Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bee Pollen Samples
2.2. Determination of Botanical Origin
2.3. Preparation of Bee Pollen Extracts
2.4. Assessment of Total Phenol Content
2.5. Assessment of Total Flavonoid Content
2.6. Assessment of Antioxidant Activity by Radical Scavenging Assay: DPPH and ABTS
2.7. Data Analyses
3. Results
3.1. Botanical Preference for Bee Pollen Production
3.2. Concentration of Total Phenol, Flavonoid and Antioxidant Capacity of Bee Pollen
3.3. Contribution of the Botanical Origin to the Phenolic Content and Antioxidant Activity of Pollen
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos, M.G.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- LeBlanc, B.W.; Davis, O.K.; Boue, S.; DeLucca, A.; Deeby, T. Antioxidant activity of Sonoran Desert bee pollen. Food Chem. 2009, 115, 1299–1305. [Google Scholar] [CrossRef]
- Aličić, D.; Šubarić, D.; Jašić, M.; Pašalić, H.; Ačkar, Đ. Antioxidant properties of pollen. Hrana Zdr. Boles. Znan. Stručni Časopis Nutr. Dijetetiku 2014, 3, 6–12. [Google Scholar]
- Li, Q.-Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.H.F.; Hu, L.; Xue, X.-F.; Wu, L.-M.; Hu, F.-L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Adaškevičiūtė, V.; Kaškonas, P.; Mickienė, R.; Maruška, A. Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Biosci. 2020, 34, 100532. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Aylanc, V.; Ertosun, S.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. Int. J. Food Sci. Technol. 2022, 57, 3490–3502. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [Green Version]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J. Extraction and determination of bioactive compounds from bee pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef]
- Freire, K.R.L.; Lins, A.C.S.; Dórea, M.C.; Santos, F.A.R.; Camara, C.A.; Silva, T.M.S. Palynological Origin, Phenolic Content, and Antioxidant Properties of Honeybee-Collected Pollen from Bahia, Brazil. Molecules 2012, 17, 1652–1664. [Google Scholar] [CrossRef] [Green Version]
- Borycka, K.; Grabek-Lejko, D.; Kasprzyk, I. Antioxidant and antibacterial properties of commercial bee pollen products. J. Apic. Res. 2015, 54, 491–502. [Google Scholar] [CrossRef]
- Leja, M.; Mareczek, A.; Wyżgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative properties of bee pollen in selected plant species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Araújo, J.S.; Chambó, E.D.; Costa, M.A.P.D.C.; Da Silva, S.M.P.C.; De Carvalho, C.A.L.; Estevinho, L.M. Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins. Int. J. Mol. Sci. 2017, 18, 921. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Hu, J.; Huang, W.; Zhu, L.; Shao, M.; Dordoe, C.; Ahn, Y.J.; Wang, D.; Zhao, Y.; Xiong, Y.; et al. The botanical origin and antioxidant, anti-BACE1 and antiproliferative properties of bee pollen from different regions of South Korea. BMC Complement. Med. Ther. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Pascoal, A.; Chambó, D.; Estevinho, L.M. Botanical origin, physicochemical characterization, and antioxidant activity of bee pollen samples from the northeast of Portugal. J. Apic. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Tomás-Lorente, F.; Garcia-Grau, M.M.; Nieto, J.L.; Tomás-Barberán, F.A. Flavonoids from Cistus ladanifer bee pollen. Phytochemistry 1992, 31, 2027–2029. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Torrentó, M.S.; Lorente, E.C. Evaluation of Polyphenolic and Flavonoid Compounds in Honeybee-Collected Pollen Produced in Spain. J. Agric. Food Chem. 2001, 49, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Takiguchi, S.; Honda, Y.; Lu, Y.; Mitsui, T.; Kato, S.; Kodera, R.; Furihata, K.; Zhang, M.; Okamoto, K.; et al. NMR and HPLC profiling of bee pollen products from different countries. Food Chem. Mol. Sci. 2022, 5, 100119. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Toribio, L.; Tapia, J.A.; González-Porto, A.V.; Higes, M.; Martín-Hernández, R.; Bernal, J. Differentiation of bee pollen samples according to the apiary of origin and harvesting period based on their amino acid content. Food Biosci. 2022, 50, 102092. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 868/2007 of 23 July 2007 entering a designation in the Register of protected designations of origin and protected geographical indications (Miel de Galicia or Mel de Galicia PGI). O.J.E.U. 2007, L 192/11–L 192/18.
- Gabriele, M.; Parri, E.; Felicioli, A.; Sagona, S.; Pozzo, L.; Biondi, C.; Domenici, V.; Pucci, L. Phytochemical composition and antioxidant activity of Tuscan bee pollen of different botanic origins. Ital. J. Food Sci. 2015, 27, 248. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Šarić, A.; Balog, T.; Sobočanec, S.; Kušić, B.; Šverko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef]
- Kostić, A.; Milinčić, D.D.; Gašić, U.M.; Nedić, N.; Stanojević, S.P.; Tešić, L.; Pešić, M.B. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT Food Sci. Technol. 2019, 112, 108244. [Google Scholar] [CrossRef]
- Campos, M.; Markham, K.R.; Mitchell, K.A.; da Cunha, A.P. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem. Anal. 1997, 8, 181–185. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Seijo, M.C.; Escuredo, O.; Fernández-González, M. Fungal diversity in honeys from northwest Spain and their relationship to the ecological origin of the product. Grana 2011, 50, 55–62. [Google Scholar] [CrossRef]
- Rodríguez-Flores, S.; Escuredo, O.; Seijo, M.C. Characterization and antioxidant capacity of sweet chestnut honey produced in North-West Spain. J. Apic. Sci. 2016, 60, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Monasterio-Huelin, E. Avances del estudio del género Rubus L. (Rosaceae) en la Península Ibérica. Anales Jard. Bot. Madrid 1991, 48, 274–281. [Google Scholar]
- Escuredo, O.; Silva, L.R.; Valentão, P.; Seijo, M.C.; Andrade, P.B. Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chem. 2012, 130, 671–678. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo-Rodríguez, A.; Seijo, M.C. Characterization of the honey produced in heather communities (NW Spain). J. Apic. Res. 2018, 58, 84–91. [Google Scholar] [CrossRef]
- Féas, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobiş, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 2005, 25, 726–732. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
Family | Pollen Type | N | Mean | Standard Deviation | Maximum |
---|---|---|---|---|---|
Rosaceae | Rubus | 26 | 29.3 * | 27.4 | 94.5 |
Crataegus monogyna type | 3 | 0.5 | 2.1 | 11.7 | |
Fagaceae | Castanea | 20 | 22.6 * | 27.7 | 91.1 |
Quercus | 2 | 1.8 | 7.9 | 42.1 | |
Fabaceae | Genista type | 17 | 9.8 * | 19.0 | 61.2 |
Trifolium repens type | 10 | 2.6 | 7.7 | 39.5 | |
Ericaceae | Erica | 16 | 5.4 * | 10.5 | 44.8 |
Calluna vulgaris | 2 | 0.6 | 2.3 | 11.2 | |
Plantaginaceae | Plantago | 12 | 2.9 * | 7.3 | 27.0 |
Asteraceae | Taraxacum officinale type | 10 | 5.9 * | 15.7 | 60.3 |
Anthemis type | 3 | 1.0 | 4.7 | 26.3 | |
Boraginaceae | Echium | 10 | 2.6 * | 5.7 | 22.2 |
Campanulaceae | Campanula type | 9 | 3.1 | 8.8 | 37.5 |
Cistaceae | Cistus | 9 | 1.8 | 5.3 | 28.2 |
Cistus psilosepalus | 2 | 0.2 | 0.7 | 3.6 | |
Myrtaceae | Eucalyptus | 7 | 0.7 | 1.8 | 7.8 |
Brassicaceae | Raphanus type | 6 | 1.7 | 4.5 | 18.5 |
Brassica | 2 | 0.4 | 1.9 | 10.3 | |
Lythraceae | Lythrum | 4 | 2.2 | 9.8 | 54.5 |
Oleaceae | Ligustrum | 4 | 0.5 | 1.6 | 7.3 |
Poaceae | Zea mays | 4 | 0.3 | 0.9 | 3.3 |
Poaceae | 3 | 0.3 | 1.2 | 6.6 | |
Apiaceae | Conium maculatum type | 3 | 0.4 | 1.7 | 9.3 |
Foeniculum vulgare type | 2 | 0.5 | 2.9 | 16.0 | |
Resedaceae | Reseda | 3 | 0.1 | 0.3 | 1.5 |
Sesamoides | 2 | 0.5 | 1.9 | 10.2 | |
Chenopodiaceae | Chenopodiaceae | 2 | 0.2 | 1.0 | 5.4 |
Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
TPC (mg/100 g) | 1612.6 * | 531.0 | 771.8 | 2638.9 |
TFC (mg/100 g) | 256.8 * | 150.0 | 90.8 | 639.3 |
DPPH (%) | 65.7 * | 20.5 | 17.0 | 88.2 |
ABTS (%) | 57.4 * | 12.6 | 32.8 | 79.3 |
Components | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Eigenvalue | 3.68 | 2.32 | 2.01 | 1.73 | 1.37 | 1.11 |
Variance (%) | 24.55 | 15.45 | 13.40 | 11.52 | 9.13 | 7.41 |
Variance cumulative (%) | 24.55 | 40.01 | 53.40 | 64.93 | 74.06 | 81.47 |
Component weights | ||||||
TPC | 0.40 | −0.19 | −0.01 | −0.38 | −0.06 | 0.07 |
TFC | 0.22 | 0.46 | 0.27 | −0.03 | −0.09 | 0.24 |
DPPH | 0.41 | −0.10 | −0.27 | 0.11 | 0.05 | 0.08 |
ABTS | 0.29 | 0.23 | 0.19 | 0.02 | 0.01 | −0.43 |
Taraxacum officinale type | −0.45 | 0.03 | 0.08 | −0.22 | −0.23 | −0.08 |
Echium | 0.00 | 0.10 | −0.48 | 0.00 | −0.46 | 0.11 |
Campanula type | 0.12 | 0.38 | 0.25 | −0.04 | 0.12 | −0.30 |
Cistus | −0.06 | −0.12 | 0.26 | 0.40 | −0.24 | 0.23 |
Erica | −0.01 | 0.46 | −0.20 | 0.10 | 0.20 | −0.16 |
Genista type | −0.13 | −0.15 | −0.24 | 0.04 | 0.69 | 0.13 |
Trifolium repens type | 0.06 | 0.30 | −0.50 | 0.20 | −0.22 | −0.03 |
Castanea | 0.31 | −0.26 | −0.02 | −0.44 | −0.17 | −0.21 |
Lythrum | 0.09 | 0.28 | 0.16 | −0.26 | 0.04 | 0.70 |
Plantago | −0.43 | 0.08 | 0.05 | −0.29 | −0.15 | −0.10 |
Rubus | 0.13 | −0.23 | 0.27 | 0.49 | −0.18 | −0.04 |
Groups | 1 | 2 | 3 |
---|---|---|---|
N (%) | 6 (19.3) | 22 (71.0) | 3 (9.7) |
TPC (mg/100 g) | 1527.5 | 1741.4 a | 838.3 a |
TFC (mg/100 g) | 454.1 a b | 219.2 b | 137.2 a |
DPPH (%) | 69.3 a | 70.8 b | 21.0 a b |
ABTS (%) | 65.0 | 56.9 | 46.2 |
Pollen types (%) | |||
Taraxacum officinale type | 0.5 a | 1.3 b | 50.2 a b |
Echium | 4.0 | 2.2 | 3.1 |
Campanula type | 14.5 a b | 0.5 a | 0.0 b |
Cistus | 0.0 | 2.5 | 0.0 |
Erica | 20.1 a b | 1.7 a | 2.6 b |
Genista type | 2.2 | 12.1 | 8.6 |
Trifolium repens type | 9.0 | 1.2 | 0.0 |
Castanea | 12.5 | 28.4 | 0.0 |
Lythrum | 11.5 a b | 0.0 a | 0.0 b |
Plantago | 1.5 a | 0.4 b | 24.3 a b |
Rubus | 13.3 | 37.7 a | 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo, S.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods 2023, 12, 294. https://doi.org/10.3390/foods12020294
Rojo S, Escuredo O, Rodríguez-Flores MS, Seijo MC. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods. 2023; 12(2):294. https://doi.org/10.3390/foods12020294
Chicago/Turabian StyleRojo, Sergio, Olga Escuredo, María Shantal Rodríguez-Flores, and María Carmen Seijo. 2023. "Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity" Foods 12, no. 2: 294. https://doi.org/10.3390/foods12020294
APA StyleRojo, S., Escuredo, O., Rodríguez-Flores, M. S., & Seijo, M. C. (2023). Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods, 12(2), 294. https://doi.org/10.3390/foods12020294