Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Image Acquisition and Pretreatment
2.2.1. Sample Image Acquisition
2.2.2. Image Preprocessing
2.3. Production of Datasets
2.3.1. Datasets of Pork from Different Parts in Adulterated Mutton
2.3.2. Datasets of Pork from Mixed Parts in Adulterated Mutton
2.4. Construction of the Model
2.4.1. Construction of the CBAM-Invert-ResNet50 Model
2.4.2. Feature Fusion
2.4.3. Transfer Learning
2.5. Test Environment and Model Evaluation
2.5.1. Evaluation Criteria of the Model
2.5.2. Performance Evaluation of the Model
2.5.3. Model Test Environment
3. Results and Discussion
3.1. Visualization and Comparison of Depth Features Extracted by Different Models
3.2. Lightweight Analysis of Improved Model
3.3. The Content Detection Model of Adulterated Mutton with Pork from Different Parts
3.3.1. Results of the CBAM-InvertResNet50 Model
3.3.2. The Comparison of the Different Models
3.3.3. Stability Evaluation of the Models
3.4. The Content Detection Model of Mutton Adulterated with Pork from Mixed Parts
3.4.1. Results of the Different Models
3.4.2. Stability Evaluation of the Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Liu, H.J.; Bai, Y.; Zhao, Y.; Guo, J.; Chen, A.L.; Yang, S.M.; Zhao, S.S.; Tan, L.Q. Research progress on mutton origin tracing and authenticity. Food Chem. 2022, 373, 131387. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Bai, L.; Chen, Y.F.; Jiang, W.; Jia, J.W.; Pan, A.H.; Lv, B.B.; Wu, X. Detection and Quantification of Adulterated Beef and Mutton Products by Multiplex Droplet Digital PCR. Foods 2022, 11, 3034. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Panda, J.; Kumar, Y.V.V.J.; Ranjitha, S.K. A robust RP-HPLC method for determination of turmeric adulteration. J. Liq. Chromatogr Relat. Technol. 2020, 43, 247–254. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, R.M.; Wang, N.; Zhang, J.; Sun, X.Y.; Huang, F.C.; Chen, A.L. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chem. 2023, 411, 135508. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Doddappa, M.; Yadav, B.K.; Jaganmohan, R.; Sinija, V.R.N.; Manickam, L.; Sarvanan, S. Detection of soybean oil adulteration in cow ghee (clarified milk fat): An ultrafast study using flash gas chromatography electronic nose coupled with multivariate chemometrics. J. Sci. Food. Agric. 2022, 102, 4097–4108. [Google Scholar] [CrossRef] [PubMed]
- Han, F.K.; Huang, X.Y.; Aheto, J.H.; Zhang, X.R.; Rashed, M.M.A. Fusion of a low-cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck. Anal. Methods 2022, 14, 417–426. [Google Scholar] [CrossRef]
- Brasiunas, B.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Gold nanoparticle based colorimetric sensing strategy for the determination of reducing sugars. Food Chem. 2021, 351, 129238. [Google Scholar] [CrossRef]
- De Vargas-Sansalvador, I.M.P.; Erenas, M.M.; Martinez-Olmos, A.; Mirza-Montoro, F.; Diamond, D.; Capitan-Vallvey, L.F. Smartphone based meat freshness detection. Talanta 2020, 216, 120985. [Google Scholar] [CrossRef]
- Silva, A.F.S.; Goncalves, I.C.; Rocha, F.R. Smartphone-based digital images as a novel approach to determine formaldehyde as a milk adulterant. Food Control 2021, 125, 107956. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, R.; Bai, Z.; Zheng, M.; Gu, J.; Ma, B. Discrimination of Chilled Lamb from Different Carcass Parts at Different Storage Times Based on Mobile Phone Images. Food Sci. 2020, 41, 21–26. [Google Scholar]
- Seddaoui, N.; Amine, A. Smartphone-based competitive immunoassay for quantitative on-site detection of meat adulteration. Talanta 2021, 230, 122346. [Google Scholar] [CrossRef] [PubMed]
- Song, W.R.; Yun, Y.H.; Wang, H.; Hou, Z.Y.; Wang, Z. Smartphone detection of minced beef adulteration. Microchem. J. 2021, 164, 106088. [Google Scholar] [CrossRef]
- Anandhakrishnan, T.; Jaisakthi, S.M. Deep Convolutional Neural Networks for image based tomato leaf disease detection. Sustain. Chem. Pharm. 2022, 30, 100793. [Google Scholar] [CrossRef]
- Bayram, F.; Yildiz, M. Classification of Some Barley Cultivars with Deep Convolutional Neural Networks. J. Agric. Sci. 2023, 29, 262–271. [Google Scholar] [CrossRef]
- Kurtulmus, F. Identification of sunflower seeds with deep convolutional neural networks. J. Food Meas. Charact. 2021, 15, 1024–1033. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wu, D.H.; Ying, Y.B.; Zhou, M.C.; Pan, J.M.; Cui, D. Improved ResNet-50 deep learning algorithm for identifying chicken gender. Comput. Electron. Agric. 2023, 205, 107622. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, R.; Meng, L.; Ma, R.; Wang, S.; Bai, Z.; Cui, X. Classification of mutton location on the animal using improved ResNet18 network model and mobile application. Trans. CSAE 2021, 37, 331–338. [Google Scholar]
- Durga, B.K.; Rajesh, V. A ResNet deep learning based facial recognition design for future multimedia applications. Comput. Electr. Eng. 2022, 104, 108384. [Google Scholar] [CrossRef]
- Peng, S.; Huang, H.B.; Chen, W.J.; Zhang, L.; Fang, W.W. More trainable inception-ResNet for face recognition. Neurocomputing 2020, 411, 9–19. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.X.; Wang, W.J.; Zhu, Y.K.; Pang, R.M.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.L.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Cui, J.; Yang, K. Research on mobile phone screen defect detection based on the improved DenseNet network. J. China Univ. Metrol. 2023, 34, 208–215. [Google Scholar]
- Xu, S.; Jiang, J.; Gao, W.; Wang, G.; Yu, Z. Lightweight gesture recognition algorithm for mobile devices. J. Qingdao Univ. Nat. Sci. Ed. 2022, 35, 51–56. [Google Scholar]
- Fan, B.B.; Zhu, R.G.; He, D.Y.; Wang, S.C.; Cui, X.M.; Yao, X.D. Evaluation of Mutton Adulteration under the Effect of Mutton Flavour Essence Using Hyperspectral Imaging Combined with Machine Learning and Sparrow Search Algorithm. Foods 2022, 11, 2278. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision—ECCV 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11211, pp. 3–19. [Google Scholar]
- Du, X.W.; Si, L.Q.; Jin, X.; Li, P.F.; Yun, Z.H.; Gao, K.H. Classification of plug seedling quality by improved convolutional neural network with an attention mechanism. Front. Plant Sci. 2022, 13, 967706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Xuan, C.Z.; Ma, Y.H.; Su, H.; Zhang, M.Q. Biometric facial identification using attention module optimized YOLOv4 for sheep. Comput. Electron. Agric. 2022, 203, 107452. [Google Scholar] [CrossRef]
- Maqsood, S.; Damasevicius, R.; Maskeliunas, R. Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. Sensors 2021, 21, 3865. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q.A. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Shao, S.Y.; McAleer, S.; Yan, R.Q.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Zhong, H.Y.; Yu, S.M.; Trinh, H.; Lv, Y.; Yuan, R.; Wang, Y.A. Fine-tuning transfer learning based on DCGAN integrated with self-attention and spectral normalization for bearing fault diagnosis. Measurement 2023, 210, 112421. [Google Scholar] [CrossRef]
- Wang, S.D.; Huang, L.; Jiang, D.; Sun, Y.; Jiang, G.Z.; Li, J.; Zou, C.J.; Fan, H.W.; Xie, Y.M.; Xiong, H.G.; et al. Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition. Front. Bioeng. Biotechnol. 2022, 10, 909023. [Google Scholar] [CrossRef]
- He, D.; Zhu, R.; Fan, B.; Wang, S.; Cui, X.; Yao, X. Construction of the detection system for mutton adulteration classification based on inverted residual network and convolutional block attention module. Trans. CSAE 2022, 38, 266–275. [Google Scholar]
Part | Evaluation Index | Train Set | Test Set | Validation Set |
---|---|---|---|---|
Back | R2 | 0.9609 | 0.9398 | 0.9373 |
RMSE/g·g−1 | 0.0203 | 0.0265 | 0.0268 | |
Front leg | R2 | 0.9699 | 0.9054 | 0.8876 |
RMSE/g·g−1 | 0.0180 | 0.0323 | 0.0378 | |
Hind leg | R2 | 0.9440 | 0.9119 | 0.9055 |
RMSE/g·g−1 | 0.0244 | 0.0259 | 0.0316 |
Models | Back Dataset | Front Leg Dataset | Hind Leg Dataset | |||
---|---|---|---|---|---|---|
R2 | RMSE/g·g−1 | R2 | RMSE/g·g−1 | R2 | RMSE/g·g−1 | |
ResNet50 | 0.8926 | 0.0342 | 0.7406 | 0.0502 | 0.7959 | 0.0457 |
Invert-ResNet50 | 0.8995 | 0.0333 | 0.7629 | 0.0482 | 0.8664 | 0.0405 |
CBAM-ResNet50 | 0.9116 | 0.0301 | 0.8774 | 0.0347 | 0.9084 | 0.0317 |
CBAM-Invert-ResNet50 | 0.9373 | 0.0268 | 0.8876 | 0.0357 | 0.9055 | 0.0316 |
MobileNetV3 | 0.8494 | 0.0400 | 0.8121 | 0.0444 | 0.7398 | 0.0497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhu, R.; He, D.; Wang, S.; Huang, Z. Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion. Foods 2023, 12, 3594. https://doi.org/10.3390/foods12193594
Bai Z, Zhu R, He D, Wang S, Huang Z. Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion. Foods. 2023; 12(19):3594. https://doi.org/10.3390/foods12193594
Chicago/Turabian StyleBai, Zongxiu, Rongguang Zhu, Dongyu He, Shichang Wang, and Zhongtao Huang. 2023. "Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion" Foods 12, no. 19: 3594. https://doi.org/10.3390/foods12193594
APA StyleBai, Z., Zhu, R., He, D., Wang, S., & Huang, Z. (2023). Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion. Foods, 12(19), 3594. https://doi.org/10.3390/foods12193594