Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzyme and Reagents
2.2. Plant Materials
2.3. Preparation of Guava Juices
2.4. Determination of Juice Yield
2.5. Determination of Relative Turbidity and Juice Sedimentation
2.6. Total Soluble Solids (TSS) and Titratable Acidity (TA)
2.7. Measurement of Color Parameters
2.8. Determination of Total Phenolics
2.9. Determination of Total Flavonoids
2.10. HPLC Analysis of Ascorbic Acid and Sugar Component
2.11. Analysis of Antioxidant Capacity
2.11.1. DPPH Radical Scavenging Capacity Assay
2.11.2. ABTS Radical Scavenging Capacity Assay
2.12. Sensory Evaluation
2.13. Analysis of Volatile Compounds
2.14. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Bioactive Compounds
3.3. Antioxidant Capacity
3.4. Volatile Compounds
3.5. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gualberto, N.C.; de Oliveira, C.S.; Nogueira, J.P.; de Jesus, M.S.; Araujo, H.C.S.; Rajan, M.; Narain, N. Bioactive compounds and antioxidant activities in the agro-industrial residues of acerola (Malpighia emarginata L.), guava (Psidium guajava L.), genipap (Genipa americana L.) and umbu (Spondias tuberosa L.) fruits assisted by ultrasonic or shaker extraction. Food Res. Int. 2021, 147, 110538. [Google Scholar]
- Lamo, C.; Shahi, N.C.; Singh, A.; Singh, A.K. Pasteurization of guava juice using induction pasteurizer and optimization of process parameters. LWT 2019, 112, 108253. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Boonpangrak, S. Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. Eur. J. Integr. Med. 2021, 42, 101290. [Google Scholar] [CrossRef]
- Jamieson, S.; Wallace, C.E.; Das, N.; Bhattacharyya, P.; Bishayee, A. Guava (Psidium guajava L.): A glorious plant with cancer preventive and therapeutic potential. Crit. Rev. Food Sci. Nutr. 2021, 4, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Barman, K.; Singh, A.K. Nitric oxide application for postharvest quality retention of guava fruits. Acta Physiol. Plant. 2020, 42, 156. [Google Scholar] [CrossRef]
- Jawaheer, B.; Goburdhun, D.; Ruggoo, A. Effect of processing and storage of guava into jam and juice on the ascorbic acid content. Plant Foods Hum. Nutr. 2003, 58, 1–12. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
- Flores, G.; Dastmalchi, K.; Wu, S.B.; Whalen, K.; Dabo, A.J.; Reynertson, K.A.; Kennelly, E.J. Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem. 2013, 141, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Narváez-Cuenca, C.E.; Inampues-Charfuelan, M.L.; Hurtado-Benavides, A.M.; Parada-Alfonso, F.; Vincken, J.P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Ninga, K.A.; Sengupta, S.; Jain, A.; Desobgo, Z.S.C.; Nso, E.J.; De, S. Kinetics of enzymatic hydrolysis of pectinaceous matter in guava juice. J. Food Eng. 2018, 221, 158–166. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H. Nutritional quality of 18 date fruit varieties. Int. J. Food Sci. Nutr. 2011, 62, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.; Kumar, V.; Sharma, H.K. Physical and chemical characteristics of different cultivars of Indian gooseberry (Emblica officinalis). J. Food Sci. Technol. 2019, 56, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, H.; Wang, Y.; Wang, X.; Ren, Y.; Yue, T.; Gao, Z. Evaluation of the quality of fermented kiwi wines made from different kiwifruit cultivars. Food Biosci. 2021, 11, 101051. [Google Scholar] [CrossRef]
- De Pradhan, I.; De, B. Chemical composition and lipase inhibitory property of two varieties of guava fruits at different stages of ripening. J. Hortic. Sci. Biotechnol. 2020, 95, 763–772. [Google Scholar] [CrossRef]
- Jiao, S.; Li, Y.; Wang, Z.; Sun-Waterhouse, D.; Waterhouse, G.I.; Liu, C.; Wang, X. Optimization of enzyme-assisted extraction of bioactive-rich juice from Chaenomeles sinensis (Thouin) Koehne by response surface methodology. J. Food Process. Preserv. 2020, 44, 14638. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll. 2019, 89, 691–699. [Google Scholar] [CrossRef]
- Sharma, H.P.; Patel, H.; Sugandha. Enzymatic added extraction and clarification of fruit juices–A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1215–1227. [Google Scholar] [CrossRef]
- Ninga, K.A.; Desobgo, Z.S.C.; De, S.; Nso, E.J. Pectinase hydrolysis of guava pulp: Effect on the physicochemical characteristics of its juice. Heliyon 2021, 7, e08141. [Google Scholar] [CrossRef] [PubMed]
- Marcelin, O.; Smith, A.B.; Bonnin, E.; Brillouet, J.M. Enzymatic breakdown of cell wall polysaccharides of guava (Psidium Guajava L.) puree. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 14–23. [Google Scholar] [CrossRef]
- Akesowan, A.; Choonhahirun, A. Effect of enzyme treatment on guava juice production using response surface methodology. J. Anim. Plant Sci. 2013, 23, 114–120. [Google Scholar]
- Nguyen, V.; Le, T.T.; Le, V. Application of combined ultrasound and cellulase preparation to guava (Psidium guajava) mash treatment in juice processing: Optimization of biocatalytic conditions by response surface methodology. Int. Food Res. J. 2013, 20, 377–381. [Google Scholar]
- Sevda, S.; Singh, A.; Joshi, C.; Lambert, R. Extraction and optimization of guava juice by using response surface methodology. Am. J. Food Technol. 2012, 7, 326–339. [Google Scholar]
- Diniz, G.A.S.; Araújo, S.E.D.; Novalli, D.D.S.; Nogueira, N.T.; SILVA, I.F.D. Quality index and harvest maturity of Eugenia cibrata fruits. Rev. Bras. Frutic. 2017, 39, 859. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xiao, G.; Yu, Y.; Xu, Y.; Wu, J.; Peng, J.; Li, L. Effects of high pressure and thermal processing on quality properties and volatile compounds of pineapple fruit juice. Food Control 2021, 130, 108293. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, W.; An, K.; Xu, Y.; Yu, Y.; Wen, J.; Xiao, G. Advantages of Liquid Nitrogen Quick Freezing Combine Gradient Slow Thawing for Quality Preserving of Blueberry. Crystals 2020, 10, 368. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, G.; Xu, Y.; Yu, Y.; Wu, J.; Zou, B. High Hydrostatic pressure and co-fermentation by lactobacillus rhamnosus and gluconacetobacter xylinus improve flavor of yacon-litchi-longan juice. Foods 2019, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huber, D.J.; Qu, H.; Yun, Z.E.; Wang, H.; Huang, Z.; Jiang, Y. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 2015, 171, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yu, Y.; Cheng, L.; Li, L.; Zou, B.; Wu, J.; Xu, Y. Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple. LWT 2021, 141, 110902. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Q.; Yuan, Q.; Gao, C.; Ge, Q.; Li, C.; Ma, T. Thermosonication combined with ε-polylysine (TSε): A novel technology to control the microbial population and significantly improve the overall quality attributes of orange juice. Food Control 2022, 141, 109200. [Google Scholar] [CrossRef]
- Liu, H.; An, K.; Su, S.; Yu, Y.; Wu, J.; Xiao, G.; Xu, Y. Aromatic characterization of mangoes (Mangifera indica L.) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analyses. Foods 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Bora, S.J.; Handique, J.; Sit, N. Effect of ultrasound and enzymatic pre-treatment on yield and properties of banana juice. Ultrason. Sonochem. 2017, 37, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Bashir, O.; Hussain, S.Z.; Gani, G.; Jan, N.; Rather, A.H.; Reshi, M.; Amin, T. Evaluating the physicochemical and antioxidant characteristics of apricot juice prepared through pectinase enzyme-assisted extraction from Halman variety. J. Food Meas. Charact. 2021, 15, 2645–2658. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, X.; Zhang, C.; Zhang, J.; Zhang, S.; Xu, J. Ultrasonic and microwave treatment improved jujube juice yield. Food Sci. Nutr. 2020, 8, 4196–4204. [Google Scholar] [CrossRef] [PubMed]
- Majaliwa, N.; Kibazohi, O.; Alminger, M. Optimization of process parameters for mechanical extraction of banana juice using response surface methodology. J. Food Sci. Technol. 2019, 56, 4068–4075. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Zhao, Y. Study the effect of pectase on juice yield of Rubus corchorifolius. In Proceedings of the IOP Conference Series: EES, Chennai, India, 26–27 November 2021; p. 657. [Google Scholar]
- Makebe, C.W.; Desobgo, Z.S.C.; Ambindei, W.A.; Billu, A.; Nso, E.J.; Nisha, P. Optimization of pectinase-assisted extraction of Annona muricata L. juice and the effect of liquefaction on its pectin structure. J. Sci. Food Agric. 2020, 100, 5487–5497. [Google Scholar] [CrossRef]
- Barman, S.; Sit, N.; Badwaik, L.S.; Deka, S.C. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J. Food Sci. Technol. 2015, 52, 3579–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sin, H.N.; Yusof, S.; Hamid, N.S.A.; Rahman, R.A. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food Eng. 2006, 73, 313–319. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmianski, J. The influence of addition of cranberrybush juice to pear juice on chemical composition and antioxidant properties. J. Food Sci. Technol. 2018, 55, 3399–3407. [Google Scholar] [CrossRef] [Green Version]
- Saxena, D.; Sabikhi, L.; Chakraborty, S.K.; Singh, D. Process optimization for enzyme aided clarification of watermelon juice. J. Food Sci. Technol. 2014, 51, 2490–2498. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Mishra, S.; Pradhan, R.C. Optimisation of enzymatic extraction and characterization of palm (Borassus flabellifer) juice. J. Food Meas. Charact. 2018, 12, 2644–2656. [Google Scholar] [CrossRef]
- Tochi, B.N.; Wang, Z.; Xu, S.Y.; Zhang, W. The influence of a pectinase and pectinase/hemicellulases enzyme preparations on percentage pineapple juice recovery, particulates and sensory attributes. Pak. J. Nutr. 2009, 8, 1184–1189. [Google Scholar] [CrossRef] [Green Version]
- Siti Rashima, R.; Ong, W.L.; Aina Nadiah, Z.; Maizura, M. Effects of acidified blanching water and pectinase enzyme pretreatments on physicochemical properties and antioxidant capacity of Carica papaya juice. J. Food Sci. 2022, 87, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Liberatore, C.M.; Cirlini, M.; Ganino, T.; Rinaldi, M.; Tomaselli, S.; Chiancone, B. Effects of thermal and high-pressure processing on quality features and the volatile profiles of cloudy juices obtained from golden delicious, pinova, and red delicious apple cultivars. Foods 2021, 10, 3046. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Feng, C.; Lin, X.; Liu, S.; Li, Y.; Kang, M. A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava). Plant Biotechnol. J. 2021, 19, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Blancas-Benitez, F.J.; Pérez-Jiménez, J.; Montalvo-González, E.; González-Aguilar, G.A.; Sáyago-Ayerdi, S.G. In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava L.) fruit. J. Funct. Foods 2018, 43, 139–145. [Google Scholar] [CrossRef]
- da Silva Lima, R.; Ferreira, S.R.S.; Vitali, L.; Block, J.M. May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res. Int. 2019, 115, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Sandri, I.G.; Lorenzoni, C.M.T.; Fontana, R.C.; da Silveira, M.M. Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT 2013, 51, 469–475. [Google Scholar] [CrossRef]
- Hansen, M.Z.; Laroze, L. Temperature effect on phenolic antioxidant extraction from raspberry wastes assisted by enzymes. New Biotechnol. 2009, 25, 170. [Google Scholar] [CrossRef]
- Dursun, A.; Çalışkan, O.; Güler, Z.; Bayazit, S.; Türkmen, D.; Gündüz, K. Effect of harvest maturity on volatile compounds profiling and eating quality of hawthorn (Crataegus azarolus L.) fruit. Sci. Hortic. 2021, 288, 110398. [Google Scholar] [CrossRef]
- Hausch, B.J.; Arpaia, M.L.; Kawagoe, Z.; Walse, S.; Obenland, D. Chemical characterization of two california-grown avocado varieties (Persea americana Mill) over the harvest season with an emphasis on sensory-directed flavor analysis. J. Agric. Food Chem. 2020, 68, 15301–15310. [Google Scholar] [CrossRef]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile Changes during Storage of Shelf Stable Apple Juice: Integrating GC-MS Fingerprinting and Chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; He, F.; Cai, H.; Wu, M.; Xiao, Y.; Xiang, F.; Li, S. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju. J. Funct. Foods 2021, 87, 104746. [Google Scholar] [CrossRef]
- Zhu, D.; Kou, C.; Shen, Y.; Xi, P.; Cao, X.; Liu, H.; Li, J. Effects of different processing steps on the flavor and colloidal properties of cloudy apple juice. J. Sci. Food Agric. 2021, 101, 3819–3826. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Guo, Z.; Guo, X.; Zhang, Q.; Shan, C. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME–GC–MS. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Ni, H.; Wu, L.; Weng, S.Y.; Li, L.; Chen, F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci. Nutr. 2021, 9, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chi, L.; Wu, Y.; Zhang, L.; Xu, C. Quality comparison of hawthorn wines fermented by saccharomyces cerevisiae with and without pulp contact and pectase treatment. J. Chem. 2017. [Google Scholar] [CrossRef]
Types | Cultivars | Juice Yield (%) | Relative Turbidity (%) | Sedimentation Index (%) | Total Soluble Solids (°Brix) | Titratable Acidity (g/L) |
---|---|---|---|---|---|---|
Non-pectinase treatment | FR | 65.61 ± 0.36 e | 31.96 ± 0.93 a | 53.54 ± 0.72 a | 9.03 ± 0.02 c | 2.70 ± 0.03 e |
SF | 60.92 ± 0.21 f | 18.67 ± 0.97 c | 30.25 ± 0.84 b | 7.87 ± 0.02 f | 2.53 ± 0.06 f | |
WR | 67.53 ± 0.31 d | 24.33 ± 2.63 b | 5.13 ± 0.32 d | 7.71 ± 0.01 g | 2.65 ± 0.03 e | |
WP | 64.99 ± 0.22 e | 12.92 ± 1.12 d | 6.48 ± 0.37 c | 8.61 ± 0.02 d | 3.54 ± 0.03 c | |
Pectinase treatment | FR | 76.13 ± 0.39 a | 13.77 ± 1.12 d | 4.97 ± 0.11 d | 9.22 ± 0.02 b | 3.40 ± 0.03 d |
SF | 76.09 ± 0.43 a | 12.94 ± 1.01 d | 5.42 ± 0.24 d | 8.63 ± 0.01 d | 3.71 ± 0.03 b | |
WR | 74.84 ± 0.28 b | 8.62 ± 0.29 f | 3.74 ± 0.23 e | 7.97 ± 0.01 e | 3.41 ± 0.03 d | |
WP | 73.41 ± 0.39 c | 12.15 ± 0.49 g | 3.41 ± 0.16 e | 9.47 ± 0.03 a | 4.23 ± 0.04 a |
Types | Cultivars | Color Parameters | Sugar Components (g/L) | ||||
---|---|---|---|---|---|---|---|
L | a | b | Fructose | Glucose | Sucrose | ||
Non-pectinase treatment | FR | 38.05 ± 1.15 e | 1.96 ± 0.09 b | 1.09 ± 0.27 b | 8.88 ± 0.01 d | 7.22 ± 0.03 g | 16.96 ± 0.62 a |
SF | 39.29 ± 0.34 e | −1.74 ± 0.05 d | −1.24 ± 0.09 d | 7.95 ± 0.03 e | 8.56 ± 0.33 e | 14.31 ± 0.03 b | |
WR | 41.57 ± 0.53 d | 2.17 ± 0.40 b | 3.23 ± 0.49 a | 10.11 ± 0.01 c | 9.69 ± 0.08 c | 12.31 ± 0.01 d | |
WP | 47.14 ± 1.15 b | −3.59 ± 0.22 f | 3.23 ± 0.35 a | 10.16 ± 0.01 bc | 9.27 ± 0.04 d | 11.79 ± 0.21 e | |
Pectinase treatment | FR | 48.95 ± 0.62 a | −0.57 ± 0.04 c | −1.06 ± 0.06 d | 10.20 ± 0.32 bc | 7.96 ± 0.26 f | 13.73 ± 0.01 c |
SF | 47.16 ± 0.19 b | −0.79 ± 0.16 c | −1.81 ± 0.21 e | 10.21 ± 0.03 bc | 9.42 ± 0.07 cd | 12.36 ± 0.10 d | |
WR | 43.27 ± 0.35 c | 3.89 ± 0.10 a | 3.06 ± 0.04 a | 10.34 ± 0.06 b | 10.69 ± 0.09 b | 10.20 ± 0.11 g | |
WP | 46.94 ± 0.90 b | −2.81 ± 0.07 e | 0.24 ± 0.28 c | 12.13 ± 0.04 a | 11.65 ± 0.07 a | 11.17 ± 0.04 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xu, Y.; Wu, J.; Yu, Y.; Zou, B.; Li, L. Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods 2023, 12, 330. https://doi.org/10.3390/foods12020330
Chen X, Xu Y, Wu J, Yu Y, Zou B, Li L. Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods. 2023; 12(2):330. https://doi.org/10.3390/foods12020330
Chicago/Turabian StyleChen, Xiaowei, Yujuan Xu, Jijun Wu, Yuanshan Yu, Bo Zou, and Lu Li. 2023. "Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava" Foods 12, no. 2: 330. https://doi.org/10.3390/foods12020330
APA StyleChen, X., Xu, Y., Wu, J., Yu, Y., Zou, B., & Li, L. (2023). Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods, 12(2), 330. https://doi.org/10.3390/foods12020330