Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of As, Cd, and Pb Content in Chokeberry Juices and Fibers
- (a)
- For As: mass—75 amu, dwell time per amu (ms)—50, integration time (ms)—1000, detector calibration mode—dual,
- (b)
- For Cd: mass—110, 111, 113 and 114 amu, Dwell time per amu (ms)—50, integration time (ms)—1000, detector calibration mode—dual,
- (c)
- For Pb: mass—206, 207 and 208 amu, Dwell time per amu (ms)—50, integration time (ms)—1000, detector calibration mode—dual.
2.2.2. Determination of Hg Content in Chokeberry Juices and Fibers
2.2.3. Determination of Nitrates and Nitrites Content in Chokeberry Juices and Fibers
2.3. Estimation of Human Health Risk
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Arsenic Content
4.2. Cadmium Content
4.3. Lead Content
4.4. Mercury Content
4.5. Nitrates Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torović, L.; Sazdanić, D.; Atanacković Krstonošić, M.; Mikulić, M.; Beara, I.; Cvejić, J. Compositional characteristics, health benefit and risk of commercial bilberry and black chokeberry juices. Food Biosci. 2023, 51, 102301. [Google Scholar] [CrossRef]
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with Aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. J. Diet. Suppl. 2021, 18, 517–530. [Google Scholar] [CrossRef]
- Rahmani, J.; Clark, C.; Varkaneh, H.K.; Lakiang, T.; Vasanthan, L.T.; Onyeche, V.; Mousavi, S.M.; Zhang, Y. The effect of aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 1981–1990. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E. Chokeberry (A. melanocarpa (Michx.) Elliott)—A natural product for metabolic disorders? Nutrients 2022, 14, 2688. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Kobus, Z.; Nadulski, R.; Wilczyński, K.; Kozak, M.; Guz, T.; Rydzak, L. Effect of the black chokeberry (Aronia melanocarpa (Michx.) Elliott) juice acquisition method on the content of polyphenols and antioxidant activity. PLoS ONE 2019, 14, e0219585. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Res. Int. 2020, 134, 109232. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative phytochemical analysis of Aronia melanocarpa L. fruit juices on Bulgarian market. Plants 2022, 11, 1655. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Occurrence of environmental pollutants in foodstuffs: A review of organic vs. conventional food. Food Chem. Toxicol. 2019, 125, 370–375. [Google Scholar] [CrossRef]
- Zhong, L.; Blekkenhorst, L.C.; Bondonno, N.P.; Sim, M.; Woodman, R.J.; Croft, K.D.; Lewis, J.R.; Hodgson, J.M.; Bondonno, C.P. A food composition database for assessing nitrate intake from plant-based foods. Food Chem. 2022, 394, 133411. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- The International Agency for Research on Cancer. Agents Classified by the IARC Monographs. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 20 May 2023).
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food. Available online: https://www.efsa.europa.eu/it/efsajournal/pub/2985 (accessed on 20 May 2023).
- Nurchi, V.M.; Buha Djordjevic, A.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular targets and therapeutic agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Charkiewicz, A.E.; Backstrand, J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Akhtar, M.; Mukhtar, Z.; Saeed, N.A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ. Sci. Pollut. Res. Int. 2020, 27, 17661–17670. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.; Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef]
- Avery, A.A. Infantile methemoglobinemia: Reexamining the role of drinking water nitrates. Environ. Health Perspect. 1999, 107, 583–586. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Hodgson, J.M. Dietary nitrate, nitric oxide, and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2036–2052. [Google Scholar] [CrossRef] [PubMed]
- Juranović Cindrić, I.; Zeiner, M.; Mihajlov-Konanov, D.; Stingeder, G. Inorganic macro- and micronutrients in “Superberries” black chokeberries (Aronia melanocarpa) and related teas. Int. J. Environ. Res. Public Health 2017, 14, 539. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef] [PubMed]
- Borawska, M.H.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Socha, K. Script for Selected Laboratory Exercises from Food Analysis; Medical University of Bialystok: Bialystok, Poland, 2018. [Google Scholar]
- Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the Commission Related to Mercury and Methylmercury in Food. Available online: https://www.efsa.europa.eu/sites/default/files/event/2004/af040608-ax7.pdf (accessed on 28 May 2023).
- Statement on Tolerable Weekly Intake for Cadmium. EFSA Panel on Contaminants in the Food Chain (CONTAM). Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2011.1975 (accessed on 28 May 2023).
- World Health Organization. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database (accessed on 28 May 2023).
- World Health Organization. Joint FAO/WHO Expert Committee on Food. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://apps.who.int/iris/handle/10665/254893 (accessed on 28 May 2023).
- US Environmental Protection Agency. Exposure Factors Handbook, final ed.; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Al Jabri, H. The Carcinogenic and Non-Carcinogenic Health Risks of Metal(oid)s Bioaccumulation in Leafy Vegetables: A Consumption Advisory. Front. Environ. Sci. 2021, 9, 380. [Google Scholar] [CrossRef]
- EPA. Exposure Factors Handbook: Edition; United States Environmental Protection Agency: Washington, DC, USA, 2011.
- United States Environmental Protection Agency. A Review of the Reference Dose and Reference Concentration Processess. Available online: https://www.epa.gov/osa/review-reference-dose-and-reference-concentration-processes (accessed on 4 May 2023).
- Dadar, M.; Adel, M.; Nasrollahzadeh, H.S.; Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 2017, 36, 222–227. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.M.; Sarker, M.S.I. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 2019, 14, e0219336. [Google Scholar] [CrossRef]
- Śmiechowska, M. The content of nitrates v and iii and vitamin C in juices obtained from organic and conventional raw materials. Pol. J. Food Nutr. Sci. 2003, 12, 57–61. [Google Scholar]
- Tamme, T.; Reinik, M.; Püssa, T.; Roasto, M.; Meremäe, K.; Kiis, A. Dynamics of nitrate and nitrite content during storage of home-made and small-scale industrially produced raw vegetable juices and their dietary intake. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 487–495. [Google Scholar] [CrossRef]
- Rezaei, M.; Fani, A.; Moini, A.L.; Mirzajani, P.; Malekirad, A.A.; Rafiei, M. Determining nitrate and nitrite content in beverages, fruits, vegetables, and stews marketed in Arak, Iran. Int. Sch. Res. Not. 2014, 2014, 439702. [Google Scholar] [CrossRef]
- Ziarati, P.; Mohammadi, S. Nitrate and nitrite content in commercially-available fruit juice packaged products. J. Chem. Pharm. Res. 2016, 8, 335–341. [Google Scholar]
- Krejpcio, Z.; Sionkowski, S.; Bartela, J. Safety of Fresh Fruits and Juices Available on the Polish Market as Determined by Heavy Metal Residues. Pol. J. Environ. Stud. 2005, 14, 877. [Google Scholar]
- Dehelean, A.; Magdas, D.A. Analysis of mineral and heavy metal content of some commercial fruit juices by inductively coupled plasma mass spectrometry. Sci. World J. 2013, 2013, 215423. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R.; Mazurek, A. Determination of the content of selected trace elements in Polish commercial fruit juices and health risk assessment. Open Chem. 2020, 18, 443–452. [Google Scholar] [CrossRef]
- Karami, H.; Nabi Shariatifar, N.; Gholamreza, J.K.; Khaniki, J.; Nazmara, S.; Arabameri, M.; Alimohammadi, M. Measuring quantities of trace elements and probabilistic health risk assessment in fruit juices (traditional and commercial) marketed in Iran. Int. J. Environ. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Williams, A.B.; Ayejuyo, O.O.; Ogunyale, A.F. Trace metal levels in fruit juices and carbonated beverages in Nigeria. Environ. Monit. Assess. 2009, 156, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Szymczycha-Madeja, A.; Welna, M. Evaluation of a simple and fast method for the multi-elemental analysis in commercial fruit juice samples using atomic emission spectrometry. Food Chem. 2013, 141, 3466–3472. [Google Scholar] [CrossRef]
- Gąstoł, M.; Domagała-Świątkiewicz, I. Comparative study on mineral content of organic and conventional apple, pear and black currant juices. Acta Sci. Pol. Hortorum Cultus 2012, 11, 3–14. [Google Scholar]
- Commission Regulation (EU) 2018/73 of 16 January 2018 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0073 (accessed on 9 May 2023).
- Demir, F.; Kipcak, A.S.; Dere Ozdemir, O.; Moroydor Derun, E. Determination of essential and non-essential element concentrations and health risk assessment of some commercial fruit juices in Turkey. J. Food Sci. Technol. 2020, 57, 4432–4442. [Google Scholar] [CrossRef]
- Harmankaya, M.; Gezgin, S.; Ozcan, M.M. Comparative evaluation of some macro- and micro-element and heavy metal contents in commercial fruit juices. Environ. Monit. Assess. 2012, 184, 5415–5420. [Google Scholar] [CrossRef]
- Mohamed, F.; Guillaume, D.; Abdulwali, N.; Al-Hadrami, K.; Al Maqtari, M.A. ICP-OES assisted determination of the metal content of some fruit juices from Yemen’s market. Heliyon 2020, 6, e04908. [Google Scholar]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2023/465 of 3 March 2023 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Arsenic in Certain Foods. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0465 (accessed on 6 May 2023).
- Yu, H.; Xiao, H.; Cui, Y.; Liu, Y.; Tan, W. High nitrogen addition after the application of sewage sludge compost decreased the bioavailability of heavy metals in soil. Environ. Res. 2022, 215, 114351. [Google Scholar] [CrossRef] [PubMed]
- Wajid, K.; Ahmad, K.; Khan, Z.I.; Nadeem, M.; Bashir, H.; Chen, F.; Ugulu, I. Effect of organic manure and mineral fertilizers on bioaccumulation and translocation of trace metals in maize. Bull. Environ. Contam. Toxicol. 2020, 104, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Śmiechowska, M.; Florek, A. Content of heavy metals in selected vegetables from conventional, organic and allotment cultivation. J. Agric. Eng. 2011, 56, 152–156. [Google Scholar]
- Commission Regulation (EU) 2021/1323 of 10 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Certain Foodstuffs. Available online: https://op.europa.eu/en/publication-detail/-/publication/783d5a5d-fa7b-11eb-b520-01aa75ed71a1 (accessed on 7 May 2023).
- Staniek, H.; Krejpcio, Z. Evaluation of Cd and Pb content in selected organic and conventional products. Probl. Hig. Epidemiol. 2013, 94, 857–861. [Google Scholar]
- Tońska, E.; Toński, M.; Klepacka, J.; Łuczyńska, J.; Paszczyk, B. Cadmium and lead content in carrots from organic and conventional cultivations. Fragm. Agron. 2017, 34, 190–196. [Google Scholar]
- Commission Regulation (EU) 2021/1317 of 9 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2021/1317/oj (accessed on 8 May 2023).
- Zhao, X.; Wang, D. Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.). J. Environ. Sci. 2010, 22, 1184–1188. [Google Scholar] [CrossRef]
- De Jesus, R.M.; Silva, L.O.; Castro, J.T.; de Azevedo Neto, A.D.; de Jesus, R.M.; Ferreira, S.L. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry. Talanta 2013, 106, 293–297. [Google Scholar] [CrossRef]
- Tang, Z.; Fan, F.; Deng, S.; Wang, D. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury—A critical review. Ecotoxicol. Environ. Saf. 2020, 202, 110950. [Google Scholar] [CrossRef]
- Sun, T.; Xie, Q.; Li, C.; Huang, J.; Yue, C.; Zhao, X.; Wang, D. Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains. Environ. Pollut. 2022, 314, 120341. [Google Scholar] [CrossRef]
- Wojciechowska-Mazurek, M.; Zawadzka, T.; Karłowski, K.; Starska, K.; Cwiek-Ludwicka, K.; Brulińska-Ostrowska, E. Zawartość ołowiu, kadmu, rteci, cynku i miedzi w owocach z różnych regionów Polski [Content of lead, cadmium, mercury, zinc and copper in fruit from various regions of Poland]. Rocz. Panstw. Zakl. Hig. 1995, 46, 223–238. (In Polish) [Google Scholar] [PubMed]
- Wyka, J.; Orzeł, D.; Figurska-Ciura, D.; Bronkowska, M.; Styczyńska, M.; Żechałko-Czajkowska, A.; Biernat, J. Ocena zanieczyszczenia rtęcią produktów roślinnych z rejonu legnicko-głogowskiego [Assessment of mercury contamination of products plant products from the legnicko-głogowski region]. Bromat. Chem. Toksykol. 2009, 2, 189–193. (In Polish) [Google Scholar]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 12 May 2023).
- Bonilla Ocampo, D.A.; Paipilla, A.F.; Marín, E.; Vargas-Molina, S.; Petro, J.L.; Pérez-Idárraga, A. Dietary nitrate from beetroot juice for hypertension: A systematic review. Biomolecules 2018, 8, 134. [Google Scholar] [CrossRef] [PubMed]
Average Content of Analyzed Parameters | |||||||
---|---|---|---|---|---|---|---|
Type of Chokeberry Juices | As (µg/kg) | Cd (µg/kg) | Hg (µg/kg) | Pb (µg/kg) | NO2− (mg/kg) | NO3− (mg/kg) | |
Conventional (n = 10) | Med. | 1.032 * | 1.171 | 0.443 | 1.402 | 4.672 | 43.872 |
Q1–Q3 | 0.461–1.313 | 1.106–1.198 | 0.241–0.961 | 1.123–1.623 | 4.584–5.204 | 38.143–49.310 | |
Av. ± SD | 0.977 ± 0.428 | 1.194 ± 0.330 | 0.547 ± 0.347 | 1.882 ± 1.746 | 4.897 ± 0.586 | 43.927 ± 8.445 | |
Min–Max | 0.405–1.525 | 0.567–1.928 | 0.186–1.048 | 0.830–6.787 | 4.272–6.132 | 32.956–60.461 | |
Organic (n = 15) | Med. | 0.458 * | 1.067 | 0.427 | 1.503 | 4.892 | 41.788 |
Q1–Q3 | 0.215–0.892 | 0.868–1.952 | 0.354–0.754 | 1.197–2.084 | 4.360–5.112 | 37.431–44.640 | |
Av. ± SD | 0.556 ± 0.389 | 1.409 ± 0.732 | 0.568 ± 0.340 | 1.610 ± 0.793 | 4.824 ± 0.487 | 40.302 ± 5.533 | |
Min–Max | 0.195–1.422 | 0.369–3.200 | 0.159–1.328 | 0.713–3.561 | 3.916–5.644 | 30.136–48.587 | |
NFC (n = 20) | Med. | 0.460 * | 1.129 | 0.449 | 1.463 | 4.892 | 42.144 |
Q1–Q3 | 0.294–0.929 | 0.908–1.862 | 0.361–0.989 | 1.143–1.953 | 4.448–5.136 | 38.175–45.845 | |
Av. ± SD | 0.631 ± 0.448 | 1.376 ± 0.665 | 0.606 ± 0.351 | 1.810 ± 1.371 | 4.872 ± 0.557 | 41.288 ± 6.006 | |
Min–Max | 0.195–1.525 | 0.369–3.200 | 0.159–1.328 | 0.713–6.787 | 3.916–6.132 | 30.136–50.507 | |
FC (n = 5) | Med. | 1.164 * | 1.172 | 0.274 | 1.400 | 4.628 | 38.493 |
Q1–Q3 | 0.901–1.218 | 1.170–1.172 | 0.241–0.517 | 1.227–1.404 | 4.584–5.112 | 37.431–47.099 | |
Av. ± SD | 1.098 ± 0.191 | 1.113 ± 0.146 | 0.372 ± 0.186 | 1.355 ± 0.191 | 4.778 ± 0.363 | 43.608 ± 10.517 | |
Min–Max | 0.892–1.313 | 0.853–1.198 | 0.204–0.623 | 1.123–1.623 | 4.360–5.204 | 34.557–60.461 | |
Total (n = 25) | Med. | 0.461 | 1.170 | 0.427 | 1.404 | 4.892 | 41.788 |
Q1–Q3 | 0.405–1.164 | 0.908–1.680 | 0.303–0.754 | 1.197–1.633 | 4.536–5.112 | 38.143–46.619 | |
Av. ± SD | 0.724 ± 0.448 | 1.323 ± 0.604 | 0.560 ± 0.336 | 1.719 ± 1.236 | 4.853 ± 0.518 | 41.752 ± 6.920 | |
Min–Max | 0.195–1.525 | 0.369–3.200 | 0.159–1.328 | 0.7136.787 | 3.916–6.132 | 30.136–60.461 |
Type of Chokeberry Fiber | As (µg/kg) | Cd (µg/kg) | Hg (µg/kg) | Pb (µg/kg) | NO2− (mg/kg) | NO3− (mg/kg) | |
---|---|---|---|---|---|---|---|
Conventional Fiber (n = 3) | Med. | 35.455 | 8.302 | 5.622 | 65.133 | 5.000 | 45.030 |
Q1–Q3 | 30.212–41.251 | 7.101–11.344 | 5.333–6.578 | 60.222–70.185 | 4.520–5.732 | 30.907–48.003 | |
Min–Max | 30.212–41.251 | 7.101–11.344 | 5.333–6.578 | 60.222–70.185 | 4.520–5.732 | 30.907–48.003 | |
Av. ± SD | 35.639 ± 5.522 | 8.916 ± 2.187 | 5.844 ± 0.651 | 65.180 ± 4.981 | 5.084 ± 0.610 | 41.313 ± 9.134 | |
Organic Fiber (n = 3) | Med. | 29.899 | 17.183 | 3.742 | 21.273 | 5.424 | 42.524 |
Q1–Q3 | 6.653–53.145 | 14.638–19.728 | 3.401–4.084 | 19.517–23.029 | 5.350–5.424 | 32.832–52.216 | |
Min–Max | 6.653–53.145 | 14.638–19.728 | 3.401–4.084 | 19.517–23.029 | 5.350–5.424 | 32.832–52.216 | |
Av. ± SD | 29.899 ± 23.246 | 17.183 ± 2.545 | 3.742 ± 0.341 | 21.273 ± 1.756 | 5.399 ± 0.043 | 42.524 ± 9.692 | |
Total (n = 6) | Med. | 32.834 | 12.991 | 4.708 | 41.626 | 5.387 | 43.777 |
Q1–Q2 | 29.899–41.251 | 8.302–17.183 | 3.742–5.622 | 21.273–65.133 | 5.000–5.424 | 32.832–48.003 | |
Min–Max | 6.653–53.145 | 7.101–19.728 | 3.401–6.578 | 19.517–70.185 | 4.520–5.732 | 30.907–52.216 | |
Av. ± SD | 32.769 ± 15.435 | 13.049 ± 5.001 | 4.793 ± 1.242 | 43.226 ± 24.276 | 5.242 ± 0.424 | 41.919 ± 8.449 |
n | As | Cd | Hg | Pb | |
---|---|---|---|---|---|
Type of Product | %BMDL Per Serving #,a | %TWI Per Serving #,a | %PTWI Per Serving #,a | %BMDL Per Serving #,a | |
Chokeberry Juices | |||||
Conventional | 10 | 0.047 | 0.477 | 0.137 | 0.090–1.344 |
Organic | 15 | 0.026 | 0.564 | 0.142 | 0.077–1.150 |
Chokeberry Fibers | |||||
Conventional | 3 | 0.170 | 0.357 | 0.146 | 0.310–4.656 |
Organic | 3 | 0.142 | 0.687 | 0.094 | 0.101–1.520 |
Reference Limit | As: 3 µg/kg BW/day, | Cd: 2.5 µg/kg BW/week | Hg: 4 µg/kg BW/week | Pb: 0.2–3 µg/kg BW/day, | |
210 µg/day a | 175 µg/week a | 280 µg/week a | 1.4–210 µg/day a |
As | Cd | Hg | Pb | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Product | EDI | THQ | CR | EDI | THQ | CR | EDI | THQ | CR | EDI | THQ | CR | HI |
Juices | |||||||||||||
Conventional | 1.40 × 10−6 | 4.65 × 10−3 | 2.09 × 10−6 | 1.71 × 10−6 | 1.71 × 10−3 | 1.07 × 10−5 | 7.81 × 10−7 | 2.60 × 10−3 | NA | 2.69 × 10−6 | 7.68 × 10−4 | 2.28 × 10−8 | 9.73 × 10−3 |
Organic | 7.94 × 10−7 | 2.65 × 10−3 | 1.19 × 10−6 | 2.01 × 10−6 | 2.01 × 10−3 | 1.27 × 10−5 | 8.11 × 10−7 | 2.70 × 10 −3 | NA | 2.30 × 10−6 | 6.57 × 10−4 | 1.96 × 10−8 | 8.02 × 10−3 |
Fibers | |||||||||||||
Conventional | 5.09 × 10−6 | 1.70 × 10−2 | 7.64 × 10−6 | 1.27 × 10−6 | 1.27 × 10−3 | 8.02 × 10−6 | 8.35 × 10−7 | 2.78 × 10−3 | NA | 9.31 × 10−6 | 2.66 × 10−4 | 1.70 × 10−2 | 2.13 × 10−2 |
Organic | 4.27 × 10−6 | 1.42 × 10−2 | 6.41 × 10−6 | 2.45 × 10−6 | 2.45 × 10−3 | 1.55 × 10−5 | 5.35 × 10−7 | 1.78 × 10−3 | NA | 3.04 × 10−6 | 8.68 × 10−5 | 1.70 × 10−2 | 1.86 × 10−2 |
Type of Juice | NO2− (mg/kg) | NO3− (mg/kg) | References |
---|---|---|---|
Apple | 3.1–7.7 | 0.07–0.44 | [37] |
Beetroot | 938.9 | 1.06 | [37] |
Beetroot | 1707–2625 | 3.2 | [38] |
Blackcurrant | 54.6–81.9 | 0.36–0.77 | [37] |
Cabbage | 94.6–232.2 | 1.06 | [37] |
116–250 | 0.6 | [38] | |
Carrot | 7.4–419.5 | 0.02–0.97 | [37] |
87 | 0.1 | [38] | |
Cucumber | 42.7 | 9.03 | [39] |
Cherry | 16.54 | 6.75 | [40] |
Grape | 30.16 | 8.34 | [40] |
Mango | 26.43 | 9.77 | [40] |
Melon | 33.64 | 7.65 | [39] |
Orange | 1.4 | 0 | [38] |
19.56 | 6.52 | [37] | |
Pineapple | 24.25 | 6.83 | [38] |
Tomato | 16.9–21.2 | 0.04–0.29 | [37] |
7.82 | 1.81 | [39] | |
Watermelon | 26.61 | 5.5 | [39] |
Type of Product | Type of Toxic Element | |||
---|---|---|---|---|
As | Cd | Hg | Pb | |
Aronia Products | ||||
Aronia juice | - | 16 µg/L [41] | - | 110 µg/L [41] |
Aronia juice (cold pressed) | - | 14.8 µg/L [1] | - | 7.6 µg/L [1] |
Aronia berries (dried) | <LOD [24] | 55 µg/kg DM [24] | - | 41 µg/kg [24] |
Different Fruit Juices | ||||
Apple | <LOD—4.36 µg/L [42], 0.064 mg/kg [43], 1.6–1.8 µg/L [44] | <LOD [45,46], 0.4–0.5 µg/L [44], 3 µg/kg/FM (C,O) [47], 11 µg/kg [43], 16 µg/L [41], 240–1420 µg/L [48] | 1 µg/L [44] | 4.66–75.68 µg/L [42], 10 µg/kg/FM (O), 8 µg/kg/FM (C) [47], 25.9–29.9 µg/L [44], 41 µg/kg [43], 58 µg/L [49], 80 µg/L [45], 130 µg/L [41], 670 µg/L [46] |
Apricot | 1.52 µg/L [42] | 0.46–0.78 µg/L [42], 6–9.2 µg/kg [50] | - | 3.36–5.36 µg/L [42], 121 µg/L [49] |
Blackcurrant | - | 6 µg/kg/FM (C) [47], 8 µg/kg/FM (O), 17 µg/L [41] | - | 0.011 µg/kg/FM (C) [47], 17 µg/kg/FM (O) [47], 110 µg/L [41] |
Grapefruit | - | 9 µg/L [41], 41 µg/L [46] | - | 109 µg/L [41], 228 µg/L [46] |
Kiwi | <LOD [49] | <LOD [42] | - | 1.64 µg/L [42] |
Orange | <LOD—3.02 µg/L [42], 0.7–0.9 µg/L [44], 65 µg/kg [43] | <LOD-20 µg/L [51], < LOD-0.64 µg/L [42], 0.6–0.7 µg/L [44], 6.4–9.2 µg/kg [50], 10 µg/kg [43], 10 µg/L [46], 10 µg/L [41] | 0.8–0.9 µg/L [43] | 1.02–10.03 µg/L [42], 15.9–16.1 µg/L [43], 80 µg/L [45], 91 µg/L [46], 95 µg/L [41] |
Peach | <LOD—3.78 [42], 1.2 µg/L [44] | 0.52–1.38 µg/L [42], 0.7 µg/L [44], 6.4–11.3 µg/kg [50] | 0.8 µg/L [44] | 1.94–18.58 µg/L [42], 30.7 µg/L, [44], 135 µg/L [49] |
Pear | <LOD [42] | <LOD [42,46], 7 µg/kg/(C,O) [47] | - | 1.62 µg/kg/FM [42], 10 µg/kg/FM (C, O) [47], 189 µg/L [46] |
Pineapple | 1 µg/L [44], 2.84 µg/L [42] | 0.64 µg/L [42], 0.7 µg/L [44], 12 µg/L [46] | 1.2 µg/L [44] | 1.54 µg/L [42], 31.8 µg/L [44], 236 µg/L [46] |
Type of Health Risk Indicator | Studied Element | Product/Group of Products | Results | References |
---|---|---|---|---|
HQ | Cd | Aronia juices | 0.06–0.2 | [1] |
Pb | 0.03–0.2 | |||
HI | Cd, Pb | 0.072–0.491 | ||
PTWI | Cd | Dried aronia berries | 7 µg/kg/BW | [24] |
Pb | 25 µg/kg/BW | |||
EDI | As | Tomato | 6.0 × 10−4 | [52] |
Cabbage | 1.80 × 10−3 | |||
Cd | Tomato | 1.76 × 10−4 | ||
Cabbage | 4.90 × 10−4 | |||
Hg | Tomato | 1.08 × 10−3 | ||
Cabbage | 1.33 × 10−3 | |||
THQ | As | Tomato | 2.019 | |
Cabbage | 5.994 | |||
Cd | Tomato | 0.176 | ||
Cabbage | 0.490 | |||
Hg | Tomato | 3.588 | ||
Cabbage | 4.425 | |||
HI | Al, Ba, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn, Cr, Cu, Fe, Mn, Mo | Appple juice | 6.35 × 10−2 | [49] |
Pomegranate juice | 6.26 × 10−2 | |||
Grape juice | 4.170 × 10−2 | |||
EDI | As | Apple juice | 0.0347 | [43] |
Orange juice | 0.0353 | |||
Blackcurrant nectars | 0.0429 | |||
Cd | Apple juice | 0.0060 | ||
Orange juice | 0.0054 | |||
Blackcurrant nectars | 0.0060 | |||
Pb | Apple juice | 0.0223 | ||
Blackcurrant nectars | 0.0228 | |||
Orange juice | 0.0060 | |||
THQ | As | Apple juice | 0.1158 | [49] |
Orange juice | 0.1176 | |||
Blackcurrant nectars | 0.1430 | |||
Cd | Apple juice | 0.1194 | ||
Orange juice | 0.1086 | |||
Blackcurrant nectars | 0.1194 | |||
Pb | Apple juice | 0.0026 | ||
Orange juice | 0.0022 | |||
Blackcurrant nectars | 0.0027 | |||
Pb | Apple juice | 5.370 × 10−2 | ||
Pomegranate juice | 5.092 × 10−2 | |||
Grape juice | 2.96 × 10−2 | |||
Pb | Different commercial juices (aloe vera, apple, cocoonut, lemon coconut, mango, mojito, multi-fruit, orange, peach, pineapple, pomegranate, strawberry, sour cherry) | 6.26 × 10−3 | [44] | |
Hg | 5.74 × 10−3 | |||
Cd | 4.49 × 10−3 | |||
As | 3.78 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olechno, E.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Zujko, M.E. Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk. Foods 2023, 12, 3271. https://doi.org/10.3390/foods12173271
Olechno E, Puścion-Jakubik A, Soroczyńska J, Socha K, Zujko ME. Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk. Foods. 2023; 12(17):3271. https://doi.org/10.3390/foods12173271
Chicago/Turabian StyleOlechno, Ewa, Anna Puścion-Jakubik, Jolanta Soroczyńska, Katarzyna Socha, and Małgorzata Elżbieta Zujko. 2023. "Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk" Foods 12, no. 17: 3271. https://doi.org/10.3390/foods12173271
APA StyleOlechno, E., Puścion-Jakubik, A., Soroczyńska, J., Socha, K., & Zujko, M. E. (2023). Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk. Foods, 12(17), 3271. https://doi.org/10.3390/foods12173271