48 a |
GMS_3.7PO_50 | 6.34 ± 0.26 b | 25.06 ± 0.33 b |
GMS_4.5PO_25 | 7.28 ± 1.20 b | 23.01 ± 2.75 b |
GMS_4.5PO_75 | 11.49 ± 1.32 c | 37.80 ± 1.96 d |
GMS_5.4PO_0 | 2.70 ± 0.21 a | 10.88 ± 0.49 a |
GMS_5.4PO_25 | 8.86 ± 0.58 b | 32.02 ± 0.80 c |
GMS_5.4PO_50 | 8.35 ± 0.84 b | 28.53 ± 3.12 b |
GMS_6PO_0 | 3.50 ± 0.27 a | 10.23 ± 1.07 a |
GMS_6PO_25 | 8.48 ± 0.10 b | 28.81 ± 1.60 b |
GMS_6PO_50 | 8.13 ± 1.58 b | 32.71 ± 1.66 c |
GMS_6PO_75 | 32.12 ± 0.92 e | 58.14 ± 0.02 f |
Control | 16.92 ± 0.53 d | 61.94 ± 2.96 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, F.; Lavorgna, A.; Incarnato, L.; Malvano, F.; Albanese, D. Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil. Foods 2023, 12, 3122. https://doi.org/10.3390/foods12163122
Marra F, Lavorgna A, Incarnato L, Malvano F, Albanese D. Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil. Foods. 2023; 12(16):3122. https://doi.org/10.3390/foods12163122
Chicago/Turabian StyleMarra, Francesco, Arianna Lavorgna, Loredana Incarnato, Francesca Malvano, and Donatella Albanese. 2023. "Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil" Foods 12, no. 16: 3122. https://doi.org/10.3390/foods12163122
APA StyleMarra, F., Lavorgna, A., Incarnato, L., Malvano, F., & Albanese, D. (2023). Optimization of Hazelnut Spread Based on Total or Partial Substitution of Palm Oil. Foods, 12(16), 3122. https://doi.org/10.3390/foods12163122