In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey
2.2. Prebiotic Activity of the Honey
2.2.1. Growth of Lactic Acid Bacteria in the Presence of Honey
2.2.2. Microbial Adhesion to Solvent
2.2.3. Antioxidative Activity of Lactic Acid Bacteria Grown in the Presence of the Five Legumes’ Honeys
Reducing Power Capacity
The Anti-Lipid Peroxidation Activity (ILAP, Inhibition of Linoleic Acid Peroxidation)
Hydroxyl Radical Scavenging Activity
Scavenging Activity of LAB Strains
2.3. Antibiofilm Activity Exhibited by the Legumes Honey
2.3.1. Microorganisms and Culture Conditions
2.3.2. Minimal Inhibitory Concentration (MIC)
2.3.3. Inhibition of Biofilm Formation
2.4. Antibacterial and Antibiofilm Activity of the Supernatants of the LAB Grown in the Presence of the Honeys
2.5. Statistical Analysis
3. Results and Discussion
3.1. Influence of the Legume Honeys on the Growth and In Vitro Adhesive Capacities of Probiotic Bacteria
3.2. Influence of the Legumes’ Honey on the Antioxidant Capacity of Probiotic Cells
3.3. Anti-Bacterial Activity of the Legumes’ Honey
3.4. Antibiofilm Activity of Probiotic Growth-Medium Containing Legumes’ Honey Instead of Glucose
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and health: A review of recent clinical research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Iftikhar, R.; Nausheen, I.; Mukhtar, R.K.; Iqbal, A.; Raza, A.; Anwar, H.Y. The regenerative potential of honey: A comprehensive literature review. J. Apic. Res. 2022, 62, 2028969. [Google Scholar] [CrossRef]
- Burlando, B.; Cornara, L. Honey in dermatology and skin care: A review. J. Cosm. Derm. 2013, 12, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Nweze, J.A.; Olovo, C.V.; Nweze, E.I.; John, O.O.; Paul, C. Therapeutic properties of honey. In Honey Analysis—New Advances and Challenges; de Alencar Arnaut de Toledo, V., Chambó, E.D., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Mustar, S.; Ibrahim, N.A. Sweeter Pill to Swallow: A review of honey bees and honey as a source of probiotic and prebiotic products. Foods 2022, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Merckoll, P.; Øystein Jonassen, T.; Vad, M.E.; Jeansson, S.L.; Melby, K.K. Bacteria, biofilm and honey: A study of the effects of honey on ‘planktonic’ and biofilm-embedded chronic wound bacteria. Scand. J. Infec. Dis. 2009, 41, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Romário-Silva, D.; Alencar, S.M.; Bueno-Silva, B.; Sardi, J.d.C.O.; Franchin, M.; Carvalho, R.D.P.d.; Ferreira, T.E.d.S.A.; Rosalen, P.L. Antimicrobial activity of honey against oral microorganisms: Current reality, methodological challenges and solutions. Microorganisms 2022, 10, 2325. [Google Scholar] [CrossRef]
- Margaoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Orlando, P.; Coppola, R. Biochemical traits, survival and biological properties of the probiotic Lactobacillus plantarum grown in the presence of prebiotic inulin and pectin as energy source. Pharmaceuticals 2012, 5, 481–492. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef]
- Lin, M.Y.; Chang, F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 2000, 45, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wei, L.; Sun, J.; Hou, C.L.; Fan, L. Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chem. 2011, 127, 1634–1640. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Fratianni, F.; Amato, G.; Ombra, M.N.; De Feo, V.; Coppola, R.; Nazzaro, F. In vitro prospective healthy and nutritional benefits of different Citrus monofloral honeys. Sci. Rep. 2023, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Caputo, L.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. Polyphenols content and in vitro α-glycosidase activity of different Italian monofloral honeys, and their effect on selected pathogenic and probiotic bacteria. Microorganisms 2021, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Datta, S.; Mukherjee, S.; Bose, S.; Ghosh, S.; Dhar, P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Sci. Technol. 2015, 61, 244–250. [Google Scholar] [CrossRef]
- Saran, S.; Bisht, M.S.; Singh, K.; Teotia, U.V.S. Comparing adhesion attributes of two isolates of Lactobacillus acidophilus for assessment of prebiotics, honey and inulin. Int. J. Sci. Res. Publ. 2012, 2, 2250–3153. [Google Scholar]
- Celebioglu, H.U. Probiotic bacteria grown with chestnut honey enhance in vitro cytotoxicity on breast and colon cancer cells. Arch. Biol. Sci. 2020, 72, 329–338. [Google Scholar] [CrossRef]
- Bemmo, U.L.; Kenfack, C.H.; Bindzi, J.M.; Barry, R.B.; Ngoufack, F.Z. Viability and in vivo hypocholesterolemic effect of Lactobacillus plantarum 29V in local honey. J. Adv. Biol. Biotechnol. 2021, 24, 24–33. [Google Scholar] [CrossRef]
- Iorizzo, M.; Ganassi, S.; Albanese, G.; Letizia, F.; Testa, B.; Tedino, C.; Petrarca, S.; Mutinelli, F.; Mazzeo, A.; De Cristofaro, A. Antimicrobial activity from putative probiotic lactic acid bacteria for the biological control of American and European foulbrood diseases. Vet. Sci. 2022, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Feknous, N.; Boumendjel, M. Natural bioactive compounds of honey and their antimicrobial activity. Czech J. Food Sci. 2022, 40, 163–178. [Google Scholar] [CrossRef]
- Schell, K.R.; Fernandes, K.E.; Shanahan, E.; Wilson, I.; Blair, S.E.; Carter, D.A.; Cokcetin, N.N. The Potential of honey as a prebiotic food to re-engineer the gut microbiome toward a healthy state. Front. Nutr. 2022, 9, 957932. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Rakabizadeh, B.; Tadayoni, M. Evaluation of antibacterial and probiotic growth stimulatory activities of some honey types produced in Khuzestan. J. Food Bioproc. Eng. 2022, 5, 136–140. [Google Scholar] [CrossRef]
- Yang, C.M.; Han, Q.J.; Wang, K.L.; Xu, Y.L.; Lan, J.H.; Cao, G.T. Astragalus and ginseng polysaccharides improve developmental, intestinal morphological, and immune functional characters of weaned piglets. Front. Physiol. 2019, 10, 00418. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, J.; Liu, L.; Luo, J.; Peng, X. Lactobacillus acidophilus (LA) Fermenting astragalus polysaccharides (aps) improves calcium absorption and osteoporosis by altering gut microbiota. Foods 2023, 12, 275. [Google Scholar] [CrossRef]
- Shen, F.Y.; Ra, J.H.; Kim, J.J.; Jung, S.K. The screening of fermented medicinal herbs to identify those with anti-inflammatory properties. Korean J. Orient. Int. Med. 2009, 30, 64–73. [Google Scholar]
- Nascimento, M.O.; de Fátima Pereira Santos, C.V.; Belini Rodrigues, V.; de Alencar, E.R.; dos Santos Leandro, E. Survival of probiotic lactic acid bacteria in ice cream during storage: A systematic review. Res. Sq. 2023, 1–28. [Google Scholar] [CrossRef]
- Guler-Akin, M.B.; Goncu, B.; Serdar Akin, M. Some properties of probiotic yoghurt ice cream supplemented with carob extract and whey powder. Adv. Microbiol. 2016, 6, 1010–1020. [Google Scholar] [CrossRef]
- Popa, D.; Ustunol, Z. Influence of sucrose, high fructose corn syrup and honey from different floral sources on growth and acid production by lactic acid bacteria and bifidobacteria. Int. J. Dairy. Technol. 2011, 64, 247–253. [Google Scholar] [CrossRef]
- Huang, C.; Li, S.; Huang, L.; Watanabe, K. Identification and classification for the Lactobacillus casei group. Front. Microbiol. 2018, 9, 01974. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001, 73, 365s–373s. [Google Scholar] [CrossRef]
- Scarano, A.; Butelli, E.; De Santis, S.; Cavalcanti, E.; Hill, L.; De Angelis, M.; Giovinazzo, G.; Chieppa, M.; Martin, C.; Santino, A. Combined dietary anthocyanins, flavonols, and stilbenoids alleviate inflammatory bowel disease symptoms in mice. Front. Nutr. 2018, 4, 75. [Google Scholar] [CrossRef]
- Ding, T.; Xu, M.; Li, Y. An overlooked prebiotic: Beneficial effect of dietary nucleotide supplementation on gut microbiota and metabolites in senescence-accelerated mouse prone-8 mice. Front. Nutr. 2022, 9, 820799. [Google Scholar] [CrossRef] [PubMed]
- Dingeo, G.; Brito, A.; Samoud, H.; Iddir, M.; La Frano, M.L.; Bohn, T. Phytochemicals as modifiers of gut microbial communities. Food Funct. 2020, 11, 8444–8471. [Google Scholar] [CrossRef]
- Myhill, L.J.; Williams, A.R. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol. 2023, 45, e12965. [Google Scholar] [CrossRef]
- Babbs, C.F. Free radicals and the etiology of colon cancer. Free Radic. Biol. Med. 1990, 8, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef]
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status, and disease: Is the total antioxidant capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Martarelli, D.; Verdenelli, M.C.; Scuri, S.; Cocchioni, M.; Silvi, S.; Cecchini, C.; Pompei, P. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr. Microbiol. 2011, 62, 1689–1696. [Google Scholar] [CrossRef]
- Shen, Q.; Shang, N.; Li, P. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr. Microbiol. 2011, 62, 1097–1103. [Google Scholar] [CrossRef]
- Asemi, Z.; Zare, Z.; Shakeri, H.; Sabihi, S.S.; Esmaillzadeh, A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann. Nutr. Metab. 2013, 63, 349922. [Google Scholar] [CrossRef]
- Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 2002, 72, 215–224. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, Z.; Zhang, Y.; Zhang, J.; Wang, L.; Dong, X.; Up, F.; Yao, G.; Wang, S.; Zhang, H. Effect of Lactobacillus plantarum P-8 on lipid metabolism in hyperlipidemic rat model. Eur. J. Lipid Sci. Technol. 2012, 114, 1230–1236. [Google Scholar] [CrossRef]
- Won, G.Y.; Choi, S.I.; Park, N.Y.; Kim, J.E.; Kang, C.H.; Kim, G.H. In vitro antidiabetic, antioxidant activity, and probiotic activities of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains. Curr. Microbiol. 2021, 78, 3181–3191. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant activity of three honey samples in relation to their biochemical components. J. Anal. Meth. Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef]
- Azcárate-Peril, M.A.; Sikes, M.; Bruno-Bárcena, J.M. The intestinal microbiota, gastrointestinal environment and colorectal cancer: A putative role for probiotics in prevention of colorectal cancer? Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G401–G424. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.J., III; Rice, C.V. Equilibrium binding behavior of magnesium to wall teichoic acid. Biochim. Biophys. Acta 2015, 1848, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Kanmani, P.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Thirunavukkarasu, C.; Arul, V. Lactobacillus plantarum AS1 isolated from South Indian fermented food kallappams suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl. Biochem. Biotechnol. 2012, 166, 620–631. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Nagpal, R.; Mohania, D.; Behare, P.; Verma, V.; Kumar, P.; Poddar, D.; Aggarwal, P.K.; Henry, C.J.; et al. Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr. 2010, 61, 473–496. [Google Scholar] [CrossRef] [PubMed]
- Ciappini, M.; Vitelleschi, M.; Calviño, A. Chemometrics classification of Argentine clover and eucalyptus honeys according to palynological, physicochemical, and sensory properties. Int. J. Food Prop. 2016, 19, 111–123. [Google Scholar] [CrossRef]
- Sultana, S.; Foster, K.; Lim, L.Y.; Hammer, K.; Locher, C. A Review of the phytochemistry and bioactivity of clover honeys (Trifolium spp.). Foods 2022, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Abdelaliem, Y.F.; Esmail, A.H.M.; Mohdaly, A.A.A.; Ramadan, M.F. Evaluation of Egyptian honeys and their floral origins: Phenolic compounds, antioxidant activities, and antimicrobial characteristics. Environ. Sci. Pollut. Res. 2020, 27, 20748–20756. [Google Scholar] [CrossRef]
- Khairy, E.A.; Hedia, R.H.; Dorgham, S.M.; Effat, M. Comparative studies on antimicrobial activities (AMA) of different types of honey using bacteria from animal origin. Int. J. Microbiol. Res. 2013, 4, 50–55. [Google Scholar]
- Hegazy, A.G. Antimicrobial activity of different Egyptian honeys as comparison of Saudi Arabia honey. Res. J. Microbiol. 2011, 6, 488–495. [Google Scholar] [CrossRef]
- Moghazy, A.M.; Shams, M.E.; Adly, O.A.; Abbas, A.H.; El-Badawy, M.A.; Elsakka, D.M.; Hassan, S.A.; Abdelmohsen, W.S.; Ali, O.S.; Mohamed, B.A. The clinical and cost effectiveness of bee honey dressing in the treatment of diabetic foot ulcers. Diabetes Res. Clin. Pract. 2010, 89, 276–281. [Google Scholar] [CrossRef]
- Upmanyu, K.; Rizwanul Haq, Q.M.; Singh, R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. Curr. Res. Micr. Sci. 2022, 3, 100131. [Google Scholar] [CrossRef]
- Liu, G.; Catacutan, D.B.; Rathod, K.; Swanson, K.; Wengong, J.; Mohammed, J.C.; Chiappino-Pepe, A.; Syed, S.A.; Fragis, M.; Rachwalski, K.; et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 2023. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, D.; Hu, J.; Zhang, Y.; Tan, B.K.; Lin, S. Control Measurements of Escherichia coli Biofilm: A Review. Foods 2022, 11, 2469. [Google Scholar] [CrossRef]
- Russini, V.; Corradini, C.; De Marchis, M.L.; Bogdanova, T.; Lovari, S.; De Santis, P.; Migliore, G.; Bilei, S.; Bossù, T. Foodborne Toxigenic Agents Investigated in Central Italy: An Overview of a Three-Year Experience (2018–2020). Toxins 2022, 14, 40. [Google Scholar] [CrossRef]
- Tuon, F.F.; Dantas, L.R.; Suss, P.H.; Tasca Ribeiro, V.S. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022, 11, 300. [Google Scholar] [CrossRef]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Abbas, H.A. Comparative antibacterial and antibiofilm activities of manuka honey and Egyptian clover honey. Asian J. Appl. Sci. 2014, 2, 2. [Google Scholar]
- Balázs, V.L.; NagyRadványi, L.; Filep, R.; Kerekes, E.; Kocsis, B.; Kocsis, M.; Farkas, Á. In Vitro Antibacterial and Antibiofilm Activity of Hungarian Honey sagainst Respiratory Tract Bacteria. Foods 2021, 10, 1632. [Google Scholar] [CrossRef]
- Foster, K.; Ryan, M.; Kidd, D.; Wisdom, J.; Bates, T.; Hammer, K.; Locher, C.; Barbour, L. Desktop literature review to identify annual and perennial legumes adapted to southern Australia that are best suited to producing pollen and nectar with bioactive properties. In Preliminary Investigations into New Opportunities for the Production of Premium and Medicinal Honey; Foster, K., Ryan, M., Kidd, D., Wisdom, J., Bates, T., Hammer, K., Locher, C., Barbour, L., Eds.; AgriFutures Australia publication no. 22-015; Agrifuture Australia Wagga: Wagga, Australia, 2021; pp. 3–13. [Google Scholar]
- Foster, K.; Ryan, M.; Kidd, D.; Wisdom, J.; Bates, T.; Hammer, K.; Locher, C.; Barbour, L. Honey quality produced from commercial legume cultivars: Bioactivity and medicinal characteristics. In Preliminary Investigations into New Opportunities for the Production of Premium and Medicinal Honey; Foster, K., Ryan, M., Kidd, D., Wisdom, J., Bates, T., Hammer, K., Locher, C., Barbour, L., Eds.; AgriFutures Australia publication no. 22-015; Agrifuture Australia Wagga: Wagga, Australia, 2021; pp. 24–39. [Google Scholar]
- Sindi, A.; Van Bawi Chawn, M.; Escorcia Hernandez, M.; Green, K.; Islam, M.K.; Locher, C.; Hamer, K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to manuka and multifloral honeys. Sci. Rep. 2019, 9, 17666. [Google Scholar] [CrossRef]
- Bogdanov, S. Nature and Origin of the Antibacterial Substances in Honey. LWT-Food Sci. Technol. 1997, 30, 748–753. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.; Said, R.N.; Wali, I.E.; Elwakkad, A.; Soliman, Y.; Awad, A.R.; Shawky, M.A.; Abu Alam, M.S.; Mohammed, M.A. Medically graded honey supplementation formula to preterm infants as a prebiotic: A randomized controlled trial. J. Ped. Gastroent. Nutr. 2017, 64, 966–970. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Stanisławska, I.; Granica, S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann. N. Y. Acad. Sci. 2022, 1508, 54–77. [Google Scholar] [CrossRef] [PubMed]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Molaei, R.; Guimarães, J.T. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enz. Microb.Technol. 2021, 143, 109722. [Google Scholar] [CrossRef] [PubMed]
- Kiran, F.; Kibar Demirhan, H.; Haliscelik, O.; Zatari, D. Metabolic profiles of Weissella spp. postbiotics with anti-microbial and anti-oxidant effects. J. Infect. Dev. Ctries. 2023, 17, 507–517. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sadeghi, A.; Rahimi, D.; Purabdolah, H.; Shahryari, S. Postbiotic and anti-aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey. Probiotics Antimicrob. Prot. 2021, 13, 343–355. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Arioli, S.; Behare, P.; Belzer, C.; Canani, R.B.; Chatel, J.-M.; D’auria, E.; de Freitas, M.Q.; Elinav, E.; Esmerino, E.A.; et al. Postbiotics—When simplification fails to clarify. Nat. Rev. Gastroenter. Hepat. 2021, 18, 825–826. [Google Scholar] [CrossRef]
(a) DPPH | ||||||
Alfalfa | Astragalus | Carob | Indigo | Sainfoin | MRS | |
L. paracasei | 32.22 ± 0.72 ns | 63.29 ± 0.39 b | 15.25 ± 1.54 b | 52.89 ± 0.86 b | 16.49 ± 2.68 b | 31.03 ± 1.27 |
L. gasseri | 41.4 ± 0.81 c | 83.7 ± 1.37 d | 35.04 ± 9.02 c | 13.11 ± 1.55 ns | 74.38 ± 0.29 d | 15.04 ± 1.24 |
L. casei Shirota | 34.12 ± 0.83 ns | 32.74 ± 2.04 ns | 15.13 ± 2.41 b | 46.57 ± 1.36 a | 60.33 ± 0.55 b | 37.31 ± 2.44 |
L. rhamnosus | 23.07 ± 0.89 ns | 52.49 ± 1.03 b | 20.08 ± 2.82 ns | 13.24 ± 3.84 a | 18.46 ± 1.41 a | 24.33 ± 1.18 |
L. plantarum | 17.1 ± 0.7 b | 32.71 ± 2.26 ns | 39.41 ± 2.92 b | 11.91 ± 2.69 b | 41.78 ± 2.44 b | 29.0 ± 3.89 |
(b) OH radical scavenging activity | ||||||
Alfalfa | Astragalus | Carob | Indigo | Sainfoin | MRS | |
L. paracasei | 13.31 ± 3.31 b | 41.11 ± 4.99 d | 10.39 ± 6.52 b | 22.53 ± 0.02 c | 18.29 ± 1.95 c | 7.44 ± 1.54 |
L. gasseri | 28.71 ± 5.1 c | 36.60 ± 5.67 d | 22.83 ± 5.71 b | 6.09 ± 6.07 c | 36.25 ± 6.64 d | 14.40 ± 0.73 |
L. casei Shirota | 19.92 ± 4.05 ns | 32.21 ± 9.25 c | 19.04 ± 0.87ns | 22.66 ± 4.4nd | 26.01 ± 6.89 b | 18.68 ± 5.75 |
L. rhamnosus | 20.63 ± 7.46 c | 33.16 ± 7.45 d | 17.46 ± 2.11 c | 22.46 ± 5.09 c | 20.85 ± 1.46 c | 5.07 ± 3.4 |
L. plantarum | 8.93 ± 2.61 c | 39.5 ± 6.19 b | 7.88 ± 1.08 c | 7.00 ± 3.62 c | 11.07 ± 4.59 c | 27.98 ± 7.05 |
(c) Inhibitory activity of LAB cells lipidic peroxidation with liposomial system | ||||||
Alfalfa | Astragalus | Carob | Indigo | Sainfoin | MRS | |
L. paracasei | 2.54 ± 0.48 a | 1.25 ± 0.42 a | 0 ± 0 | 0.62 ± 0.11 a | 0.54 ± 0.14 a | 5.06 ± 0.23 |
L. gasseri | 28.66 ± 1.21 d | 7.57 ± 1.31 a | 31.11 ± 2.55 d | 1.45 ± 0.32 a | 20.44 ± 3.45 c | 3.81 ± 0.75 |
L. casei Shirota | 8.63 ± 1.65 c | 4.3 ± 0.26 c | 5.47 ± 0.14 c | 8.21 ± 1.05 c | 13.75 ± 1.75 b | 27.41 ± 0.05 |
L. rhamnosus | 1.72 ± 0.15 ns | 0 ± 0 | 11.89 ± 1.74 b | 1.95 ± 0.05 ns | 1.83 ± 0.33 ns | 2.46 ± 0.97 |
L. plantarum | 1.17 ± 0.72 ns | 1.46 ± 0.03 ns | 0.5 ± 0.05 ns | 0 ± 0 | 2.03 ± 0.03 ns | 1.67 ± 0.29 |
(d) CFS reduction activity | ||||||
Alfalfa | Astragalus | Carob | Indigo | Sainfoin | MRS | |
L. paracasei | 0.389 ± 0.05 a | 0.968 ± 0.04 c | 0.531 ± 0.04 a | 0.43 ± 0.01 a | 0.549 ± 0.04 a | 0.304 ± 0.01 |
L. gasseri | 0.593 ± 0.03 b | 0.949 ± 0.02 c | 0.669 ± 0.03 b | 0.104 ± 0.02 a | 0.732 ± 0.03 b | 0.261 ± 0.01 |
L. casei Shirota | 0.604 ± 0.04 a | 1.177 ± 0.04 b | 0.203 ± 0.02 b | 0.461 ± 0.01 b | 0.835 ± 0.03 ns | 0.863 ± 0.03 |
L. rhamnosus | 0.35 ± 0.02 ns | 0.709 ± 0.02 b | 0.328 ± 0.02 ns | 0.216 ± 0.05 ns | 0.191 ± 0.02 ns | 0.298 ± 0.02 |
L. plantarum | 0.357 ± 0.01 a | 0.863 ± 0.03 c | 0.092 ± 0.04 a | 0.026 ± 0.02 c | 0.131 ± 0.01 ns | 0.171 ± 0.01 |
Acinetobacter baumanii | Escherichia coli | Listeria monocytogenes | Pseudomonas aeruginosa | Staphylococcus aureus | |
---|---|---|---|---|---|
L. casei 40 μL/mL | 0.3683 b ± 0.017 | 0.3164 a ± 0.043 | 0.6587 c ± 0.044 | 0.3964 c ± 0.019 | 0.5063 b ± 0.049 |
L. casei Shirota 80 μL/mL | 0.3538 b ± 0.018 | 0.3152 a ± 0.021 | 0.5315 c ± 0.049 | 0.369 c ± 0.044 | 0.368 c ± 0.067 |
L. gasseri 40 μL/mL | 0.4178 a ± 0.056 | 0.3216 a ± 0.091 | 0.832 b ± 0.077 | 0.4214 b ± 0.021 | 0.4807 b ± 0.026 |
L. gasseri 80 μL/mL | 0.3198 b ± 0.023 | 0.2563 b ± 0.057 | 0.7849 b ± 0.28 | 0.352 c ± 0.20 | 0.4021 b ± 0.024 |
L. paracasei subsp. paracasei 40 μL/mL | 0.4082 a ± 0.028 | 0.2579 b ± 0.033 | 1.0114 ± 0.064 | 0.4218 b ± 0.051 | 0.4834 b ± 0.042 |
L. paracasei subsp. paracasei 80 μL/mL | 0.3863 b ± 0.019 | 0.249 b ± 0.031 | 0.5926 c ± 0.057 | 0.3457 c ± 0.017 | 0.4216 b ± 0.023 |
L. plantarum 40 μL/mL | 0.3436 b ± 0.027 | 0.4001 ± 0.032 | 0.8792 b ± 0.076 | 0.3625 c ± 0.019 | 0.4903 b ± 0.026 |
L. plantarum 80 μL/mL | 0.3403 b ± 0.057 | 0.2541 b ± 0.054 | 0.7526 b ± 0.061 | 0.3327 c ± 0.038 | 0.4544 b 0.034 |
L. rhamnosus 40 μL/mL | 0.5211 ± 0.044 | 0.4371 ± 0.019 | 1.1112 ± 0.093 | 0.4995 b ± 0.067 | 0.5894 a ± 0.052 |
L. rhamnosus 80 μL/mL | 0.5197 ± 0.048 | 0.3247 ± 0.032 | 0.7851 b ± 0.063 | 0.4214 b ± 0.038 | 0.5475 b ± 0.047 |
Control | 0.5258 ± 0.041 | 0.4611 ± 0.035 | 1.093 ± 0.079 | 0.7229 ± 0.051 | 0.7583 ± 0.051 |
ALF | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
---|---|---|---|---|---|---|---|---|---|---|
AB | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 4.91 ± 1.44 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 17.70 ± 1.13 |
EC | 1.35 ± 0.05 | 17.92 ± 1.70 | 23.44 ± 1.91 | 17.59 ± 1.65 | 4.53 ± 0.56 | 21.20 ± 1.75 | 41.43 ± 2.64 | 16.29 ± 1.17 | 36.23 ± 2.57 | 15.18 ± 1.13 |
LM | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 5.80 ± 0.45 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
PA | 0 ± 0.00 | 0.43 ± 0.12 | 22.66 ± 1.98 | 9.94 ± 0.88 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 4.79 ± 0.04 |
SA | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 12.33 ± 1.03 | 2.54 ± 0.44 | 9.36 ± 0.91 | 0 ± 0.00 | 22.02 ± 1.90 | 5.09 ± 0.45 | 24.23 ± 2.03 |
ASTR | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
AB | 0 ± 0.00 | 55.31 ± 4.41 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
EC | 0 ± 0.00 | 26.17 ± 1.57 | 29.37 ± 2.45 | 39.11 ± 2.67 | 0.27 ± 0.02 | 18.51 ± 1.67 | 11.81 ± 1.13 | 41.19 ± 2.57 | 0 ± 0.00 | 4.71 ± 0.32 |
LM | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
PA | 0 ± 0.00 | 19.02 ± 1.13 | 0 ± 0.00 | 11.90 ± 1.13 | 30.27 ± 2.85 | 31.47 ± 3.02 | 8.68 ± 0.57 | 34.41 ± 2.67 | 0 ± 0.00 | 0 ± 0.00 |
SA | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 10.79 ± 1.13 | 0 ± 0.00 | 38.49 ± 3.45 | 0 ± 0.00 | 2.04 ± 0.04 | 0 ± 0.00 | 24.20 ± 1.84 |
CAR | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
AB | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 29.17 ± 2.67 | 9.08 ± 0.45 | 53.94 ± 2.67 | 0 ± 0.00 | 10.10 ± 0.85 | 0 ± 0.00 | 22.16 ± 1.44 |
EC | 15.96 ± 1.57 | 19.92 ± 1.84 | 30.84 ± 3.02 | 14.82 ± 1.13 | 3.87 ± 0.04 | 20.04 ± 1.67 | 40.11 ± 3.53 | 14.24 ± 1.15 | 38.34 ± 3.03 | 29.59 ± 2.01 |
LM | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
PA | 9.68 ± 1.01 | 12.38 ± 1.13 | 0 ± 0.00 | 10.59 ± 0.84 | 0 ± 0.00 | 4.68 ± 3.44 | 0 ± 0.00 | 5.62 ± 0.47 | 0 ± 0.00 | 3.53 ± 0.13 |
SA | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 4.37 ± 0.33 | 0 ± 0.00 | 10.05 ± 0.55 | 0 ± 0.00 | 13.77 ± 1.13 | 8.29 ± 0.57 | 9.95 ± 1.05 |
IND | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
AB | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 3.53 ± 0.13 | 14.60 ± 1.57 |
EC | 1.99 ± 1.57 | 26.55 ± 1.67 | 8.73 ± 0.57 | 0 ± 0.00 | 0 ± 0.00 | 5.06 ± 044 | 17.54 ± 1.53 | 0 ± 0.00 | 26.12 ± 1.57 | 4.18 ± 0.34 |
LM | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
PA | 0 ± 0.00 | 0 ± 0.00 | 3.13 ± 0.1) | 0 ± 0.00 | 13.44 ± 0.12 | 0.23 ± 0.02 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0.42 ± 0.03 |
SA | 6.67 ± 0.32 | 0 ± 0.00 | 1.62 ± 0.34 | 0 ± 0.00 | 1.73 ± 0.24 | 4.05 ± 0.34 | 13.78 ± 1.13 | 7.92 ± 0.45 | 0 ± 0.00 | 23.39 ± 1.67 |
SAIN | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
AB | 0 ± 0.00 | 2.71 ± 0.03 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0.19 ± 0.02 |
EC | 10.14 ± 0.12 | 26.87 ± 1.67 | 16.30 ± 1.13 | 27.39 ± 2.04 | 0 ± 0.00 | 12.04 ± 1.0) | 1.81 ± 1.07 | 35.94 ± 2.67 | 0 ± 0.00 | 0 ± 0.00 |
LM | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
PA | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 5.01 ± 0.44 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
SA | 0 ± 0.00 | 2.94 ± 0.09 | 6.98 ± 0.57 | 10.50 ± 0.45 | 0 ± 0.00 | 8.20 ± 0.78 | 5.83 ± 0.57 | 16.24 ± 1.13 | 0 ± 0.00 | 26.55 ± 2.05 |
A. baumanii | E. coli | L. monocytogenes | P. aeruginosa | S. aureus | |
---|---|---|---|---|---|
Alfalfa | 32 ± 1 | 34 d ± 2 | 35 ± 1 | 38 ± 4 | 35 ± 2 |
Astragalus | 35 a ± 2 | 35 d ± 3 | 34 ± 2 | 40 b ± 2 | 40 b ± 4 |
Carob | 40 d ± 3 | 30 a ± 2 | 34 ± 1 | 36 ± 2 | 35 ± 1 |
Indigo | 50 d ± 2 | 34 d ± 2 | 40 d ± 2 | 40 b ± 3 | 45 d ± 3 |
Sainfoin | 34 ± 2 | 32 b ± 2 | 32 ± 2 | 40 b ± 3 | 38 ± 2 |
Tetracycline | 30 ± 2 | 25 ± 2 | 32 ± 1 | 34 ± 1 | 34 ± 1 |
Acinetobacter baumannii | Escherichia coli | Listeria monocytogenes | Pseudomonas aeruginosa | Staphylococcus aureus | |
---|---|---|---|---|---|
Alfalfa 10 μg/mL | 5.64 a ± 0.15 | 45.61 d ± 2.52 | 0 ± 0.00 | 12.01 b ± 1.02 | 8.68 a ± 0.52 |
Alfalfa 20 μg/mL | 40.58 d ± 3.67 | 49.91 d ± 3.45 | 23.42 c ± 1.78 | 37.61 d ± 3.52 | 28.85 c ± 1.45 |
Astragalus 10 μg/mL | 26.45 d ± 1.32 | 32.38 d ± 1.22 | 49.84 d ± 2.13 | 20.25 c ± 1.05 | 26.01 c ± 2.02 |
Astragalus 20 μg/mL | 37.47 d ± 2.09 | 35.70 d ± 2.45 | 57.88 d ± 3.04 | 29.27 d ± 2.02 | 39.52 d ± 2.78 |
Carob 10 μg/mL | 0 ± 0.00 | 37.69 d ± 1.57 | 50.28 d ± 3.66 | 26.55 c ± 2.35 | 47.35 d ± 1.44 |
Carob 20 μg/mL | 7.72 a ± 0.44 | 81.71 d ± 1.44 | 56.01 d ± 3.16 | 51.20 d ± 3.04 | 56.22 d ± 2.68 |
Indigo 10 μg/mL | 0 ± 0.00 | 26.62 c ± 1.13 | 30.82 d ± 1.24 | 0 ± 0.00 | 1.02 ± 0.06 |
Indigo 20 μg/mL | 0 ± 0.00 | 44.62 d ± 3.54 | 40.92 d ± 1.44 | 0 ± 0.00 | 28.06 c ± 2.04 |
Sainfoin 10 μg/mL | 34.67 d ± 2.13 | 57.78 d ± 3.98 | 22.46 c ± 1.24 | 0 ± 0.00 | 40.03 d ± 2.16 |
Sainfoin 20 μg/mL | 35.83 d ± 1.67 | 60.06 d ± 2.08 | 51.25 d ± 1.15 | 15.36 b ± 1.24 | 47.58 d ± 3.35 |
MRS | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
---|---|---|---|---|---|---|---|---|---|---|
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 79.38 d ± 3.04 |
Escherichia coli | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Listeria monocytogenes | 0 ± 0.00 | 0 ± 0.00 | 2.89 a ± 0.57 | 3.30 a ± 0.13 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Pseudomonas aeruginosa | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 0 ± 0.00 | 24.47 c ± 1.41) | 47.97 d ± 3.57 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 10.81 b ± 0.67 | 0 ± 0.00 | 6.28 a ± 0.57 |
Alfalfa | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Escherichia coli | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 8.75 a ± 1.22 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 18.89 b ± 0.67 | 0 ± 0.00 | 0 ± 0.00 |
Listeria monocytogenes | 0 ± 0.00 | 12.91 b ± 1.24 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 34.73 d ± 2.54 | 42.27 d ± 3.07 | 60.05 d ± 3.34 | 50.56 d ± 4.03 | 76.59 d ± 2.40 |
Pseudomonas aeruginosa | 0 ± 0.00 | 1.44 ± 0.02 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 14.75 b ± 0.83 | 35.16 d ± 2.04 | 46.04 d ± 3.12 | 26.28 c ± 2.14 | 31.81 d ± 2.20 | 0 ± 0.00 | 19.19 b ± 0.88 | 0 ± 0.00 | 0 ± 0.00 |
Astragalus | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 5.02 a ± 0.44 | 0 ± 0.00 | 0 ± 0.00 |
Escherichia coli | 0 ± 0.00 | 0 ± 0.00 | 10.85 b ± 0.85 | 0 ± 0.00 | 0 ± 0.00 | 8.17 a ± 0.42 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 11.53 b ± 0.88 |
Listeria monocytogenes | 0 ± 0.00 | 47.60 d ± 2.94 | 14.21 b ± 1.33 | 30.58 d ± 2.57 | 0 ± 0.00 | 0 ± 0.00 | 34.68 d ± 2.64 | 34.97 d ± 2.88 | 45.01 d ± 2.05 | 48.98 d ± 2.14 |
Pseudomonas aeruginosa | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 7.06 a ± 0.84 | 33.22 d ± 1.57 | 50.52 d ± 2.25 | 0 ± 0.00 | 4.06 a ± 0.34 | 10.86 b ± 0.78 | 46.53 d ± 1.44 | 1.11 ± 0.57 | 45.13 d ± 2.35 |
Carob | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 33.05 d ± 2.25 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Escherichia coli | 0 ± 0.00 | 0 ± 0.00 | 14.78 b ± 1.11 | 36.97 d ± 2.76 | 7.92 a ± 0.37 | 32.13 d ± 2.24 | 0 ± 0.00 | 38.58 ± 2.44 | 0 ± 0.00 | 14.79 b ± 0.77 |
Listeria monocytogenes | 0 ± 0.00 | 31.48 d ± 2.21 | 2.42 a ± 0.2 | 43.65 d ± 3.86 | 3.33 a ± 0.15 | 12.16 b ± 0.88 | 13.44 b ± 0.42 | 42.67 d ± 3.34 | 16.81 b ± 1.44 | 39.12 d ± 2.24 |
Pseudomonas aeruginosa | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 27.32 c ± 1.67 | 0 ± 0.00 | 40.33 d ± 1.67 | 0 ± 0.00 | 4.09 a ± 0.34 | 12.50 b ± 1.05 | 46.52 d ± 2.34 | 0 ± 0.00 | 0 ± 0.00 |
Indigo | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Escherichia coli | 0 ± 0.00 | 10.61 b ± 0.45 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Listeria monocytogenes | 5.53 a ± 0.33 | 36.53 d ± 2.67 | 0 ± 0.00 | 5.38 a ± 0.34 | 27.91 c ± 1.98 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 6.74 a ± 0.54 | 18.61 b ± 0.88 |
Pseudomonas aeruginosa | 0 ± 0.00 | 79.67 d ± 2.57 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 13.10 b ± 0.85 | 0 ± 0.00 | 0 ± 0.00 | 12.84 b ± 0.48 | 79.99 d ± 1.03 | 8.61 a ± 0.54 | 43.12 d ± 2.24 | 0 ± 0.00 | 0 ± 0.00 |
Sainfoin | Lc 40 μL/mL | Lc 80 μL/mL | Lg 40 μL/mL | Lg 80 μL/mL | Lpc 40 μL/mL | Lpc 80 μL/mL | Lpl 40 μL/mL | Lpl 80 μL/mL | Lrh 40 μL/mL | Lrh 80 μL/mL |
Acinetobacter baumannii | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 30.42 d ± 2.31 | 0 ± 0.00 | 36.25 d ± 2.05 |
Escherichia coli | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Listeria monocytogenes | 0 ± 0.00 | 11.46 b ± 0.82 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Pseudomonas aeruginosa | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 |
Staphylococcus aureus | 0 ± 0.00 | 39.56 d ± 2.82 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 0 ± 0.00 | 18.17 b ± 0.98 | 8.22 a ± 0.34 | 9.72 a ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratianni, F.; De Giulio, B.; d’Acierno, A.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods 2023, 12, 3338. https://doi.org/10.3390/foods12183338
Fratianni F, De Giulio B, d’Acierno A, Amato G, De Feo V, Coppola R, Nazzaro F. In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods. 2023; 12(18):3338. https://doi.org/10.3390/foods12183338
Chicago/Turabian StyleFratianni, Florinda, Beatrice De Giulio, Antonio d’Acierno, Giuseppe Amato, Vincenzo De Feo, Raffaele Coppola, and Filomena Nazzaro. 2023. "In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys" Foods 12, no. 18: 3338. https://doi.org/10.3390/foods12183338
APA StyleFratianni, F., De Giulio, B., d’Acierno, A., Amato, G., De Feo, V., Coppola, R., & Nazzaro, F. (2023). In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods, 12(18), 3338. https://doi.org/10.3390/foods12183338