Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications
Abstract
:1. Introduction
2. Source of α-GIs
2.1. Bacterially Derived α-GIs
Classification | Name/Type of Compound | Structures | Source | Enzyme Source | IC50 | References |
---|---|---|---|---|---|---|
Bacteria | Acarbose | Figure 1 | Actinoplanes Streptomyces | Rat α-glucosidases | 1.39 ± 0.23 mg/mL | [14,15,16] |
Miglitol | Streptomyces | Not displayed | 2.43 µM | [17,18] | ||
Voglibose | Streptomyces | Baker’s yeast | 23.4 ± 0.3 μM | [19,20] | ||
1-Deoxynojirimycin | Bacillus Streptomyces | Not displayed | 0.35 mg/mL | [21,22] | ||
Homogentisic acid | Paenibacillus | Rat α-glucosidases | 220 μg/mL | [23] | ||
Genistein | Streptomyces | Baker’s yeast | 50 nM | [24] | ||
CKD-711 and CKD-711a | Streptomyces | Rat intestinal mucosa | 2.5 μg/mL and 6.5 μg/mL | [25] | ||
Hemi-pyocyanin | Pseudomonas aeruginosa | Yeast | 0.572 mg/mL | [26] | ||
Fungus | Polyhydroxy phenolic | Figure 2 (1) | Aspergillus insulicola | Not displayed | 17.04 ± 0.28 to 292.47 ± 5.87 μM | [27] |
Alkaloids/meroterpenoids/steroids | Not displayed | Aspergillus | Saccharomyces cerevisiae recombinant | 0.3 ± 0.0.03 to 0.4 ± 0.02 mM | [28] | |
Prenylated aspulvinones | Figure 2 (2) | Aspergillus terreus | Saccharomyces cerevisiae | 2.2 and 4.6 μM | [29] | |
Polyketides | Figure 2 (3) | Preussiaminimoides | Yeast | 2.9 to 155 μM | [30] | |
Diphenyl ethers and phenolic bisabolene sesquiterpenoids | Figure 2 (4) | Aspergillus flavus | Not displayed | 1.5–4.5 M | [31] | |
Polyketides and phenylpropanoid | Figure 2 (5) | Pseudolophiostoma | Not displayed | 48.7–120 µM | [32] | |
Xanthones | Figure 2 (6) | Penicillium canescens | Saccharomyces cerevisiae type I | 32.32 ± 1.01 to 75.20 ± 1.02 μM | [33] | |
Phenolic | Not displayed | Alternaria destruens | Not displayed | Not Displayed | [34] | |
Aromatic compounds | Figure 2 (7) | Hericium erinaceus | Saccharomyces cerevisiae | <20 μM (essential compound) | [35] | |
Polysaccharides | Not Displayed | Pleurotus eryngii | Not displayed | Not displayed | [36] |
2.1.1. Structural Analogs of Glucose
2.1.2. Other α-GIs
2.2. Fungus-Based α-GIs
3. Screening and Evaluation of the Potential Strains
4. Fermentation Production and Potential Applications of α-GIs
4.1. Fermentation Using Traditional Culture Medium
4.1.1. Production of Acarbose
4.1.2. Production of DNJ
4.2. Fermentation Using Food-Related Materials
4.2.1. Fermentation Using Grains
Category | Raw Material | Strain | Type of Extract | Major Active Substance | IC50/Inhibition Ratio | Yield | References |
---|---|---|---|---|---|---|---|
Cereal | Rice bran | Bacillus subtilis MK15 | Separation and purification using ultrafiltration, DEAE Sepharose, and Sephadex G-25 | Oligopeptide | 1 mg/mL was 15% | Not mentioned | [75] |
Black soya bean | B. subtilis | 23% ethanol and 2% formic acid extract | Phenolic compound | 0.353 mg GAE/mL | about 25 mg GAE/g | [76] | |
Soybean | H. erinaceus and H. ramosum wild mushroom fruiting bodies | Ethanol extract | Genistein | 62.3–79.5% | 1.465 ± 0.033 μg/g | [77] | |
Okara | B. amyloliquefaciens SY07 | Crude extract | 1-Deoxynojirimycin | 0.454 mg/mL | Not mentioned | [78] | |
Chickpea | Lactiplantibacillus plantarum | Fermentation supernatant | Phenolic compound | Probably less than 55% | 0.7-1.03 mg GAE/g | [79] | |
Lentils | Aspergillus oryzae and Aspergillus niger | Distilled water extract | Phenolic compound | 90% | 4.27 mg GAE/g | [80] | |
Quinoa seeds | Lactobacillus casei SY13 | Germinated protein hydrolysates of quinoa yogurt beverage | Peptide | 8.86 mg/mL | Not mentioned | [81] | |
Quinoa seeds | Limosilactobacillus and Lacticaseibacillus | Ethanol extract | Not mentioned | 62.30% | Not mentioned | [82] | |
Okara | Bacillus subtilis B2 | Separation and purification by multi-column chromatography | 1-Deoxynojirimycin | 0.2 mg/ml | Not mentioned | [83] | |
Soybean | B. amyloliquefaciens HZ-12 | Methanol extract | 1-Deoxynojirimycin | Not mentioned | 870 mg/kg | [84] | |
Tartary buckwheat | L. plantarum and L. paracasei | 70% ethanol extract | Phenols and flavonoids | 0.51 mg/mL | 251.8 ± 10.4 mg/g and 25.7 ± 0.4 mg/g | [85] | |
Garden stuff | Extract of capsicum | Not mentioned | 80% ethanol extract, and purified with AB-8 macroporous resin | Phenolic compounds | 0.83 mg/mL | 546.70 ± 20.53 (GAE)/100 g | [86] |
Pumpkin | Lactobacillus mali K8 | Fermentation supernatant | Not mentioned | 95.89 ± 0.30% | Not mentioned | [87] | |
Garden stuff | Pepper | Bacillus licheniformis SK1230 | Water extract | Phenolics | 14.47 ± 0.67% | Not mentioned | [88] |
Fruit enzyme | Natural fermentation | Fermentation supernatant | Not mentioned | 81.67% | Not mentioned | [89] | |
Apple juice | Lactobacillus | Not mentioned | Not mentioned | 21.51% | Not mentioned | [90] | |
Yacon | Lactiplantibacillus plantarum NCU001043 | Fermentation supernatant | Phenolic compounds | 740 μg AE/mL | 9.7 mg GAE/mL | [91] | |
Aquatic products | Chitin as a carbon source | Paenibacillus sp. TKU042 | Fermentation supernatant | Not mentioned | 81 μg/mL 93% | Not mentioned | [92] |
Squid ring | Paenibacillus | Separation and purification using Diaoin, Octadecylsilane opened columns, and preparative HPLC | Homogentisic acid | 220 μg/mL | Not mentioned | [23] | |
Laminaria | Saccharomyces cerevisiae and Lactiplantibacillus | Crude extract | Not mentioned | 0.58 ± 0.018 mg/mL | Not mentioned | [93] | |
Other | Rubing cheese | Lactobacillus | Crude extract | Polypeptide | 0.821 mg/mL | Not mentioned | [94] |
Artemisia capillaris | Leu. mesenteroide | Fermentation supernatant | Not mentioned | 76.05% | Not mentioned | [95] | |
Camel and beef sausages | L. lactis KX881782 | Water-soluble extract | Not mentioned | About 40% | Not mentioned | [96] | |
Soybean leaves | Lactobacillus plantarum P1201 and Lactobacillus brevis BMK184 | Crude extract | Total phenolic, total flavonoid, and isoflavone aglycone | 49.86% | Not mentioned | [97] | |
Cassava wastewater | Serratia marcescens TNU01 | Separation and purification using ethyl acetate for layer separation and silica open column | Prodigiosin | 0.0183 μg/mL | 6150 mg/L | [98] | |
Hibiscus sabdariffa | Saccharomyces cerevisiae | Crude extract | Delphinidin 3-O-sambubioside | 543 μmol/L | Not mentioned | [99] |
4.2.2. Fermentation Using Fruits and Vegetables
4.2.3. Fermentation Using Aquatic Products
4.2.4. Fermentation Using Dairy Products
4.2.5. Fermentation Using Tea
4.2.6. Fermentation Using Other Materials
5. Identification and Detection of Components and Functions from Microbial Production
5.1. Purification and Identification of α-Gis
5.2. Detection and Analysis of α-Gis
6. Applications of Microbial-Derived α-gIs
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Giugliano, D.; Nappo, F.; Marfella, R. Regression of Carotid Atherosclerosis by Control of Postprandial Hyperglycemia in Type 2 Diabetes Mellitus. Circulation 2004, 110, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-Q.; Li, M.; Zhu, F.; Liu, F.-L.; Huang, J.-B. Inhibitory Potential of Trilobatin from Lithocarpus Polystachyus Rehd against α-Glucosidase and α-Amylase Linked to Type 2 Diabetes. Food Chem. 2012, 130, 261–266. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, A.M.; Zhong, K.; Huang, Y.N.; Gao, Y.; Zhang, J.; Gao, H.; Xu, Z.J.; Gao, X.L. Alpha-Glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb. J. Funct. Foods 2013, 5, 1253–1259. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Yen, Y.-Y.; Hung, K.-C.; Hsu, S.-W.; Lan, S.-J.; Lin, H.-C. Inhibitory Effects of Pu-Erh Tea on Alpha Glucosidase and Alpha Amylase: A Systemic Review. Nutr. Diabetes 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A Review of Alpha-Glucosidase Inhibitors from Plants as Potential Candidates for the Treatment of Type-2 Diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, Bioactivities and Future Prospects of Mulberry Leaves: A Review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.; Hu, X.; Zhang, G.; Gong, D. Galangin Inhibits α-Glucosidase Activity and Formation of Non-Enzymatic Glycation Products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, Vegetables, and Mushrooms for the Preparation of Extracts with α-Amylase and α-Glucosidase Inhibition Properties: A Review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Han, R.; Hernández Álvarez, A.J.; Maycock, J.; Murray, B.S.; Boesch, C. Comparison of Alcalase- and Pepsin-Treated Oilseed Protein Hydrolysates—Experimental Validation of Predicted Antioxidant, Antihypertensive, and Antidiabetic Properties. Curr. Res. Food Sci. 2021, 4, 141–149. [Google Scholar] [CrossRef]
- Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Park, C.; Son, M.; Kim, J.Y.; Yuk, H.J.; Lee, K.W.; Park, K.H. Cinnamic Acid Amides from Tribulus terrestris Displaying Uncompetitive α-Glucosidase Inhibition. Eur. J. Med. Chem. 2016, 114, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Sadaka, C.; Generalić Mekinić, I.; Garzoli, S.; Švarc-Gajić, J.; Rodrigues, F.; Morais, S.; Moreira, M.M.; Ferreira, E.; Spigno, G.; et al. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants 2023, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Sonthisut, M.; Wongpanya, R.; Phonphoem, A.; Phonphoem, W.P. Enhancement of 1-Deoxynojirimycin Production in Mulberry (Morus spp.) Using LED Irradiation. Plant Cell Tissue Organ. Cult. (PCTOC) 2022, 148, 167–176. [Google Scholar] [CrossRef]
- Ren, F.; Chen, L.; Tong, Q. Influence of Ammonium Salt and Fermentation PH on Acarbose Yield from Streptomyces M37. Trop. J. Pharm. Res. 2015, 13, 2075. [Google Scholar] [CrossRef]
- Tuyen, D.T.; Yew, G.Y.; Cuong, N.T.; Hoang, L.T.; Yen, H.T.; Hong Thao, P.T.; Thao, N.T.; Sy Le Thanh, N.; Hien Trang, N.T.; Trung, N.T.; et al. Selection, Purification, and Evaluation of Acarbose−an α-Glucosidase Inhibitor from Actinoplanes sp. Chemosphere 2021, 265, 129167. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Ng, K.; Zhang, P.; Warner, R.; Shen, S.; Tang, H.; Liang, Z.; Fang, Z. In Vitro alpha-Glucosidase and alpha-Amylase Inhibitory Activities of Free and Bound Phenolic Extracts from the Bran and Kernel Fractions of Five Sorghum Grain Genotypes. Foods 2020, 9, 1301. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, H.; Liu, R.; Liu, J.; Chen, L.; Li, X.; Zhao, L.; Wang, W.; Li, B. Quinazoline-1-deoxynojirimycin hybrids as high active dual inhibitors of EGFR and alpha-glucosidase. Bioorg. Med. Chem. Lett. 2017, 27, 4309–4313. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Zhao, L.; Ye, Y. 1-Deoxnojirinicin and its Derivatives: A Mini Review of the Literature. Curr. Med. Chem. 2021, 28, 628–643. [Google Scholar] [CrossRef]
- Dabhi, A.; Bhatt, N.; Shah, M. Voglibose: An Alpha Glucosidase Inhibitor. J. Clin. Diagn. Res. 2013, 7, 3023–3027. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Ngamrojanavanich, N.; Kalampakorn, K.; Tiravanit, W.; Roengsumran, S.; Yibchok-Anun, S. Inhibitory activity of cyanidin-3-rutinoside on alpha-glucosidase. J. Enzym. Ingib. Med. Chem. 2004, 19, 313–316. [Google Scholar] [CrossRef]
- Zhang, W.; Mu, W.; Wu, H.; Liang, Z. An Overview of the Biological Production of 1-Deoxynojirimycin: Current Status and Future Perspective. Appl. Microbiol. Biotechnol. 2019, 103, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Li, C.; Lu, H.; Yu, Y.; Jiang, Y. The hypoglycemic and anti-oxidative effects in vitro of DNJ extracted from mulberry leaves. Food Sci. Technol. 2017, 42, 215–219. [Google Scholar]
- Nguyen, V.; Nguyen, A.; Wang, S.-L. Utilization of Fishery Processing By-Product Squid Pens for α-Glucosidase Inhibitors Production by Paenibacillus sp. Mar. Drugs 2017, 15, 274. [Google Scholar] [CrossRef]
- Lee, D.-S.; Lee, S.-H. Genistein, a Soy Isoflavone, Is a Potent α-Glucosidase Inhibitor. FEBS Lett. 2001, 501, 84–86. [Google Scholar] [CrossRef]
- Kim, J.; Chang, H.; Kwon, Y.; Moon, S.; Chun, H.; Ahn, S.; Hong, C. Novel alpha-glucosidase inhibitors, CKD-711 and CKD-711a produced by Streptomyces sp. CK-4416I. Taxonomy, fermentation and isolation. J. Antibiot. 2002, 55, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.L.; Nguyen, A.D. Bioconversion of a Peanut Oil Processing By-Product into a Novel alpha-Glucosidase Inhibitor: Hemi-Pyocyanin. Processes 2023, 11, 1468. [Google Scholar] [CrossRef]
- Zhao, W.; Zeng, Y.; Chang, W.; Chen, H.; Wang, H.; Dai, H.; Lv, F. Potential α-Glucosidase Inhibitors from the Deep-Sea Sediment-Derived Fungus Aspergillus insulicola. Mar. Drugs 2023, 21, 157. [Google Scholar] [CrossRef]
- Shan, W.; Wu, Z.; Pang, W.; Ma, L.; Ying, Y.; Zhan, Z. alpha-Glucosidase Inhibitors from the Fungus Aspergillus terreus 3.05358. Chem. Biodivers. 2015, 12, 1718–1724. [Google Scholar] [CrossRef]
- Wu, C.; Cui, X.; Sun, L.; Lu, J.; Li, F.; Song, M.; Zhang, Y.; Hao, X.; Tian, C.; Song, M.; et al. Aspulvinones Suppress Postprandial Hyperglycemia as Potent α-Glucosidase Inhibitors from Aspergillus terreus ASM-1. Front. Chem. 2021, 9, 736070. [Google Scholar] [CrossRef]
- Rangel-Grimaldo, M.; Rivero-Cruz, I.; Madariaga-Mazón, A.; Figueroa, M.; Mata, R. α-Glucosidase Inhibitors from Preussia Minimoides. J. Nat. Prod. 2017, 80, 582–587. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Huang, X.; Pan, Y.; Liu, Z.; Yan, T.; Cao, W.; She, Z. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3. Mar. Drugs 2018, 16, 307. [Google Scholar] [CrossRef]
- Macabeo, A.P.G.; Pilapil, L.A.E.; Garcia, K.Y.M.; Quimque, M.T.J.; Phukhamsakda, C.; Cruz, A.J.C.; Hyde, K.D.; Stadler, M. Alpha-Glucosidase- and Lipase-Inhibitory Phenalenones from a New Species of Pseudolophiostoma Originating from Thailand. Molecules 2020, 25, 965. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Ardalani, H.; Anam, S.; McNair, L.M.; Kromphardt, K.J.K.; Frandsen, R.J.N.; Franzyk, H.; Staerk, D.; Kongstad, K.T. Antidiabetic Xanthones with α-Glucosidase Inhibitory Activities from an Endophytic Penicillium canescens. Fitoterapia 2020, 142, 104522. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Sharma, P.; Kaur, R.; Kaur, S.; Kaur, A. Assessment of Alpha Glucosidase Inhibitors Produced from Endophytic Fungus Alternaria Destruens as Antimicrobial and Antibiofilm Agents. Mol. Biol. Rep. 2020, 47, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Ryu, S.H.; Turk, A.; Yeon, S.W.; Jo, Y.H.; Han, Y.K.; Hwang, B.Y.; Lee, K.Y.; Lee, M.K. Characterization of α-Glucosidase Inhibitory Constituents of the Fruiting Body of Lion’s Mane Mushroom (Hericium erinaceus). J. Ethnopharmacol. 2020, 262, 113197. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, H.; Wu, L.; Kong, X.; Song, Q.; Zhu, Z. Structural Characterization and Inhibition on α-Glucosidase of the Polysaccharides from Fruiting Bodies and Mycelia of Pleurotus eryngii. Int. J. Biol. Macromol. 2020, 156, 1512–1519. [Google Scholar] [CrossRef]
- Wettergreen, S.A.; Sheth, S.; Malveaux, J. Effects of the Addition of Acarbose to Insulin and Non-Insulin Regimens in Veterans with Type 2 Diabetes Mellitus. Pharm. Pract. 2016, 14, 832. [Google Scholar] [CrossRef]
- Chiasson, J.-L.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose for Prevention of Type 2 Diabetes Mellitus: The STOP-NIDDM Randomised Trial. Lancet 2002, 359, 2072–2077. [Google Scholar] [CrossRef]
- Hanefeld, M.; Fischer, S.; Schulze, J.; Spengler, M.; Wargenau, M.; Schollberg, K.; Fücker, K. Therapeutic Potentials of Acarbose as First-Line Drug in NIDDM Insufficiently Treated with Diet Alone. Diabetes Care 1991, 14, 732–737. [Google Scholar] [CrossRef]
- Sun, W.; Sun, J.; Zhang, B.; Xing, Y.; Yu, X.; Li, X.; Xiu, Z.; Dong, Y. Baicalein Improves Insulin Resistance via Regulating SOCS3 and Enhances the Effect of Acarbose on Diabetes Prevention. J. Funct. Foods 2017, 37, 339–353. [Google Scholar] [CrossRef]
- Balitz, D.M.; Bush, J.A.; Bradner, W.T.; Doyle, T.W.; O’’Herron, F.A.; Nettleton, D.E. Isolation of Lavendamycin. A New Antibiotic from Streptomyces lavendulae. J. Antibiot. 1982, 35, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Göke, B.; Fuder, H.; Wieckhorst, G.; Theiss, U.; Stridde, E.; Littke, T.; Kleist, P.; Arnold, R.; Lücker, P. SE50 (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 2017, 56, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Kouno, T.; Aoyagi, Y.; Murai, H. The structure of moraoline, a piperidine alkaloid from Morus species. J. Agric. Chem. Soc. 1976, 50, 571–572. [Google Scholar]
- Takasu, S.; Parida, I.S.; Onose, S.; Ito, J.; Ikeda, R.; Yamagishi, K.; Higuchi, O.; Tanaka, F.; Kimura, T.; Miyazawa, T.; et al. Evaluation of the Anti-Hyperglycemic Effect and Safety of Microorganism 1-Deoxynojirimycin. PLoS ONE 2018, 13, e0199057. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Q.; Jiang, L.; Zhang, J.-G.; Deng, W.; Wang, H.-L.; Wei, Z.-J. Quantitative Determination of 1-Deoxynojirimycin in Mulberry Leaves from 132 Varieties. Ind. Crops Prod. 2013, 49, 782–784. [Google Scholar] [CrossRef]
- Wang, G.-Y.; Wei, W.-T.; Rong, R.-X.; Su, S.-S.; Yan, D.-X.; Yin, F.-Q.; Li, X.-L.; Wang, K.-R. Fluorescence Sensing and Glycosidase Inhibition Effect of Multivalent Glycosidase Inhibitors Based on Naphthalimide-Deoxynojirimycin Conjugates. Bioorganic Chem. 2023, 132, 106373. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, S.-L.; Nguyen, V.; Kuo, Y.-H. Isolation and Identification of Potent Antidiabetic Compounds from Antrodia cinnamomea—An Edible Taiwanese Mushroom. Molecules 2018, 23, 2864. [Google Scholar] [CrossRef]
- Kar, L.; Cheng, F.; Chon, S.; Szu, T. Antidiabetic Properties of the Tiger’s Milk Medicinal Mushroom, Lignosus rhinocerotis (Agaricomycetes), in Streptozotocin-Induced Diabetic Rats. Int. J. Med. Mushrooms 2017, 19, 607–617. [Google Scholar] [CrossRef]
- Rosa, L.S.; Santos, M.L.; Abreu, J.P.; Rocha, R.S.; Esmerino, E.A.; Freitas, M.Q.; Marsico, E.T.; Campelo, P.H.; Pimentel, T.C.; Silva, M.C.; et al. Probiotic fermented whey-milk beverages: Effect of different probiotic strains on the physicochemical characteristics, biological activity, and bioactive peptides. Food Res. Int. 2023, 164, 112396. [Google Scholar] [CrossRef]
- Kumari, V.B.C.; Huligere, S.S.; Alotaibi, G.; Al Mouslem, A.K.; Bahauddin, A.A.; Shivanandappa, T.B.; Ramu, R. Antidiabetic Activity of Potential Probiotics Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. Isolated from Fermented Sugarcane Juice: A Comprehensive In Vitro and In Silico Study. Nutrients 2023, 15, 1882. [Google Scholar] [CrossRef]
- Kim, H.W.; Choi, S.Y.; Lee, D.C.; Rhee, H.I. Intestinal Production of Alpha-Glucosidase Inhibitor by Bacillus coagulans Spores. Microorganisms 2023, 11, 1462. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, Y.; Li, F.; Jiao, X.; Ma, D.H.; Zhang, L.Y.; Yang, B.J.; Zhao, J.; Han, J.H.; Li, Q.H. Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. Food Biosci. 2022, 50, 102126. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Behare, P.V.; Yadav, H.; Srivastava, A.K. Emerging pre-clinical safety assessments for potential probiotic strains: A review. Crit. Rev. Food Sci. 2023. early access. [Google Scholar] [CrossRef]
- Kumari, V.B.C.; Huligere, S.S.; Ramu, R.; Bajpe, S.N.; Sreenivasa, M.Y.; Silina, E.; Stupin, V.; Achar, R.R. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated from Fermented Beetroot. Front. Microbiol. 2022, 13, 911243. [Google Scholar] [CrossRef] [PubMed]
- Saroj, D.B.; Gupta, A.K. Genome Based Safety Assessment for Bacillus coagulans Strain LBSC (DSM 17654) for Probiotic Application. Int. J. Food Microbiol. 2020, 318, 108523. [Google Scholar] [CrossRef]
- Chokesajjawatee, N.; Santiyanont, P.; Chantarasakha, K.; Kocharin, K.; Thammarongtham, C.; Lertampaiporn, S.; Vorapreeda, T.; Srisuk, T.; Wongsurawat, T.; Jenjaroenpun, P.; et al. Safety Assessment of a Nham Starter Culture Lactobacillus Plantarum BCC9546 via Whole-Genome Analysis. Sci. Rep. 2020, 10, 10241. [Google Scholar] [CrossRef]
- Kawasaki, H.; Ueda, K. Microbial Innovations in the World of Food. Biosci. Biotechnol. Biochem. 2017, 81, 41–53. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Guimarães, J.F.; Coutinho, N.M.; Pimentel, T.C.; Ranadheera, C.S.; Santillo, A.; Albenzio, M.; Cruz, A.G.; Sant’Ana, A.S. The Future of Functional Food: Emerging Technologies Application on Prebiotics, Probiotics and Postbiotics. Compr. Rev. Rood Sci. Food Saf. 2022, 21, 2560–2586. [Google Scholar] [CrossRef]
- Graham, A.; Ledesma-Amaro, R. The Microbial Food Revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Choi, B.T.; Shin, C.S. Reduced Formation of By-product Component C in Acarbose Fermentation by Actinoplanes sp. CKD485–16. Biotechnol. Prog. 2023, 19, 1677–1682. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Liu, L.; Feng, Z.; Liu, Z.; Zheng, Y. Optimization of Media Composition and Culture Conditions for Acarbose Production by Actinoplanes Utahensis ZJB-08196. World J. Microbiol. Biotechnol. 2011, 27, 2759–2766. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wang, Y.; Xue, Y.; Zheng, Y.; Shen, Y. Actinoplanes Utahensis ZJB-08196 Fed-Batch Fermentation at Elevated Osmolality for Enhancing Acarbose Production. Bioresour. Technol. 2012, 103, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Li, K. An Optimized Industrial Fermentation Processes for Acarbose Production by Actinoplanes sp. A56. Bioresour. Technol. 2012, 118, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.N.; Kim, Y.; Maibunkaew, S.; Park, J.; Nguyen, M.T.; Oh, D.-B.; Kwon, O. Enhanced Production of 1-Deoxynojirimycin in Bacillus subtilis subsp. Inaquosorum by Random Mutagenesis and Culture Optimization. Biotechnol. Bioprocess. Eng. 2021, 26, 265–276. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Y.; Chen, L.; Chen, G.G.; Liang, Z. A Novel Strategy to Regulate 1-Deoxynojirimycin Production Based on Its Biosynthetic Pathway in Streptomyces Lavendulae. Front. Microbiol. 2019, 10, 1968. [Google Scholar] [CrossRef]
- Yamagishi, K.; Onose, S.; Takasu, S.; Ito, J.; Ikeda, R.; Kimura, T.; Nakagawa, K.; Miyazawa, T. Lactose Increases the Production of 1-deoxynojirimycin in Bacillus amyloliquefaciens. Food Sci. Technol. Res. 2017, 23, 349–353. [Google Scholar] [CrossRef]
- Lee, H.; Shin, H.-H.; Kim, H.R.; Nam, Y.-D.; Seo, D.-H.; Seo, M.-J. Culture Optimization Strategy for 1-Deoxynojirimycin-Producing Bacillus methylotrophicus K26 Isolated from Korean Fermented Soybean Paste, Doenjang. Biotechnol. Bioprocess. Eng. 2018, 23, 424–431. [Google Scholar] [CrossRef]
- Park, Y.S.; Lee, J.Y.; Hwang, K.Y.; Kim, K. Production of α-Glucosidase Inhibitor and 1-Deoxynojirimycin by Bacillus subtilis MORI. Microbiol. Biotechnol. Lett. 2021, 49, 566–575. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, X.; Deng, H.; Chen, S.; Ji, Z. Improvement of 1-Deoxynojirimycin Production of Bacillus amyloliquefaciens by Gene Overexpression and Medium Optimization. LWT-Food Sci. Technol. 2021, 149, 111812. [Google Scholar] [CrossRef]
- Rayamajhi, V.; Dhakal, D.; Chaudhary, A.K.; Sohng, J.K. Improved Production of 1-Deoxynojirymicin in Escherichia coli through Metabolic Engineering. World J. Microbiol. Biotechnol. 2018, 34, 77. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, L.; Chen, H.; Chen, G. Optimization of the Fermentation Conditions for 1-Deoxynojirimycin Production by Streptomyces lawendulae Applying the Response Surface Methodology. Int. J. Food Eng. 2011, 7, 16. [Google Scholar] [CrossRef]
- Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the alpha-Glycosidase Inhibitor 1-Deoxynojirimycin from Bacillus Species. Food Chem. 2013, 138, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.S.; Campbell, J.E.; Geleva, D.; Anderson, G.H. High-Fiber Cereal Reduces Postprandial Insulin Responses in Hyperinsulinemic but Not Normoinsulinemic Subjects. Diabetes Care 2004, 27, 1281–1285. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, J.; Wang, A.; Li, Z. Impact of Whole Cereals and Processing on Type 2 Diabetes Mellitus: A Review. Crit. Rev. Food Sci. 2020, 60, 1447–1474. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lai, X.; Wu, X.; Wang, H.; Weng, N.; Lu, J.; Lyu, M.; Wang, S. Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023, 12, 183. [Google Scholar] [CrossRef]
- Flores-Medellín, S.A.; Camacho-Ruiz, R.M.; Guízar-González, C.; Rivera-Leon, E.A.; Llamas-Covarrubias, I.M.; Mojica, L. Protein Hydrolysates and Phenolic Compounds from Fermented Black Beans Inhibit Markers Related to Obesity and Type-2 Diabetes. Legume Sci. 2021, 3, e64. [Google Scholar] [CrossRef]
- Suruga, K.; Tomita, T.; Kadokura, K. Soybean Fermentation with Basidiomycetes (Medicinal Mushroom Mycelia). Chem. Biol. Technol. Agric. 2020, 7, 23. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, W.; Fang, Y.; Du, P.; Liu, X.; Zhao, X.; Li, F. α-Glucosidase Inhibitory Activity of Fermented Okara Broth Started with the Strain Bacillus amyloliquefaciens SY07. Molecules 2022, 27, 1127. [Google Scholar] [CrossRef] [PubMed]
- Klongklaew, A.; Banwo, K.; Soodsawaeng, P.; Christopher, A.; Khanongnuch, C.; Sarkar, D.; Shetty, K. Lactic Acid Bacteria Based Fermentation Strategy to Improve Phenolic Bioactive-Linked Functional Qualities of Select Chickpea (Cicer arietinum L.) Varieties. NFS J. 2022, 27, 36–46. [Google Scholar] [CrossRef]
- Magro, A.; Silva, L.; Rasera, G.; de Castro, R. Solid-State Fermentation as an Efficient Strategy for the Biotransformation of Lentils: Enhancing Their Antioxidant and Antidiabetic Potentials. Bioresour. Bioprocess. 2019, 6, 38. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. α-Glucosidase and ACE Dual Inhibitory Protein Hydrolysates and Peptide Fractions of Sprouted Quinoa Yoghurt Beverages Inoculated with Lactobacillus Casei. Food Chem. 2019, 299, 124985. [Google Scholar] [CrossRef]
- Jafarpour, D.; Hashemi, S.M.B. Pure and Co-Fermentation of Quinoa Seeds by Limosilactobacillus fermentum and Lacticaseibacillus rhamnosus: Bioactive Content, Antidiabetic and Antioxidant Activities. Fermentation 2023, 9, 80. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Yamaki, K.; Yoshihashi, T.; Kameyama, M.O.; Li, X.-T.; Cheng, Y.-Q.; Mori, Y.; Li, L.-T. Purification and Identification of 1-Deoxynojirimycin (DNJ) in Okara Fermented by Bacillus subtilis B2 from Chinese Traditional Food (Meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Liu, M.; Wei, X.; Li, X.; Wang, Q.; Nomura, C.; Chen, S. Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation. Appl. Biochem. Biotechnol. 2017, 181, 1108–1122. [Google Scholar] [CrossRef]
- Feng, L.; Xie, Y.; Peng, C.; Wang, H. A Novel Antidiabetic Food Produced via Solid-State Fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK150. Food Technol. Biotechnol. 2018, 56, 373–380. [Google Scholar] [CrossRef]
- Li, M.; Bao, X.; Zhang, X.; Ren, H.; Cai, S.; Hu, X.; Yi, J. Exploring the Phytochemicals and Inhibitory Effects against α-Glucosidase and Dipeptidyl Peptidase-IV in Chinese Pickled Chili Pepper: Insights into Mechanisms by Molecular Docking Analysis. LWT 2022, 162, 113467. [Google Scholar] [CrossRef]
- Koh, W.Y.; Uthumporn, U.; Rosma, A.; Irfan, A.R.; Park, Y.H. Optimization of a Fermented Pumpkin-Based Beverage to Improve Lactobacillus Mali Survival and α-Glucosidase Inhibitory Activity: A Response Surface Methodology Approach. Food Sci. Hum. Wellness 2018, 7, 57–70. [Google Scholar] [CrossRef]
- Yeon, S.-J.; Kim, J.-H.; Cho, W.-Y.; Kim, S.-K.; Seo, H.G.; Lee, C.-H. In Vitro Studies of Fermented Korean Chung-Yang Hot Pepper Phenolics as Inhibitors of Key Enzymes Relevant to Hypertension and Diabetes. Foods 2019, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Du, J.; Chen, Y.; Liu, K.; Sang, Y. Antioxidant activity and inhibitory effects on alpha-amylase and alpha-glucosidase of fermented fruit juice in vitro. J. Chin. Inst. Food Sci. Technol. 2019, 19, 79–84. [Google Scholar] [CrossRef]
- Wang, X.; Han, M.; Zhang, M.; Wang, Y.; Ren, Y.; Yue, T.; Gao, Z. In Vitro Evaluation of the Hypoglycemic Properties of Lactic Acid Bacteria and Its Fermentation Adaptability in Apple Juice. LWT 2021, 136, 110363. [Google Scholar] [CrossRef]
- Peng, F.; Huang, H.; Lin, J.-X.; Yang, T.; Xie, M.; Xiong, T.; Peng, Z. Development of Yacon Syrup Fermented by Lactiplantibacillus plantarum NCU001043: Metabolite Profiling, Antioxidant and Glycosidase Inhibition Activity. LWT 2022, 169, 114051. [Google Scholar] [CrossRef]
- Van, B.; Wang, S. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion. Mar. Drugs 2017, 15, 350. [Google Scholar] [CrossRef]
- Yue, Q.; Wang, Z.; Yu, F.; Tang, X.; Su, L.; Zhang, S.; Sun, X.; Li, K.; Zhao, C.; Zhao, L. Changes in Metabolite Profiles and Antioxidant and Hypoglycemic Activities of Laminaria japonica after Fermentation. LWT 2022, 158, 113122. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, Q.; Wang, D.; Fan, Y.; Shi, Y.; Huang, A. Novel ACE Inhibitory, Antioxidant and α-Glucosidase Inhibitory Peptides Identified from Fermented Rubing Cheese through Peptidomic and Molecular Docking. LWT 2022, 159, 113196. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, M. In Vitro Evaluation of Antidiabetic, Antidementia, and Antioxidant Activity of Artemisia capillaris Fermented by Leuconostoc spp. LWT 2022, 172, 114163. [Google Scholar] [CrossRef]
- Ayyash, M.; Olaimat, A.; Al-Nabulsi, A.; Liu, S.-Q. Bioactive Properties of Novel Probiotic Lactococcus lactis Fermented Camel Sausages: Cytotoxicity, Angiotensin Converting Enzyme Inhibition, Antioxidant Capacity, and Antidiabetic Activity. Food Sci. Anim. Resour. 2020, 40, 155–171. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cho, D.Y.; Jang, K.J.; Lee, J.H.; Jung, J.G.; Kim, M.J.; Jeong, J.B.; Haque, M.d.A.; Cho, K.M. Changes of γ-Aminobutyric Acid, Phytoestrogens, and Biofunctional Properties of the Isoflavone-Enriched Soybean (Glycine max) Leaves during Solid Lactic Acid Fermentation. Fermentation 2022, 8, 525. [Google Scholar] [CrossRef]
- Tran, L.T.; Techato, K.; Nguyen, V.B.; Wang, S.-L.; Nguyen, A.D.; Phan, T.Q.; Doan, M.D.; Phoungthong, K. Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia Marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect. Molecules 2021, 26, 6270. [Google Scholar] [CrossRef]
- Ifie, I.; Marshall, L.J.; Ho, P.; Williamson, G. Hibiscus sabdariffa (Roselle) Extracts and Wine: Phytochemical Profile, Physicochemical Properties, and Carbohydrase Inhibition. J. Agric. Food Chem. 2016, 64, 4921–4931. [Google Scholar] [CrossRef] [PubMed]
- Camps, S.; Lim, J.; Ishikado, A.; Inaba, Y.; Suwa, M.; Matsumoto, M.; Henry, C.J. Co-Ingestion of Rice Bran Soymilk or Plain Soymilk with White Bread: Effects on the Glycemic and Insulinemic Response. Nutrients 2018, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Fujie, K.; Yuine, N.; Watabe, Y.; Maruo, K.; Suzuki, H.; Hashimoto, K. The Possibility of Suppression of Increased Postprandial Blood Glucose Levels by Gamma-Polyglutamic Acid-Rich Natto in the Early Phase after Eating: A Randomized Crossover Pilot Study. Nutrients 2020, 12, 915. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheng, Y.-Q.; Yamaki, K.; Li, L.-T. Anti-α-Glucosidase Activity of Chinese Traditionally Fermented Soybean (Douchi). Food Chem. 2007, 103, 1091–1096. [Google Scholar] [CrossRef]
- Tangkhawanit, E.; Siriamornpun, S. Bioactive Compounds, Biological Activity, and Starch Digestibility of Dried Soy Residues from the Soybean Oil Industry and the Effects of Hot-air Drying. J. Sci. Food Agric. 2022, 102, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Nile, A.; Oh, J.-W.; Kai, G. Soybean Processing Waste: Potential Antioxidant, Cytotoxic and Enzyme Inhibitory Activities. Food Biosci. 2020, 38, 100778. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Gao, J.; Mi, S.; Mao, K.; Zhang, T.; Wang, X.; Sang, Y. Chemical Composition of Naturally-Fermented Mixed Fruit Product and in Vitro Bioactivities. LWT 2023, 181, 114771. [Google Scholar] [CrossRef]
- Dou, Z.; Chen, C.; Huang, Q.; Fu, X. In Vitro Digestion of the Whole Blackberry Fruit: Bioaccessibility, Bioactive Variation of Active Ingredients and Impacts on Human Gut Microbiota. Food Chem. 2022, 370, 131001. [Google Scholar] [CrossRef]
- Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Rizzi, C. The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review. Food Bioprocess. Technol. 2023, 16, 691–703. [Google Scholar] [CrossRef]
- De Paulo Farias, D.; De Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Antidiabetic Potential of Dietary Polyphenols: A Mechanistic Review. Food Res. Int. 2021, 145, 110383. [Google Scholar] [CrossRef]
- Carullo, G.; Spizzirri, U.G.; Loizzo, M.R.; Leporini, M.; Sicari, V.; Aiello, F.; Restuccia, D. Valorization of red grape (Vitis vinifera cv. Sangiovese) pomace as functional food ingredient. Ital. J. Food Sci. 2020, 32, 367–385. [Google Scholar]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Liu, B.; Kongstad, K.T.; Wiese, S.; Jäger, A.K.; Staerk, D. Edible Seaweed as Future Functional Food: Identification of α-Glucosidase Inhibitors by Combined Use of High-Resolution α-Glucosidase Inhibition Profiling and HPLC–HRMS–SPE–NMR. Food Chem. 2016, 203, 16–22. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed Nutraceuticals and Their Therapeutic Role in Disease Prevention. Food Sci. Hum. Wellness 2019, 8, 252–263. [Google Scholar] [CrossRef]
- Wang, C.-H.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019, 24, 2234. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.-L. Production of Potent Antidiabetic Compounds from Shrimp Head Powder via Paenibacillus Conversion. Process Biochem. 2019, 76, 18–24. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. J. Agric. Food Chem. 2013, 61, 7500–7506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wei, G.; Li, K.; Duan, S.; Ye, R.; Huang, A. Identification and Molecular Docking of Novel α-Glucosidase Inhibitory Peptides from Hydrolysates of Binglangjiang Buffalo Casein. LWT 2022, 156, 113062. [Google Scholar] [CrossRef]
- Negrete-Romero, B.; Valencia-Olivares, C.; Baños-Dossetti, G.A.; Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Nutritional Contributions and Health Associations of Traditional Fermented Foods. Fermentation 2021, 7, 289. [Google Scholar] [CrossRef]
- Koh, W.Y.; Utra, U.; Ahmad, R.; Rather, I.A.; Park, Y.-H. Evaluation of Probiotic Potential and Anti-Hyperglycemic Properties of a Novel Lactobacillus Strain Isolated from Water Kefir Grains. Food Sci. Biotechnol. 2018, 27, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Souza, C.; De Oliveira, Í.A.C.L.; De Oliveira Rolim, V.A.; Bogsan, C.S.B. Traditional Fermented Foods as an Adjuvant Treatment to Diabetes. Curr. Geriatr. Rep. 2020, 9, 242–250. [Google Scholar] [CrossRef]
- Li, S.; Wang, R.; Hu, X.; Li, C.; Wang, L. Bio-Affinity Ultra-Filtration Combined with HPLC-ESI-QTOF-MS/MS for Screening Potential α-Glucosidase Inhibitors from Cerasus humilis (Bge.) Sok. Leaf-Tea and in Silico Analysis. Food Chem. 2022, 373, 131528. [Google Scholar] [CrossRef]
- Wen, M.; Zhou, F.; Zhu, M.; Han, Z.; Lai, G.; Jiang, Z.; Long, P.; Zhang, L. Monitoring of Pickled Tea during Processing: From LC-MS Based Metabolomics Analysis to Inhibitory Activities on α-Amylase and α-Glycosidase. J. Food Compos. Anal. 2023, 117, 105108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Zhang, Z.; Lu, H.; Gao, X.; Yue, P. High-Theabrownins Instant Dark Tea Product by Aspergillus niger via Submerged Fermentation: α -Glucosidase and Pancreatic Lipase Inhibition and Antioxidant Activity. J. Sci. Food Agric. 2017, 97, 5100–5106. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, Y.; Wu, Y.; Liu, Y.; Wu, Z. Fermentation and Complex Enzyme Hydrolysis for Improving the Total Soluble Phenolic Contents, Flavonoid Aglycones Contents and Bio-Activities of Guava Leaves Tea. Food Chem. 2018, 264, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.-Z.; An, J.-Y.; Wang, L.-T.; Fan, X.-H.; Lv, M.-J.; Zhu, Y.-W.; Chang, Y.-H.; Meng, D.; Yang, Q.; Fu, Y.-J. Development of Fermented Chestnut with Bacillus natto: Functional and Sensory Properties. Food Res. Int. 2020, 130, 108941. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Yang, L.; Ma, Q.; Xie, Q.; Dai, H.; Sun, K.; Zhao, Y. Meroterpenoids and Steroids from the Marine-Derived Fungus trametes sp. ZYX-Z-16. Molecules 2022, 27, 8782. [Google Scholar] [CrossRef]
- Zheng, P.-C.; Qin, C.-Y.; Liu, P.-P.; Feng, L.; Ling, T.-J.; Ning, J.-M.; Zhang, L.; Wan, X.-C. Untargeted Metabolomics Combined with Bioassay Reveals the Change in Critical Bioactive Compounds during the Processing of Qingzhuan Tea. Molecules 2021, 26, 6718. [Google Scholar] [CrossRef]
- Simamora, A.; Santoso, A.W.; Timotius, K.H. α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda citrifolia L. and Combination Effect with Acarbose. Curr. Res. Nutr. Food Sci. J. 2019, 7, 218–226. [Google Scholar] [CrossRef]
- An, T.; Chen, M.; Zu, Z.; Chen, Q.; Lu, H.; Yue, P.; Gao, X. Untargeted and Targeted Metabolomics Reveal Changes in the Chemical Constituents of Instant Dark Tea during Liquid-State Fermentation by Eurotium cristatum. Food Res. Int. 2021, 148, 110623. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, X.; Yao, X.; Chen, Y.; Ho, C.-T.; He, C.; Li, Z.; Wang, Y. Metabolite Profiling, Antioxidant and α-Glucosidase Inhibitory Activities of Buckwheat Processed by Solid-State Fermentation with Eurotium cristatum YL-1. Food Res. Int. 2021, 143, 110262. [Google Scholar] [CrossRef]
- Stiefel, C.; Lindemann, B.; Morlock, G.E. Non-Target Bioactive Compound Profiles of Coffee Roasts and Preparations. Food Chem. 2022, 391, 133263. [Google Scholar] [CrossRef]
- Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. α-Glucosidase Inhibitors as Potential Broad Based Anti-Viral Agents. FEBS Lett. 1998, 430, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Kato, J.; Kohara, M.; Galinski, M.S. Antiviral Effects of Glycosylation and Glucose Trimming Inhibitors on Human Parainfluenza Virus Type 3. Antiviral Res. 2006, 72, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, S.; McClements, D.J.; Wan, Y.; Liu, C.; Fu, G. Antioxidant Activity and α-Amylase and α-Glucosidase Inhibitory Activity of a Fermented Tannic Acid Product: Trigalloylglucose. LWT 2019, 112, 108249. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sakamoto, Y.; Mizowaki, Y.; Iwagaki, Y.; Kimura, T.; Nakagawa, K.; Miyazawa, T.; Tsuduki, T. Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. J. Clin. Biochem. Nutr. 2017, 61, 47–52. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.; Lee, J.; Kim, J. Anti-inflammatory activity of mulberry leaf extract through inhibition of NF-κB. J. Funct. Foods 2013, 5, 178–186. [Google Scholar] [CrossRef]
- Tsuyoshi, T.; Ikuko, K.; Toshiyuki, K.; Kiyotaka, N.; Teruo, M. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chem. 2013, 139, 16–23. [Google Scholar] [CrossRef]
- Gao, H.; Nishioka, T.; Kawabata, J.; Kasai, T. Structure-Activity Relationships for α-Glucosidase Inhibition of Baicalein, 5,6,7-Trihydroxyflavone: The Effect of A-Ring Substitution. Biosci. Biotechnol. Biochem. 2014, 68, 369–375. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, N.; Li, X.; Zhang, B.; Xing, Y.; Zhuang, C.; Xiu, Z. Dietary 5,6,7-Trihydroxy-Flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase–Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2020, 68, 8774–8787. [Google Scholar] [CrossRef]
Strain | Carbon Source (g/L) | Nitrogen Source (g/L) | Culture Condition | Yield (mg/L) | Reference |
---|---|---|---|---|---|
Actinoplanes sp. CKD485-16 | Maltose, 140 Glucose, 30 | NZ-amine, 3 | 500 mOsm kg−1 | 3200 | [60] |
Actinoplanes utahensis ZJB-08196 | Maltose, 50 Glucose, 30 | Soybean meal | 591 mOsm kg−1, 27 °C, 180 rpm, 7 days | 4210 | [61] |
Actinoplanes utahensis ZJB-08196 | Maltose, 14 Glucose, 6 | Soybean meal, 9 | 27 °C, 200 rpm | 4878 | [62] |
Actinoplanes sp. A56 | Total sugar (75–80) | Peptone, 5 | 7.0–7.2 of pH, 40–50% of DO, 28 °C, 168 h | 5000 | [63] |
Strain | Strategy | Yield (mg/L) | Reference |
---|---|---|---|
B. amyloliquefaciens DSM7 | Lactose significantly increased 1-Deoxynojirimycin (DNJ) production at a C/N ratio of 6.25:1 | 1140 | [66] |
B. methylotrophicus K26 | The maximum inhibitory activity was obtained under 4.61% sucrose, 7.03% yeast extract, and 34 °C culture condition | Not displayed | [67] |
B. subtilis MORI | The optimal concentrations of galactose and soybean meal were 4.3% and 3.2%, respectively | 824 | [68] |
B. amyloliquefaciens HZ-12 | Gene overexpression and medium optimization, 20 g/kg lactose, and 10 g/kg malt extract were more favorable for DNJ production | 1135.6 | [69] |
Escherichia coli as a heterologous host | Metabolic engineering | 273 | [70] |
B. subtilis KCTC 13429 | Random Mutagenesis and Culture Optimization were performed at 32 °C in 3.4% sorbitol and 2.4% yeast extract | 773 | [64] |
Streptomyces lawendulae | The optimal conditions were obtained as follows: 11 days, 27 °C, pH 7.5, and 8% soluble starch content | 42.875 | [71] |
B. amyloliquefaciens AS385 | Sorbitol supplementation significantly increased DNJ production | 460 | [72] |
Streptomyces lavendulae | Adding DNJ precursors, analogues and metabolic inhibitors increased the production | 296.56 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Ji, N.; Zhu, Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023, 12, 3344. https://doi.org/10.3390/foods12183344
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods. 2023; 12(18):3344. https://doi.org/10.3390/foods12183344
Chicago/Turabian StyleRen, Fei, Nairu Ji, and Yunping Zhu. 2023. "Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications" Foods 12, no. 18: 3344. https://doi.org/10.3390/foods12183344
APA StyleRen, F., Ji, N., & Zhu, Y. (2023). Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods, 12(18), 3344. https://doi.org/10.3390/foods12183344