Effects of Cooking Processes on Protein Nutritional Values and Volatile Flavor Substances of Silver Carp (Hypophthalmichthys molitrix)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cooking Treatment for Silver Carp Meat
2.3. Determination of Chemical Composition
2.4. Determination of Amino Acids
2.5. Nutritional Value Analysis of Silver Carp Meat Protein
2.6. Determination of Flavor Substances in Silver Carp Meat
2.7. OAV Analysis of Flavour Substance Activity Values in Fish
2.8. Data Analysis
3. Results and Discussion
3.1. Effects of Cooking Processing on the Chemical Composition of Silver Carp
3.2. Effects of Cooking Processing on the Protein Nutrition of Silver Carp Meat
3.2.1. Amino Acid Content
3.2.2. Protein Nutrition Indexes
3.3. Effects of Cooking Processes on Flavor Substances of the Silver Carp Meat
3.3.1. Aldehydes in Silver Carp Meat
3.3.2. Hydrocarbons in Silver Carp Meat
3.3.3. Alcohols in Silver Carp Meat
3.3.4. Ketones in Silver Carp Meat
3.3.5. Esters in Silver Carp Meat
3.3.6. Other Compounds in Silver Carp Meat
3.3.7. OAV Values of the Flavor Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Huang, X.; Zhang, Y.; Zou, X.; Tian, L.; Hong, H.; Luo, Y.; Tan, Y. Silver carp (Hypophthalmichthys molitrix) by-product hydrolysates: A new nitrogen source for Bifidobacterium animalis ssp. lactis BB-12. Food Chem. 2023, 404, 134630. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-J.; Li, H.-L.; Xiong, G.-Q.; Cai, J.; Liao, T.; Zu, X.-Y. Extraction, identification and anti-photoaging activity evaluation of collagen peptides from silver carp (Hypophthalmichthys molitrix) skin. LWT 2023, 173, 114384. [Google Scholar] [CrossRef]
- Fu, J.; Sun, C.; Chang, Y.; Li, S.; Zhang, Y.; Fang, Y. Structure analysis and quality evaluation of plant-based meat analogs. J. Texture Stud. 2023, 54, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2022.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2023.
- Fu, X.; Lin, Q.; Xu, S.; Wang, Z. Effect of drying methods and antioxidants on the flavor and lipid oxidation of silver carp slices. LWT-Food Sci. Technol. 2015, 61, 251–257. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Xu, W.; Gao, F.; Zhou, G. Effect of final cooked temperature on tenderness, protein solubility and microstructure of duck breast muscle. LWT Food Sci. Technol. 2013, 51, 266–274. [Google Scholar] [CrossRef]
- Fan, H.; Fan, D.; Huang, J.; Zhao, J.; Zhang, H. Cooking evaluation of crayfish (Procambarus clarkia) subjected to microwave and conduction heating: A visualized strategy to understand the heat-induced quality changes of food. Innov. Food Sci. Emerg. Technol. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Li, J.L.; Tu, Z.C.; Sha, X.M.; Zhang, L.; Tang, P.P. Effect of Frying on Fatty Acid Profile, Free Amino Acids and Volatile Compounds of Grass Carp (Ctenopharyngodon idellus) Fillets. J. Food Process. Preserv. 2016, 41, e13088. [Google Scholar] [CrossRef]
- Haichuan, P.; Qin, Q.; Yunlong, M.; Yingjie, Z.; Hui, L.; Yin, Z. Comparison of Nutritional Composition and Flavor of Sturgeon Meat (Acipenser sturio Linnaeus) Treated by Different Cooking Methods. Mod. Food Sci. Technol. 2022, 38, 236–244. [Google Scholar]
- Wang, K.; Bao, Y.; Wang, Y.; Chen, D.; Zhou, P. Effects of stepwise steaming treatments at different temperatures on the eating quality of fish: A case study of large-mouth bass (Micropterus salmoides). LWT 2020, 132, 109844. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Wu, Z.-X.; Zhao, G.-H.; Li, D.-Y.; Liu, Y.-X.; Qin, L.; Jiang, P.-F.; Zhou, D.-Y. Effect of air frying and baking on physicochemical properties and digestive properties of scallop (Patinopecten yessoensis) adductor muscle. Food Biosci. 2023, 52, 102460. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, N.; Fisk, I.D.; Li, J.; Liu, Y.; Wang, W. Impact of cooking on the sensory perception and volatile compounds of Takifugu rubripes. Food Chem. 2022, 371, 131165. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Qian, Y.L.; Alcazar Magana, A.; Xiong, S.; Qian, M.C. Comparative characterization of aroma compounds in silver carp (Hypophthalmichthys molitrix), pacific whiting (Merluccius productus), and alaska pollock (Theragra chalcogramma) surimi by aroma extract dilution analysis, odor activity value, and aroma recombination studies. J. Agric. Food Chem. 2020, 68, 10403–10413. [Google Scholar] [PubMed]
- GB/T 27624-2011; Manufacturing Practice for Processing of Fresh and Frozen Cultured Takifugu rubripes. Standardization Administration of the People’s Republic of China: Beijing, China, 2011.
- Peng, H.; Zhang, P.; Bai, T.; Chen, X.; Qian, Q.; Xiao, W.; Zhang, Y. Effects of Cooking Treatments on Volatile Flavor Compounds in Sea Bass Meat. J. Chengdu Univ. (Nat. Sci. Ed.) 2020, 41, 272–279. [Google Scholar]
- GB 5009.4-2016; National Standard for Food Safety-Determination of Ash in Food. The Central People’s Government of People’s Republic of China. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.3-2016; National Standard for Food Safety-Determination of Moisture in Food. The Central People’s Government of People’s Republic of China. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.5-2016; National Standard for Food Safety-Determination of Protein in Food. The Central People’s Government of People’s Republic of China. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.6-2016; National Standard for Food Safety-Determination of Fat in Food. The Central People’s Government of People’s Republic of China. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Jin, Y.; Xu, M.; Jin, Y.; Deng, S.; Tao, N.; Qiu, W. Simultaneous Detection and Analysis of Free Amino Acids and Glutathione in Different Shrimp. Foods 2022, 11, 2599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Li, H.; Guo, T.; Jia, J.; Zhang, P.; Wang, L.; Xia, N.; Qian, Q.; Peng, H. Comparison of Nutrition and Flavor Characteristics of Five Breeds of Pork in China. Foods 2022, 11, 2704. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Wang, X.; Zhang, J. Bone soup: Protein nutrition and enzymatic hydrolysis process optimized by response surface method. J. Food Nutr. Res. 2014, 53, 1–12. [Google Scholar]
- Joint FAO/WHO/UNU Expert Consultation on Energy and Protein Requirements. Energy and protein requirements: Report of a joint FAO/WHO/UNU Expert Consultation. In Technical Report Series (WHO); World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Zhang, Y.; Li, H.; Zhang, Y.; Wang, L.; Zhang, P.; Jia, J.; Peng, H.; Qian, Q.; Zhang, J.; Pan, Z. Storage stability and flavor change of marinated pork. Foods 2022, 11, 1825. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, H.; Bai, T.; Qian, Q.; Peng, H.; Mu, Y.; Wang, L.; Liu, B.; Chen, J. Effect of 4 °C and ice temperature on umami-enhancing nucleotides of conditioned pork. Food Chem. 2023, 401, 134146. [Google Scholar] [CrossRef]
- Hausch, B.J.; Lorjaroenphon, Y.; Cadwallader, K.R. Flavor chemistry of lemon-lime carbonated beverages. J. Agric. Food Chem. 2015, 63, 112–119. [Google Scholar] [CrossRef]
- Tenyang, N.; Mawamba, L.A.; Ponka, R.; Mamat, A.; Tiencheu, B.; Womeni, H.M. Effect of cooking and smoking methods on proximate composition, lipid oxidation and mineral contents of Polypterus bichir bichir fish from far-north region of Cameroon. Heliyon 2022, 8, e10921. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- He, J.; Khalesi, H.; Zhang, Y.; Zhao, Y.; Fang, Y. Jerky-Inspired Fabrication of Anisotropic Hydrogels with Widely Tunable Mechanical Properties. Langmuir 2022, 38, 10986–10993. [Google Scholar] [CrossRef] [PubMed]
- Macharáčková, B.; Saláková, A.; Bogdanovičová, K.; Haruštiaková, D.; Kameník, J. Changes in the concentrations of selected mineral elements in pork meat after sous-vide cooking. J. Food Compos. Anal. 2021, 96, 103752. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, J.; Li, F. Changes of visual appeal and bioactive nutritional profiles of the astaxanthin-accumulated new variety and wild-type prawn in Exopalaemon carinicauda submitted to different domestic cooking processes. J. Food Compos. Anal. 2023, 120, 105326. [Google Scholar] [CrossRef]
- Wang, X.; McClements, D.J.; Xu, Z.; Meng, M.; Qiu, C.; Long, J.; Jin, Z.; Chen, L. Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture. Trends Food Sci. Technol. 2023, 138, 297–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Venkitasamy, C.; Pan, Z.; Ke, H.; Guo, S.; Wu, D.; Wu, W.; Zhao, L. Potential effects of umami ingredients on human health: Pros and cons. Crit. Rev. Food Sci. Nutr. 2020, 60, 2294–2302. [Google Scholar] [CrossRef]
- Food Joint Organisation Agricultural. World Health Organisation Ad Hoc Expert Committee: Energy and protein requirements. In FAO Nutrition Meetings Report Series; World Health Organization: Geneva, Switzerland, 1977. [Google Scholar]
- Trevisan, A.J.B.; de Almeida Lima, D.; Sampaio, G.R.; Soares, R.A.M.; Bastos, D.H.M. Influence of home cooking conditions on Maillard reaction products in beef. Food Chem. 2016, 196, 161–169. [Google Scholar] [CrossRef]
- Han, J.-R.; Yan, J.-N.; Sun, S.-G.; Tang, Y.; Shang, W.-H.; Li, A.-T.; Guo, X.-K.; Du, Y.-N.; Wu, H.-T.; Zhu, B.-W. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products. Food Chem. 2018, 261, 337–347. [Google Scholar] [CrossRef]
- Li, X.; Tu, Z.; Sha, X.; Li, Z.; Li, J.; Huang, M. Effect of coating on flavor metabolism of fish under different storage temperatures. Food Chem. X 2022, 13, 100256. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, J.; Chen, W. Analysis of the relationship between microorganisms and flavour development in dry-cured grass carp by high-throughput sequencing, volatile flavour analysis and metabolomics. Food Chem. 2022, 368, 130889. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Wang, P.; Zhan, P.; Tian, H.; Li, T. Effects of different frying temperatures on the aroma profiles of fried mountain pepper (Litsea cubeba (Lour.) Pers.) oils and characterization of their key odorants. Food Chem. 2021, 357, 129786. [Google Scholar] [CrossRef]
- Li, C.; Al-Dalali, S.; Wang, Z.; Xu, B.; Zhou, H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chem. 2022, 386, 132728. [Google Scholar] [CrossRef] [PubMed]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lin, H.; Zeng, C.; Deng, S.; Guidi, A. Polysaccharide impregnation: A pretreatment method for improving scallop quality and flavor. Food Sci. Hum. Wellness 2023, 12, 546–554. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Zhang, Y.; Tang, J.; Yu, D. Determination of aroma compounds in pork broth produced by different processing methods. Flavour Fragr. J. 2016, 31, 319–328. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, S.; Ruan, Q.; Gao, Q.; An, Y.; Hu, Y.; Xiong, S. Differences in flavor characteristics of frozen surimi products reheated by microwave, water boiling, steaming, and frying. Food Chem. 2022, 372, 131260. [Google Scholar] [CrossRef]
- Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Li, H.; Zhang, H. Changes in the volatile components of squid (Illex argentinus) for different cooking methods via headspace–gas chromatography–ion mobility spectrometry. Food Sci. Nutr. 2020, 8, 5748–5762. [Google Scholar] [CrossRef]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. LWT-Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, Q.; Wang, H.; Li, J.; Tu, Z. Insight into the effect of traditional frying techniques on glycosylated hazardous products, quality attributes and flavor characteristics of grass carp fillets. Food Chem. 2023, 421, 136111. [Google Scholar] [CrossRef]
- Leng, L.; Yang, L.; Zu, H.; Yang, J.; Ai, Z.; Zhang, W.; Peng, H.; Zhan, H.; Li, H.; Zhong, Q. Insights into glycine pyrolysis mechanisms: Integrated experimental and molecular dynamics/DFT simulation studies. Fuel 2023, 351, 128949. [Google Scholar] [CrossRef]
- Qiu, D.; Duan, R.; Wang, Y.; He, Y.; Li, C.; Shen, X.; Li, Y. Effects of different drying temperatures on the profile and sources of flavor in semi-dried golden pompano (Trachinotus ovatus). Food Chem. 2023, 401, 134112. [Google Scholar] [CrossRef] [PubMed]
Category | Moisture/% | Protein Content in Dry Basis/(g/100 g) | Ash Content in Dry Basis/(g/100 g) | Fat Content in Dry Basis/(g/100 g) |
---|---|---|---|---|
Raw | 80.80 ± 0.21 a | 24.21 ± 1.40 c | 4.15 ± 0.03 d | 9.25 ± 0.15 b |
fried | 67.06 ± 2.59 d | 30.11 ± 1.01 a | 4.53 ± 0.02 a | 36.26 ± 0.59 a |
Roasted | 70.70 ± 0.80 c | 26.03 ± 1.75 b | 4.26 ± 0.09 b | 12.89 ± 0.62 c |
Steamed | 74.93 ± 0.99 b | 22.53 ± 2.63 a | 4.19 ± 0.03 c | 10.45 ± 0.63 d |
Types of Amino Acids | Raw (mg/g) | Fried (mg/g) | Roasted (mg/g) | Steamed (mg/g) |
---|---|---|---|---|
Phenylalanine | 7.86 ± 0.09 d | 10.64 ± 033 a | 9.89 ± 0.27 b | 8.63 ± 0.11 c |
Alanine | 10.85 ± 0.04 b | 15.80 ± 1.13 a | 14.48 ± 0.58 a | 11.86 ± 0.40 b |
Methionine | 5.53 ± 0.08 b | 7.90 ± 0.32 a | 7.37 ± 0.13 a | 6.33 ± 0.15 b |
Glycine | 8.67 ± 0.28 c | 14.63 ± 1.06 a | 14.42 ± 1.14 a | 10.20 ± 0.30 b |
Glutamate | 26.65 ± 37 d | 40.06 ± 2.24 a | 35.31 ± 1.36 b | 30.47 ± 57 c |
Arginine | 10.92 ± 0.05 b | 16.22 ± 0.83 a | 14.90 ± 0.62 a | 12.33 ± 0.02 b |
Lysine | 18.12 ± 0.16 b | 25.60 ± 1.77 a | 22.95 ± 0.69 a | 20.24 ± 0.19 b |
Tyrosine | 6.74 ± 0.13 c | 9.15 ± 0.23 a | 8.61 ± 0.21 a | 7.52 ± 0.25 b |
Leucine | 14.60 ± 0.17 c | 20.43 ± 1.06 a | 18.82 ± 0.40 b | 16.18 ± 0.17 c |
Proline | 6.08 ± 0.06 b | 9.52 ± 0.22 a | 9.31 ± 0.76 a | 7.08 ± 0.60 b |
Serine | 7.30 ± 0.13 b | 10.45 ± 0.57 a | 9.73 ± 0.42 a | 7.90 ± 0.65 b |
Threonine | 7.93 ± 0.10 b | 11.41 ± 0.93 a | 10.69 ± 0.45 a | 8.98 ± 0.49 b |
Aspartate | 18.59 ± 0.13 c | 26.62 ± 1.99 a | 23.98 ± 1.00 ab | 21.16 ± 0.39 bc |
Ileucine | 9.09 ± 0.21 c | 12.92 ± 0.84 a | 11.59 ± 0.30 b | 10.24 ± 0.11 c |
Valine | 8.02 ± 0.12 d | 11.22 ± 0.49 a | 10.34 ± 0.19 b | 9.09 ± 0.21 c |
Histidine | 5.14 ± 0.02 b | 7.27 ± 0.49 a | 6.64 ± 0.25 a | 5.71 ± 0.16 b |
TAA | 172.08 ± 0.12 b | 249.82 ± 14.40 a | 229.00 ± 8.76 a | 193.87 ± 4.30 b |
EAA | 71.15 ± 0.74 b | 100.11 ± 5.64 a | 91.64 ± 2.43 a | 79.67 ± 1.00 b |
EAAR/% | 41.35 ± 0.45 a | 40.08 ± 0.05 a | 40.03 ± 0.47 a | 41.10 ± 0.40 a |
AAS (Child) | 0.27 ± 0.01 b | 0.38 ± 0.03 a | 0.35 ± 0.01 a | 0.30 ± 0.01 b |
AAS (Adult) | 0.32 ± 0.01 b | 0.46 ± 0.04 a | 0.42 ± 0.02 a | 0.36 ± 0.01 b |
EAAI (Child) | 0.34 ± 0.01 b | 0.48 ± 0.03 a | 0.44 ± 0.01 a | 0.39 ± 0.01 b |
EAAI (Adult) | 0.64 ± 0.01 c | 0.90 ± 0.05 a | 0.83 ± 0.02 a | 0.71 ± 0.01 b |
PER | 5.46 ± 0.06 b | 7.85 ± 0.46 a | 7.17 ± 0.16 a | 6.09 ± 0.05 b |
Compound | Raw | Fried | Roasted | Steamed | ||||
---|---|---|---|---|---|---|---|---|
Types | Relative Content (%) | Types | Relative Content (%) | Types | Relative Content (%) | Types | Relative Content (%) | |
Aldehydes | 4 | 2.76 | 9 | 11.57 | 2 | 1.46 | 5 | 23.5 |
Hydrocarbons | 8 | 10.55 | 8 | 4.57 | 6 | 6.98 | 5 | 3.22 |
Alcohols | 4 | 13.44 | 2 | 27.84 | 5 | 21.76 | 4 | 12.96 |
Ketones | 6 | 7.98 | 7 | 12.51 | 5 | 3.4 | 3 | 5.33 |
Esters | 3 | 2.24 | 3 | 1.83 | 1 | 0.49 | 4 | 3.2 |
Others | 7 | 15.02 | 6 | 5.72 | 4 | 5.06 | 4 | 6.79 |
Total | 32 | 51.99 | 35 | 64.04 | 23 | 39.15 | 25 | 55 |
RT | Molecular Formula | Name | CAS | Thresholds (μg/kg) | Raw | Fried | Roasted | Steamed |
---|---|---|---|---|---|---|---|---|
Absolute Content (μg/kg) | Absolute Content (μg/kg) | Absolute Content (μg/kg) | Absolute Content (μg/kg) | |||||
Aldehydes | / | / | ||||||
2.224 | C3H6O | Propionaldehyde | 123-38-6 | 4.5 | 40.14 | 69.85 | / | / |
2.287 | C4H8O | 2-Methylpropionaldehyde | 78-84-2 | ND | 23.67 | 28.85 | / | / |
2.866 | C6H12O | 2-Methylpentanal | 123-15-9 | ND | / | 144.12 | / | / |
3.485 | C5H10O | Pentanal | 110-62-3 | 8 | 37.78 | 54.63 | 123.11 | 74.04 |
4.294 | C11H24O2 | Nonanal dimethyl acetal | 18824-63-0 | ND | / | 29.16 | / | / |
5.194 | C6H12O | Hexanal | 66-25-1 | 4.5 | 35.7 | 847.12 | / | 938.62 |
8.014 | C7H14O | Heptaldehyde | 111-71-7 | 10 | / | / | / | 53.61 |
11.876 | C8H16O | Octanal | 124-13-0 | 0.7 | / | 32.39 | / | / |
16.379 | C9H18O | Nonanal | 124-19-6 | 3.5 | / | 41.31 | / | 140.84 |
19.535 | C10H20O | Decanal | 112-31-2 | 2.8 | / | 170.8 | 68.03 | 23.61 |
Hydrocarbons | ||||||||
1.849 | C5H12 | Pentane | 109-66-0 | ND | 49.83 | / | 179.37 | 27.93 |
4.637 | C7H14O | 3-tert-Butyloxy-1-propene | 1471-04-1 | ND | 28.61 | 29.57 | / | / |
4.901 | C12H26 | 3,4,5,6-Tetramethyloctane | 62185-21-1 | ND | 100.71 | / | / | / |
4.925 | C12H26 | 2,4-Dimethyldecane | 2801-84-5 | ND | / | 51.11 | / | / |
8.692 | C8H18 | 3,3-Dimethylhexane | 563-16-6 | ND | / | / | 107.52 | 79.41 |
10.559 | C10H22 | 4,5-Dimethyloctane | 15869-96-2 | ND | 26.87 | 29.63 | 257.67 | 19.63 |
20.773 | C9H18 | 3,5,5-Trimethyl-2-hexene | 26456-76-8 | 730 | 25.21 | 70.99 | 85.4 | 23.36 |
21.637 | C15H32 | Pentadecane | 629-62-9 | ND | 51.21 | 61.65 | 111.75 | / |
24.243 | C8H16 | Pentylcyclopropane | 2511-91-3 | ND | / | 29.77 | / | 17.93 |
31.943 | C11H24 | 3,7-Dimethylnonane | 17302-32-8 | ND | 35.97 | 51.05 | 172.8 | / |
31.903 | C15H32 | 2,6,11-Trimethyldodecane | 31295-56-4 | ND | 207.59 | 236.82 | / | / |
Alcohols | ||||||||
1.967 | CH4S | Methyl mercaptan | 74-93-1 | 0.02 | 110.79 | / | 252.52 | 95.56 |
3.011 | C5H12O2 | 2,4-Pentanediol | 625-69-4 | ND | 320.99 | / | / | / |
5.206 | C6H12O | 2-Ethylcyclobutanol | 35301-43-0 | ND | / | / | 226.94 | / |
7.312 | C5H10O | 1-Penten-3-ol | 616-25-1 | 400 | / | / | 629.23 | / |
10.546 | C5H12O | 1-Pentanol | 71-41-0 | 4000 | / | / | / | 105.77 |
14.893 | C6H14O | 1-Hexanol | 111-27-3 | 700 | 150.98 | 2742.43 | 1227.35 | 342.62 |
19.299 | C8H16O | 1-Octen-3-ol | 3391-86-4 | 7 | 87.12 | 668.89 | 515.42 | 133.77 |
Ketones | ||||||||
2.256 | C9H18O | 2,2-Dimethyl-3-heptanone | 19078-97-8 | ND | 66.34 | / | / | / |
2.746 | C4H8O | 2-Butanone | 78-93-3 | 50000 | / | / | / | 109.62 |
4.523 | C3H6OS | Mercaptoacetone | 24653-75-6 | ND | 61.45 | / | / | / |
4.682 | C5H8O2 | 2,3-Pentanedione | 600-14-6 | ND | / | 110.54 | 101 | 56.38 |
7.955 | C7H14O | 2-Heptanone | 110-43-0 | 2.8 | 16.65 | 99.95 | / | / |
8.953 | C7H12O | 2,2,3-Trimethyl-cyclobutanone | 1449-49-6 | ND | 211.62 | 1010.85 | / | / |
11.531 | C4H8O2 | 3-Hydroxy-2-butanone | 513-86-0 | 259 | 16.65 | 200.24 | 144.32 | 112.7 |
19.682 | C10H20O2 | 5-Hydroxy-2,7-dimethyloct-4-one | 6838-51-3 | ND | / | 29 | / | / |
21.875 | C8H12O | 3,5-Octadiene 2-one | 38284-27-4 | 150 | / | / | 69.08 | / |
24.112 | C8H12O | (E,E)-3,5-octadien-2-one | 30086-02-3 | ND | / | 40.1 | 67.45 | / |
33.14 | C8H14O | 3-Octen-2-one | 1669-44-9 | ND | 25.25 | 41.33 | 63.69 | / |
Esters | ||||||||
2.437 | C11H10O6 | Dipyrocetyl | 486-79-3 | ND | 44.21 | / | / | 65.71 |
4.347 | C5H11NO2 | Isoamyl nitrite | 110-46-3 | ND | 30.52 | 53.3 | / | 19.36 |
5.476 | C3H6O2 | Methyl acetate | 79-20-9 | ND | 36.68 | 66.16 | / | 64.96 |
13.434 | C8H14O2 | Vinyl hexanoate | 3050-69-9 | ND | / | 105.68 | 64.71 | 17.31 |
Others | ||||||||
2.886 | C3H5NO | Acrylamide | 79-06-1 | ND | / | 187.14 | / | / |
3.011 | C2H7N | Dimethylamine | 124-40-3 | ND | 217.59 | / | / | / |
4.393 | C7H8 | Toluene | 108-88-3 | 1550 | 43.87 | 29.57 | 270.16 | / |
3.534 | C8H24O4Si4 | Octamethylcyclotetrasiloxane | 556-67-2 | ND | 96.72 | 86.49 | 79.65 | 35.78 |
7.516 | C10H30O5Si5 | Decamethylcyclopentasiloxane | 541-02-6 | ND | 178.89 | 105.33 | 106.38 | 108.66 |
15.124 | C12H36O6Si6 | Dodecamethylcyclohexane | 540-97-6 | ND | 124.43 | 255.51 | 207.08 | 141.02 |
23.342 | C8H24O4Si4 | Octamethylcyclotetrasiloxane- | 556-67-2 | ND | 31.79 | / | / | / |
29.483 | C2H8O2Si | Dimethylsilylene glycol | 1066-42-8 | ND | 55.5 | 35 | / | 70.77 |
Total content | 2591.33 | 7846.33 | 5793.9 | 2878.97 |
Name | Threshold Value (μg/kg) | Flavour Description | Raw | Fry | Roast | Steam |
---|---|---|---|---|---|---|
Propionaldehyde | 4.5 | Dirt, pungent | 8.92 | 15.52 | / | / |
Pentanal | 8 | Jam, bread flavor | 4.72 | 6.83 | 15.39 | 9.26 |
Hexanal | 4.5 | Fatty, apple aroma | 7.93 | 188.25 | / | 208.58 |
Heptaldehyde | 10 | Fishy, harsh odour | / | / | / | 5.36 |
Octanal | 0.7 | Grassy, fishy smell | / | 46.27 | / | / |
Nonanal | 3.5 | Fatty, citrusy, floral | / | 11.80 | / | 40.24 |
Decanal | 2.8 | Fatty, citrusy | / | 61 | 24.30 | 8.43 |
Methyl mercaptan | 4 | Rotten vegetable hearts and rotten egg smell | 27.7 | / | 63.13 | 23.89 |
1-Penten-3-ol | 400 | Fruity | / | / | 1.57 | / |
1-Pentanol | 4000 | Fermented fruit flavor, bread flavor | / | / | / | 0.026 |
1-Hexanol | 700 | Fruity, sweet, wine-like, grassy | 0.22 | 3.92 | 1.75 | 0.49 |
1-Octen-3-ol | 7 | Mushroom flavor, grass flavour | 12.45 | 95.56 | 73.63 | 19.11 |
2-Heptanone | 2.8 | Fruity, creamy | 16.65 | 99.95 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, P.; Peng, H.; Chen, Q.; Jiao, X.; Jia, J.; Pan, Z.; Cheng, J.; Wang, L. Effects of Cooking Processes on Protein Nutritional Values and Volatile Flavor Substances of Silver Carp (Hypophthalmichthys molitrix). Foods 2023, 12, 3169. https://doi.org/10.3390/foods12173169
Zhang Y, Zhang P, Peng H, Chen Q, Jiao X, Jia J, Pan Z, Cheng J, Wang L. Effects of Cooking Processes on Protein Nutritional Values and Volatile Flavor Substances of Silver Carp (Hypophthalmichthys molitrix). Foods. 2023; 12(17):3169. https://doi.org/10.3390/foods12173169
Chicago/Turabian StyleZhang, Yin, Pengcheng Zhang, Haichuan Peng, Qiuyue Chen, Xiaolei Jiao, Jianlin Jia, Zhongli Pan, Jie Cheng, and Linguo Wang. 2023. "Effects of Cooking Processes on Protein Nutritional Values and Volatile Flavor Substances of Silver Carp (Hypophthalmichthys molitrix)" Foods 12, no. 17: 3169. https://doi.org/10.3390/foods12173169
APA StyleZhang, Y., Zhang, P., Peng, H., Chen, Q., Jiao, X., Jia, J., Pan, Z., Cheng, J., & Wang, L. (2023). Effects of Cooking Processes on Protein Nutritional Values and Volatile Flavor Substances of Silver Carp (Hypophthalmichthys molitrix). Foods, 12(17), 3169. https://doi.org/10.3390/foods12173169