Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cooked Ham Elaboration and Characterization
2.2. PROSUR Ingredients Description
2.3. Microbiological Analysis
2.3.1. Choice of Strains and Preparation of the Inoculum
2.3.2. Preparation and Inoculation of the Test Units
2.3.3. Microbiology Analysis and Storage Conditions
2.3.4. Growth Potential Parameter
- When δ > 0.5 log 10 cfu/g, the food is classified into “Ready-to-eat food able to support the growth of L. monocytogenes other than those intended for infants and for special medical purposes”;
- When δ < 0.5 log 10 cfu/g, the food is classified into “Ready-to-eat food unable to support the growth of L. monocytogenes other than those intended for infants and for special medical purposes”.
2.4. Statistical Analyses
3. Results
3.1. Non-Inoculated Samples
3.2. Inoculated Samples
3.2.1. Microbial Growth during Storage at Different Temperatures
3.2.2. Growth Potential Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horita, C.N.; Baptista, R.C.; Caturla, M.Y.R.; Lorenzo, J.M.; Barba, F.J.; Sant’Ana, A.S. Combining Reformulation, Active Packaging and Non-Thermal Post-Packaging Decontamination Technologies to Increase the Microbiological Quality and Safety of Cooked Ready-to-Eat Meat Products. Trends Food Sci. Technol. 2018, 72, 45–61. [Google Scholar] [CrossRef]
- Corrêa, J.A.F.; dos Santos, J.V.G.; Evangelista, A.G.; Pinto, A.C.S.M.; de Macedo, R.E.F.; Luciano, F.B. Combined Application of Phenolic Acids and Essential Oil Components against Salmonella Enteritidis and Listeria monocytogenes In Vitro and in Ready-to-Eat Cooked Ham. LWT 2021, 149, 111881. [Google Scholar] [CrossRef]
- Food Safety Inspection Services—U.S. Department of Agriculture. Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments That Produce Ready-to-Eat (RTE) Products and Revised Appendix A June 2017; U.S. Department of Agriculture: Washington, DC, USA, 2017; 37p.
- Boskovic, M.; Baltic, M.; Ivanovic, J.; Djuric, J.; Loncina, J.; Dokmanovic, M.; Markovic, R. Use of Essential Oils in Order to Prevent Foodborne Illnesses Caused by Pathogens in Meat. Tehnol. Mesa 2013, 54, 14–20. [Google Scholar] [CrossRef]
- Center of Disease Control and Prevention (CDC). List of Multistate Foodborne Outbreak Notices. Available online: https://www.cdc.gov/foodsafety/outbreaks/lists/outbreaks-list.html (accessed on 20 May 2023).
- CDC Centers for Control and Prevention. Listeria Outbreak Linked to Deli Meat and Cheese. Available online: https://www.cdc.gov/listeria/outbreaks/deli-11-22/index.html (accessed on 20 May 2023).
- U.S. Department of Agriculture (UDSA). ERS—Cost Estimates of Foodborne Illnesses. Available online: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses.aspx (accessed on 20 May 2023).
- Taylor, A.J.; Stasiewicz, M.J. Persistent and Sporadic Listeria monocytogenes Strains Do Not Differ When Growing at 37 °C, in Planktonic State, under Different Food Associated Stresses or Energy Sources. BMC Microbiol. 2019, 19, 257. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Kim, J.; Chung, K.; Won, M.; Song, K. Bin Inactivation Kinetics of Listeria monocytogenes, Salmonella enterica Serovar Typhimurium, and Campylobacter jejuni in Ready-to-Eat Sliced Ham Using UV-C Irradiation. Meat Sci. 2009, 83, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-Eat Meat Products as a Source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Castellano, P.; Belfiore, C.; Fadda, S.; Vignolo, G. A Review of Bacteriocinogenic Lactic Acid Bacteria Used as Bioprotective Cultures in Fresh Meat Produced in Argentina. Meat Sci. 2008, 79, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological Tools for Bio-Preservation and Shelf-Life Extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from Lactic Acid Bacteria and Their Applications in Meat and Meat Products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food Applications of Natural Antimicrobial Compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef]
- Bergis, H.; Bonanno, L.; Asséré, A. EURL Lm TECHNICAL GUIDANCE DOCUMENT on Challenge Tests and Durability Studies for Assessing Shelf-Life of Ready-to-Eat Foods Related to Listeria monocytogenes; Version 4; EURL Lm: Maisons-Alfort, France, 2021; 60p. [Google Scholar]
- Supplement: Parameters for Determining Inoculated Pack/Challenge Study Protocols Adopted 20 March 2009, Washington, D.C. National Advisory Committee on Microbiological Criteria for Foods. J. Food Prot. 2010, 73, 140–202.
- Zhao, Y.; Teixeira, J.S.; Saldaña, M.D.A.; Gänzle, M.G. Antimicrobial Activity of Bioactive Starch Packaging Films against Listeria monocytogenes and Reconstituted Meat Microbiota on Ham. Int. J. Food Microbiol. 2019, 305, 108253. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cánovas, J.D.; Guillén-López, I.; Vizcaíno-Milla, P.; Andreo-López, M.I.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Marín-Iniesta, F. Antimicrobial activity of Citrus spp. and Anethum graveolens components against Candida metapsilosis in ranch sauce. J. Food Sci. Technol. 2020, 57, 2713–2721. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Antimicrobial and Physical-Mechanical Properties of Agar-Based Films Incorporated with Grapefruit Seed Extract. Carbohydr. Polym. 2014, 102, 708–716. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential Application of Waste Fruit Peels (Orange, Yellow Lemon and Banana) as Wide Range Natural Antimicrobial Agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J. Food Prot. 1992, 55, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure–activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J. Agric. Food Chem. 2013, 61, 8185–8190. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Iinuma, M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000, 7, 161–165. [Google Scholar] [CrossRef]
- Nieto, G.; Bañón, S.; Garrido, M. Administration of distillate thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef]
- Vermeulen, A.; Smigic, N.; Rajkovic, A.; Gysemans, K.; Bernaerts, K.; Geeraerd, A.; Van Impe, J.; Debevere, J.; Devlieghere, F. Performance of a growth-no growth model for Listeria monocytogenes developed for mayonnaise-based salads: Influence of strain variability, food matrix, inoculation level, and presence of sorbic and benzoic acid. J. Food Prot. 2007, 70, 2118–2126. [Google Scholar] [CrossRef] [PubMed]
Sample | Preservative Content | pH | aw |
---|---|---|---|
P1 | Negative Control | 5.92 ± 0.01 | 0.91 ± 0.01 |
P2 | Celery (100 ppm nitrite); 250 ppm ascorbic acid + 0.7% PRS DV-5 | 6.12 ± 0.01 | 0.91 ± 0.01 |
P3 | 1% NATPRE T-10 DV HS + 0.5% PRS-DV-5 | 6.05 ± 0.04 | 0.91 ± 0.01 |
P4 | 1% NATPRE T-10 DV LS + 0.5% PRS-DV-5 LS + 1.3% NaCl + 0.35–0.40% KCl | 5.88 ± 0.02 | 0.91 ± 0.01 |
P5 | 1% NATPRE T-10 EML + 0.5% PRS-DV-5 | 5.84 ± 0.02 | 0.92 ± 0.01 |
P6 | 1% NATPRE T-10 EML + 0.75% PRS-DV-5 | 5.87 ± 0.03 | 0.91 ± 0.01 |
Storage Temperature (°C) | Analysis Time (Days) | PCA 1 (cfu/g) | MRS 2 (cfu/g) | PCR 3 |
---|---|---|---|---|
7 | 0 | <10 | <10 | Negative/25 g |
7 | 2.35 × 103 | 3.16 × 102 | Negative/25 g | |
12 | 2.00 × 106 | 2.43 × 104 | Negative/25 g | |
4 | 0 | <10 | <10 | Negative/25 g |
9 | 6.67 × 101 | 3.17 × 102 | Negative/25 g | |
17 | <10 | <10 | Negative/25 g |
Temperature | Week | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|---|
4 °C | 0 | 2.04 ± 0.10 a | 1.89 ± 0,11 b | 2.28 ± 0.21 a | 2.24 ± 0.18 a | 2.24 ± 0.28 a | 2.57 ± 0.28 a |
4 | 5.69 ± 0.17 a | 1.68 ± 0.29 b | 1.77 ± 0.28 b | 1.71 ± 0.18 b | 1.74 ± 0.31 b | 1.93 ± 0.20 b | |
5 | 5.05 ± 0.49 a | 1.53 ± 0.21 b | 1.74 ± 0.28 b | 1.80 ± 0.17 b | 2.03 ± 0.38 b | 2.26 ± 0.23 b | |
7 | 5.60 ± 0.27 a | 1.90 ± 0.10 b | 1.82 ± 0.11 b | 1.84 ± 0.10 b | 1.96 ± 0.23 b | 2.11 ± 0.10 b | |
8 | 5.96 ± 0.61 a | 1.72 ± 0.24 b | 1.92 ± 0.15 b c | 1.89 ± 0.30 b c | 2.14 ± 0.30 b c | 2.36 ± 0.13 c | |
10 | 6.11 ± 0.29 a | 1.75 ± 0.18 b | 2.08 ± 0.13 b c | 1.97 ± 0.07 b c | 2.11 ± 0.15 b c, | 2.34 ± 0.10 c | |
12 | 5.53 ± 0.15 a, 1 | 2.03 ± 0.14 b, 1 | 1.93 ± 0.08 b, 1 | 2.01 ± 0.09 b, 1 | 2.04 ± 0.04 b c, 1 | 2.40 ± 0.22 c, 1 | |
13 | 5.39 ± 0.09 a | 1.77 ± 0.07 c | 1.63 ± 0.13 c | 1.86 ± 0.07 c | 2.32 ± 0.02 b | 2.25 ± 0.25 b | |
14 | 6.00 ± 0.38 a | 1.72 ± 0.16 b | 1.70 ± 0.12 b | 1.84 ± 0.13 b | 2.06 ± 0.21 b | 2.25 ± 0.25 c | |
15 | 7.60 ± 0.83 a | 1.78 ± 0.27 b | 1.80 ± 0.21 b | 1.78 ± 0.18 b | 2.15 ± 0.14 b | 2.37 ± 0.28 b | |
16 | 7.36 ± 0.70 a | 1.60 ± 0.35 b | 1.94 ± 0.42 b | 1.73 ± 0.45 b | 1.98 ± 0.20 b | 2.10 ± 0.15 b | |
17 | 7.35 ± 0.57 a | 1.50 ± 0.32 b | 1.76 ± 0.33 b | 1.81 ± 0.20 b | 2.14 ± 0.25 b | 2.44 ± 0.11 b | |
7 °C | 0 | 2.04 ± 0,10 a | 1.89 ± 0,11 b | 2.28 ± 0.21 a | 2.24 ± 0.18 a | 2.24 ± 0.28 a | 2.57 ± 0.28 a |
3 | 6.48 ± 0.04 a | 2.17 ± 0.30 b | 1.93 ± 0.10 c | 1.93 ± 0.20 c | 2.29 ± 0.22 b | 2.46 ± 0.11 b | |
4 | 6.64 ± 0.45 a | 2.10 ± 0.19 b | 1.85 ± 0.20 b | 1.94 ± 0.30 b | 2.01 ± 0.52 b | 2.16 ± 0.30 b | |
5 | 7.03 ± 0.21 a | 2.23 ± 0.24 b | 1.98 ± 0.09 c | 1.92 ± 0.20 c | 2.28 ± 0.09 b c | 2.45 ± 0.12 b | |
7 | 7.01 ± 0.14 a | 2.48 ± 0.46 b | 1.84 ± 0.18 b | 2.05 ± 0.02 b | 2.02 ± 0.17 b | 2.19 ± 0.22 b | |
8 | 7.28 ± 0.32 a | 2.70 ± 0.10 b | 1.78 ± 0.16 c | 1.90 ± 0.13 c | 1.98 ± 0.03 c | 2.17 ± 0.26 c | |
9 | 6.65 ± 0.43 a | 3.16 ± 0.05 b | 1.83 ± 0.07 c | 2.13 ± 0.13 c | 1.98 ± 0.19 c | 2.14 ± 0.25 c | |
10 | 7.60 ± 0.35 a | 2.98 ± 0.09 b | 1.82 ± 0.07 c | 1.87 ± 0.07 c | 2.04 ± 0.04 c d | 2.48 ± 0.10 d | |
12 | 7.76 ± 0.19 a, 2 | 3.38 ± 0.31 b, 2 | 1.76 ± 0.13 c, 1 | 1.57 ± 0.18 c, 1 | 1.94 ± 0.47 c, 1 | 2.18 ± 0.22 c, 1 |
Temperature | Week | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|---|
4 °C | 4 | 3.65 | −0.22 | −0.51 | −0.46 | −0.50 | −0.64 |
5 | 3.00 | −0.36 | −0.54 | −0.37 | −0.21 | −0.31 | |
7 | 3.56 | 0.01 | −0.47 | −0.33 | −0.28 | −0.46 | |
8 | 3.92 | −0.18 | −0.37 | −0.28 | −0.10 | −0.21 | |
10 | 4.07 | −0.14 | −0.21 | −0.21 | −0.13 | −0.23 | |
12 | 3.49 | 0.13 | −0.35 | −0.16 | −0.20 | −0.17 | |
13 | 3.35 | −0.12 | −0.66 | −0.31 | 0.08 | −0.32 | |
14 | 3.96 | −0.17 | −0.58 | −0.33 | −0.18 | −0.31 | |
15 | 5.56 | −0.12 | −0.49 | −0.39 | −0.09 | −0.20 | |
16 | 5.32 | −0.30 | −0.34 | −0.44 | −0.26 | −0.47 | |
17 | 5.31 | −0.39 | −0.52 | −0.36 | −0.10 | −0.13 | |
δ maximum | 5.56 | 0.13 | −0.21 | −0.16 | 0.08 | −0.13 | |
7 °C | 3 | 4.43 | 0.28 | −0.35 | −0.24 | 0.05 | −0.11 |
4 | 4.60 | 0.21 | −0.43 | −0.23 | −0.24 | −0.41 | |
5 | 4.98 | 0.33 | −0.30 | −0.25 | 0.04 | −0.12 | |
7 | 4.97 | 0.59 | −0.44 | −0.12 | −0.22 | −0.38 | |
8 | 5.23 | 0.81 | −0.50 | −0.27 | −0.26 | −0.40 | |
9 | 4.61 | 1.27 | −0.45 | −0.04 | −0.26 | −0.43 | |
10 | 5.56 | 1.09 | −0.46 | −0.30 | −0.20 | −0.09 | |
12 | 5.72 | 1.48 | −0.52 | −0.60 | −0.30 | −0.39 | |
δ maximum | 5.72 | 1.48 | −0.21 | −0.04 | 0.08 | −0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, G.; Peñalver, R.; Ortuño, C.; Hernández, J.D.; Guillén, I. Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods 2023, 12, 3416. https://doi.org/10.3390/foods12183416
Nieto G, Peñalver R, Ortuño C, Hernández JD, Guillén I. Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods. 2023; 12(18):3416. https://doi.org/10.3390/foods12183416
Chicago/Turabian StyleNieto, Gema, Rocío Peñalver, Carmen Ortuño, Juan D. Hernández, and Isidro Guillén. 2023. "Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients" Foods 12, no. 18: 3416. https://doi.org/10.3390/foods12183416
APA StyleNieto, G., Peñalver, R., Ortuño, C., Hernández, J. D., & Guillén, I. (2023). Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods, 12(18), 3416. https://doi.org/10.3390/foods12183416