Studies on Sensory and Phytochemical Characteristics of Poppy (Papaver somniferum L.) Varieties for Their Oil Utilisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growth Conditions and Sampling
2.2. Production of Oil and Flour Samples
2.3. Sensory Test
2.4. Determination of Fatty Acid Content and Composition of the Oil and Flour Samples
2.5. Determination of the Volatile Compounds of the Oil
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sensory Test
3.2. Fatty Acid Composition
3.3. Volatile Composition
3.4. Correlation among Sensory and Phytochemical Values
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sárkány, S.; Bernáth, J.; Tétényi, P. A mák rendszertani helye, rokonsága, elterjedése és kemotaxonómiája. In Magyarország Kultúrflórája: A Mák (Papaver somniferum L.); Akadémiai Kiadó: Budapest, Hungary, 2001. [Google Scholar]
- Németh, É. Series Recent Progress in Medicinal Plants Biotechnology and Genetic Engineering; 4SCI TECH Pub: Houston, TX, USA, 2002. [Google Scholar]
- Beare-Rogers, J.L.; Gray, L.; Nera, E.A.; Levin, O.L. Nutritional Properties of Poppyseed Oil Relative to Some Other Oils. Ann. Nutr. Metab. 1979, 23, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Bernáth, J. Poppy—The Genus Papaver; Harwood Academic Press: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kelly, C. Az étrendi zsír és a szív-és érrendszeri betegségek. A Hús 2002, 12, 143–147. [Google Scholar]
- Cevik–Demirkan, A.; Oztaşan, N.; Oguzhan, E.; Cil, N.; Coskun, S. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats. Biotech. Histochem. 2012, 87, 499–505. [Google Scholar] [CrossRef]
- Hörömpöli, T. Amit a máktermesztésről tudni kell. In Gazda Füzetek; Regiocon Kft: Kompolt, Hungary, 1995; Volume 3. [Google Scholar]
- Kliton, J.; Polgár, C.; Tenke, P.; Kovács, G.; Major, T.; Stelczer, G.; Ágoston, P. Izominvazív hólyagrák képvezérelt sugárkezelése intravesicalisan befecskendezett lipiodolos jelöléssel. A hólyagmegtartó kezelés új lehetősége. Orv. Hetil. 2017, 158, 2041–2047. [Google Scholar] [CrossRef]
- Bernáth, J.; Németh, É. A Mák. Termesztés és Receptek; Cser Kiadó: Budapest, Hungary, 2010. [Google Scholar]
- Gupcsó, K.; Sotkó, G.; Zámboriné Németh, É. A mák magjának kémiai összetétele és olajcélú hasznosításának háttere. Kertgazdaság 2022, 54, 51–63. [Google Scholar]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E.; Oliveira, M.B.P.P. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Krist, S.; Stuebiger, G.; Unterweger, H.; Bandion, F.; Buchbauer, G. Analysis of Volatile Compounds and Triglycerides of Seed Oils Extracted from Different Poppy Varieties (Papaver somniferum L.). J. Agric. Food Chem. 2005, 53, 8310–8316. [Google Scholar] [CrossRef]
- Emir, D.D.; Güneșer, O.; Yılmaz, E. Cold pressed poppy seed oils: Sensory properties, aromatic profiles and consumer preferences. Grasas Aceites 2014, 65, e029. [Google Scholar] [CrossRef]
- Kopuncová, M.; Sádecká, J.; Kolek, E.; Havrlentová, M.; Blasko, J. Key odour-active compounds in selected Slovakian poppy seed. J. Food Nutr. Res. 2016, 55, 237–246. [Google Scholar]
- Luhmer, K.; Schulze-Kaysers, N.; Feuereisen, M.; Wirth, L.; Maretzky, F.; Wüst, M.; Blum, H.; Dörr, E.; Pude, R. Fatty Acid Composition, Tocopherols, Volatile Compounds, and Sensory Evaluation of Low Morphine Yielding Varieties of Poppy (Papaver somniferum L.) Seeds and Oils. J. Agric. Food Chem. 2021, 69, 3439–3451. [Google Scholar] [CrossRef]
- Öğütçü, M.; Yilmaz, E. Path Analysis for the Behavior of Traditional Olive Oil Consumer in Canakkale. Food Sci. Technol. Res. 2009, 15, 19–26. [Google Scholar] [CrossRef]
- Brühl, L.; Matthäus, B. Sensory assessment of virgin rapeseed oils. Eur. J. Lipid Sci. Technol. 2008, 110, 608–610. [Google Scholar] [CrossRef]
- ISO 8589:1988; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 1988. Available online: https://www.iso.org/standard/15879.html (accessed on 19 July 2023).
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/58042.Html (accessed on 19 July 2023).
- MSZ ISO 7009:1983; Olajmagvak Olajtartalmának Meghatározása (Visszavont Szabvány), (Determination of the Oil Content of Oil Seeds (Withdrawn Standard). The Hungarian Standards Institution (MSZT): Budapest, Hungary, 1983.
- MSZ EN ISO 12966-2; Állati és Növényi Zsírok és Olajok. Zsírsav-Metil-Észterek Gázkromatográfiás Maghatározása. 2. Rész: A Zsírsav-Metil-Észterek Előkészítése. (Visszavont Szabvány), (Animal and Vegetable Fats and Oils. Determination of Fatty Acid Methyl Esters by Gas Chromatography. Part 2: Preparation of Fatty Acid Methyl Esters. (Withdrawn Standard). European Committee for Standardization: Bruxelles, Belgium, 2011.
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- György, Z.; Alam, S.; Priyanka, P.; Zámboriné Németh, É. Genetic Diversity and Relationships of Opium Poppy Accessions Based on SSR Markers. Agriculture 2022, 12, 1343. [Google Scholar] [CrossRef]
- Rokosik, E.; Dwiecki, K.; Siger, A. Nutritional quality and phytochemical contents of cold pressed oil obtained from chia, milk thistle, nigella, and white and black poppy seeds. Grasas Aceites 2020, 71, e368. [Google Scholar] [CrossRef]
- Nergiz, C.; Ötles, S. The proximate composition and some minor constituents of poppy seeds. J. Sci. Food Agric. 1994, 66, 117–120. [Google Scholar] [CrossRef]
- Azcan, N.; Ozturk Kalender, B.; Kara, M. Investigation of Turkish Poppy Seeds and Seed Oils. Chem. Nat. Compd. 2004, 40, 370–372. [Google Scholar] [CrossRef]
- Musa Özcan, M.; Atalay, Ç. Determination of seed and oil properties of some poppy (Papaver somniferum L.) varieties. Grasas Aceites 2006, 57, 169–174. [Google Scholar] [CrossRef]
- Valizadeh, N.; Rahimi, A.; Arslan, N. Variation in fatty acid composition of three turkish slit flower opium poppy (Papaver somniferum L.) lines. Int. J. Biosci. 2014, 4, 268–274. [Google Scholar]
- Dündar Emir, D.; Aydeniz, B.; Yilmaz, E. Effects of roasting and enzyme pretreatments on yield and quality of cold-pressed poppy seed oils. Turk. J. Agric. For. 2015, 39, 260–271. [Google Scholar] [CrossRef]
- Lančaričová, A.; Havrlentová, M.; Muchová, D.; Bednárová, A. Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia. Agriculture 2016, 62, 19–27. [Google Scholar] [CrossRef]
- Brčić, M.; Pospišil, M.; Pospišil, A.; Butorac, J.; Škevin, D.; Obranović, M. The agronomic traits of foreign cultivars and domestic populations of oilseed poppy. Poljoprivreda 2016, 22, 23–28. [Google Scholar] [CrossRef]
- Ghafoor, K.; Özcan, M.M.; AL-Juhaimi, F.; Babiker, E.E.; Fadimu, G.J. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT 2019, 99, 490–496. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Czaplicki, S.; Konopka, I. Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT 2020, 134, 110167. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Chen, N.; Chen, Y. Chemical composition of the volatile oil of Papaver somniferum. Lanzhou Daxue Xuebao Ziran Kexueban 1990, 26, 145–146. [Google Scholar]
- Kako, H.; Fukumoto, S.; Kobayashi, Y.; Yokogoshi, H. Effects of direct exposure of green odour components on dopamine release from rat brain striatal slices and PC12 cells. Brain Res. Bull. 2008, 75, 706–712. [Google Scholar] [CrossRef]
Variety/Content | Poppy Seed Oil Density g/cm3 | C16:0 Palmitic Acid | C16:1 Palmitoleic Acid | C17:0 Margaric Acid | C18:0 Stearic Acid | C18:1n9 Oleic Acid | C18:2 Linoleic Acid | C18:3n3 Linolenic Acid | C20:0 Arachinic Acid | C20:1 Eicosenoic Acid | C20:2 Eicosadienoic Acid | C22:0 Behenic Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Snow White 2021 | 0.91 | 8.50 | 0.12 | 0.05 | 2.10 | 13.15 | 75.40 | 0.45 | 0.11 | 0.08 | 0.03 | 0.02 |
Snow White 2022 | 0.91 | 8.63 | 0.13 | 0.05 | 2.30 | 14.83 | 73.40 | 0.45 | 0.10 | 0.07 | 0.03 | 0.01 |
Albakomp 2021 | 0.92 | 9.89 | 0.15 | 0.05 | 2.13 | 15.68 | 71.28 | 0.55 | 0.13 | 0.09 | 0.03 | 0.02 |
Orel 2021 | 0.90 | 8.60 | 0.11 | 0.04 | 2.32 | 13.09 | 75.09 | 0.50 | 0.12 | 0.07 | 0.03 | 0.02 |
Zeno Plus 2021 | 0.91 | 8.33 | 0.13 | 0.05 | 2.38 | 15.47 | 72.93 | 0.45 | 0.12 | 0.08 | 0.03 | 0.02 |
Zeno Plus 2022 | 0.91 | 8.22 | 0.12 | 0.05 | 2.24 | 12.68 | 75.91 | 0.53 | 0.12 | 0.07 | 0.03 | 0.02 |
Korona 2021 | 0.92 | 8.00 | 0.11 | 0.04 | 2.55 | 19.14 | 69.32 | 0.54 | 0.15 | 0.10 | 0.02 | 0.02 |
Korona 2022 | 0.91 | 7.79 | 0.10 | 0.04 | 2.22 | 18.90 | 70.15 | 0.52 | 0.12 | 0.10 | 0.03 | 0.02 |
Morgana 2021 | 0.90 | 9.23 | 0.16 | 0.05 | 2.28 | 20.07 | 67.46 | 0.49 | 0.14 | 0.08 | 0.02 | 0.02 |
Morgana 2022 | 0.91 | 9.20 | 0.17 | 0.04 | 2.39 | 23.37 | 64.02 | 0.51 | 0.16 | 0.09 | 0.02 | 0.02 |
Average% | 0.91 | 8.64 | 0.13 | 0.05 | 2.29 | 16.64 | 71.50 | 0.50 | 0.13 | 0.08 | 0.03 | 0.02 |
Variety/Content | Oil Content % | C16:0 Palmitic Acid | C16:1 Palmitoleic Acid | C17:0 Margaric Acid | C18:0 Stearic Acid | C18:1n9 Oleic Acid | C18:2 Linoleic Acid | C18:3n3 Linolenic Acid | C20:0 Arachinic Acid | C20:1 Eicosenoic Acid | C20:2 Eicosadienoic Acid | C22:0 Behenic Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Snow White 2021 | 31.10 | 8.33 | 0.12 | 0.05 | 2.37 | 13.84 | 74.34 | 0.58 | 0.18 | 0.10 | 0.04 | 0.05 |
Snow White 2022 | 32.20 | 8.63 | 0.14 | 0.06 | 2.60 | 13.18 | 74.28 | 0.72 | 0.20 | 0.09 | 0.03 | 0.06 |
Albakomp 2021 | 27.50 | 9.61 | 0.15 | 0.05 | 2.42 | 16.59 | 70.03 | 0.71 | 0.21 | 0.12 | 0.03 | 0.07 |
Orel 2021 | 37.20 | 8.34 | 0.11 | 0.04 | 2.48 | 13.57 | 74.38 | 0.72 | 0.18 | 0.09 | 0.04 | 0.05 |
Zeno Plus 2021 | 31.20 | 8.33 | 0.12 | 0.05 | 2.37 | 13.84 | 74.34 | 0.58 | 0.18 | 0.10 | 0.04 | 0.05 |
Zeno Plus 2022 | 33.00 | 8.44 | 0.12 | 0.05 | 2.56 | 16.04 | 71.97 | 0.51 | 0.15 | 0.09 | 0.03 | 0.04 |
Korona 2021 | 35.00 | 8.26 | 0.11 | 0.05 | 2.70 | 20.04 | 67.85 | 0.61 | 0.19 | 0.12 | 0.03 | 0.05 |
Korona 2022 | 28.90 | 8.11 | 0.10 | 0.05 | 2.48 | 20.30 | 67.92 | 0.63 | 0.19 | 0.13 | 0.04 | 0.05 |
Morgana 2021 | 32.30 | 9.45 | 0.16 | 0.05 | 2.37 | 20.60 | 66.43 | 0.60 | 0.18 | 0.09 | 0.03 | 0.04 |
Morgana 2022 | 34.90 | 9.66 | 0.17 | 0.05 | 2.56 | 24.11 | 62.44 | 0.61 | 0.21 | 0.10 | 0.03 | 0.05 |
Average % | 32.33 | 8.87 | 0.13 | 0.05 | 2.49 | 17.21 | 70.40 | 0.63 | 0.19 | 0.10 | 0.03 | 0.05 |
Component | RT | LRI | Albakomp 2021 | Korona 2021 | Korona 2022 | Morgana 2021 | Morgana 2022 | Orel 2021 | Snow White 2021 | Snow White 2022 | Zeno Plus 2021 | Zeno Plus 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pentane | 1.5 | 520 | 0 | 3.15 | 0 | 0 | 0 | 11.29 | 2.12 | 3.11 | 1.12 | 0.29 |
acetic acid | 1.77 | 646 | 6.51 | 8.91 | 68.17 | 6.21 | 7.12 | 3.91 | 4.64 | 25.11 | 9.66 | 0.95 |
3-methyl-butanal | 2 | 652 | 1.62 | 0 | 0 | 19.97 | 1.17 | 0.11 | 0 | 0 | 0.12 | 0 |
2-methyl-butanal | 2.04 | 661 | 0 | 0 | 0 | 7.66 | 0.86 | 0 | 0 | 0 | 0.11 | 0 |
3-methyl-butanol | 2.48 | 685 | 0 | 0 | 0 | 29.75 | 1.05 | 0.33 | 0 | 0 | 2.61 | 0 |
2-pentanone | 2.54 | 688 | 5.01 | 0 | 0 | 0 | 0 | 0 | 0.36 | 0 | 0 | 49.06 |
pentanol | 2.78 | 763 | 3.84 | 7.09 | 3.06 | 5.72 | 8.44 | 6.97 | 1.37 | 13.03 | 2.87 | 3.67 |
n-hexanal | 3.1 | 797 | 51.75 | 54.55 | 15.34 | 17.01 | 57.7 | 34.95 | 67.37 | 52.41 | 52.38 | 15.51 |
hexanol | 4.21 | 865 | 18.21 | 6.39 | 0.73 | 1.17 | 8.66 | 6.25 | 13.86 | 1.26 | 5.54 | 12.35 |
heptan-2-one | 4.6 | 888 | 0 | 0 | 0 | 0 | 2.5 | 7.61 | 0 | 0.83 | 1.09 | 8.52 |
2-pentylfuran | 7.07 | 997 | 0 | 2.48 | 0 | 0.79 | 3.78 | 13 | 0.56 | 0 | 3.4 | 2.11 |
caproic acid | 7.29 | 1002 | 0 | 4.48 | 2.2 | 0 | 5.17 | 1.8 | 0 | 0 | 13.88 | 4.66 |
gamma-n-caprolactone | 9.55 | 1066 | 0 | 0.88 | 0 | 0 | 0 | 1.29 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupcsó, K.; Kókai, Z.; Bálint, M.; Tavaszi-Sárosi, S.; Németh, É.Z. Studies on Sensory and Phytochemical Characteristics of Poppy (Papaver somniferum L.) Varieties for Their Oil Utilisation. Foods 2023, 12, 3165. https://doi.org/10.3390/foods12173165
Gupcsó K, Kókai Z, Bálint M, Tavaszi-Sárosi S, Németh ÉZ. Studies on Sensory and Phytochemical Characteristics of Poppy (Papaver somniferum L.) Varieties for Their Oil Utilisation. Foods. 2023; 12(17):3165. https://doi.org/10.3390/foods12173165
Chicago/Turabian StyleGupcsó, Katalin, Zoltán Kókai, Melinda Bálint, Szilvia Tavaszi-Sárosi, and Éva Zámboriné Németh. 2023. "Studies on Sensory and Phytochemical Characteristics of Poppy (Papaver somniferum L.) Varieties for Their Oil Utilisation" Foods 12, no. 17: 3165. https://doi.org/10.3390/foods12173165
APA StyleGupcsó, K., Kókai, Z., Bálint, M., Tavaszi-Sárosi, S., & Németh, É. Z. (2023). Studies on Sensory and Phytochemical Characteristics of Poppy (Papaver somniferum L.) Varieties for Their Oil Utilisation. Foods, 12(17), 3165. https://doi.org/10.3390/foods12173165