Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review
Abstract
:1. Introduction
2. Epidemiology of Pathogenic E. coli Groups
2.1. Epidemiology of Enteropathogenic E. coli (EPEC)
2.2. Epidemiology of Enteroinvasive E. coli (EIEC)
2.3. Epidemiology of Enterotoxigenic E. coli (ETEC)
2.4. Epidemiology of Enterohemorrhagic E. coli (EHEC)
2.5. Epidemiology of Shiga Toxin-Producing E. coli (STEC)
2.6. Epidemiology of Enteroaggregative E. coli (EAEC)
Country | Tested Food Samples (Total Number) | % of E. coli-Positive Samples or Isolates No. | Virulence Genes (%) (Out of Total Number) of E. coli-Positive Samples | References |
---|---|---|---|---|
Algeria | Sheep carcasses (n = 363) | ND | eaeA (9.92) | [31] |
Bovine carcasses (n = 230) | 66 | eaeA (21.2); stx1 (10.6); stx2 (12.1); eaeA, stx (4.5) | [33] | |
Sardines (n = 100) | 32 | eaeA (14.3); eae, stx1 (14.3); stx2 (42.9); stx1, stx2 (14.3) | [35] | |
Shrimps (n = 50) | 66 | eaeA (33.3); stx1, stx2 (16.7); stx2 (16.7) | ||
Chicken samples (n = 32) | 56.3 | stx2 (5.6); eaeA (0); rfbE (0); fliC (0) | [36] | |
Retail chicken meat (n = 33) | 87.8 | stx1 (6.9); stx2 (3.4); ehxA (3.4) | [37] | |
Frozen beef liver (n = ND) | 92 isolates | iss (85.9); hylF (82.6); ompT (80.4); iroN (87); fimC (70.7); iutA (90.2); elt (5.4); stx (2.2); ipaH (2.2); eaeA (0); aggR (0) | [34] | |
Chicken samples (n = ND) | 17 isolates | iss (82.4); hlyF (52.9) ompT (76.5); iroN (52.9); iutA (52.9); fimC (88.2) | [83] | |
Frozen bovine meat (n = 756) | Five E. coli O157:H7 isolates | stx1 (20); stx2 (100); eae (80); ehxA (100) | [75] | |
Ovine carcasses (n = 151) | 13 E. coli O157:H7 isolates | eae (69.2); stx1 (7.7); stx2 (76.9) | [32] | |
Egypt | Fresh fishes (n = 45) | 15.6 | eaeA (57.1); stx1 (42.9); stx2 (0); hylaA (57.1); sta (57.1); Stb (42.8) | [38] |
Drinking water (n = 46) | 91 | stx1 (24.4); stx2 (2.4); eae (0); hly (4.8); fliCh7 (0) | [84] | |
Freshwater canal (n = ND) | 49 isolates | eae (2); stx1 (2); stx2 (0); hlyA (0); hly (0) | ||
Broiler meats (n = ND) | 11 isolates | iroN (90.9); ompA (81.8); iss (100); tsh (81.8); papC (81.8) | [85] | |
Karish cheese (n = 55) | 74.5 | stx (2.3); eaeA (0); astA (4.5); ehaA (34.8); lpfA (33.7); (3.4); iha (2.3); hlyA (0); cdt cnf (0) | [86] | |
Ras cheese (n = 60) | 21.7 | stx (0); eaeA (0); astA (9.1); ehaA (36.4); lpfA (45.5); (0); iha (0); hlyA (4.6); cdt cnf (4.6) | ||
Raw milk (n = 120) | 19.1 | stx1(21.7); stx2 (34.8); eaeA (17.3); ehxA (17.3) | [40] | |
Fresh beef (n = 27) | 100 | eae (18); ipaH (18); stx1 (18); stx2 (10) | [41] | |
Beef meat products (n = 218) | 18.3 | eae (30); ipaH (18); stx1(18); stx2 (18); eltB (8); estA (8); ial (2) | ||
Nile tilapia (Oreochromis niloticus) (n = ND) | Six isolates | eaeA (83.3); stx2 (50); aadA2 (50) | [39] | |
Minced meat (n = 50) | Eight | eaeA (12.5); stx1 (25); stx2 (12.5) | [42] | |
Luncheon (n = 50) | Four | eaeA (0); stx1 (0); stx2 (0) | ||
Beef burgers (n = 50) | Two | eaeA (100); stx1 (0); stx2 (0) | ||
Sausage (n = 50) | 10 | eaeA (0); stx1 (20); stx2 (0) | ||
Karish cheese (n = 60) | 3.3 | eaeA (50); stx1 (0); stx2 (50) | ||
Raw bovine milk (n = 121) | 13.2 | stx1 (12.5); stx2 (18.8); Sta (12.5); lt (0) | [87] | |
Meat products (n = 100) | 32 | lt (15.6); eae (12.5); stx1 (6.3); stx2 (9.4); bfpA (3.1); ipaH (3.1) | [71] | |
Drinking water (n = 300) | 5.3 | lt (25); st (12.5); stx1 (18.8); stx2 (6.3); eaeA (31.3) | [88] | |
Raw beef (n = 100) | ND | stx1 (6); stx2 (6) | [89] | |
Raw milk (n = 100) | ND | stx1 (7); stx2 (7) | ||
Sausages (n = 8) | 25 | eae (0); stx1 (50); stx2 (0); hlyA (50); hly (0) | [43] | |
Kofta (n = 6) | 33.3 | eae (0); stx1 (50); stx2 (50) hlyA (50); hly (0) | ||
Luncheon (n = 8) | 50 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Chicken livers (n = 6) | 50 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Oysters (n = 9) | 77.8 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Calamari (n = 7) | 57.1 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Bivalves (n = 7) | 100 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Raw milk (n = 6) | 66.7 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Yogurt (n = 4) | 100 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Cheese (n = 4) | 75 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Cheese (n = 4) | 75 | eae (0); stx1 (0); stx2 (0); hlyA (0); hly (0) | ||
Iraq | Beef carcasses (n = 120) | 50 (41.6) | eae (30.7); elt (34.6); esth (34.6); estp (34.6); stx1 (53.8); stx2 (53.8); aggR (0) | [44] |
Imported chicken carcasses (n = 120) | 52 (43.3) | eae (8.6); elt (91.3); esth (91.3); estp (91.3); stx1 (0); stx2 (0); aggR (8.6) | ||
Fish surfaces (n= 120) | 47 (39.1) | eae (0); elt (100); esth (100); sstp (100); stx1 (0); stx2 (0); aggR (0) | ||
Imported and local raw burgers (n = 120) | 45 (37.5) | eae (0); elt (71.4); esth (71.4); estp (71.4); stx1 (28.5); stx2 (28.5); aggR (0) | ||
Local raw ground meat (n = 120) | 46 (38.3) | eae (0); slt (100); ssth (100); sstp (100); stx1 (0); stx2 (0); aggR (0) | ||
Local raw milk (n = 120) | 43 (35.8) | eae (0); elt (0); esth (0); estp (0); stx1 (0); stx2 (0); aggR (0) | ||
Fish (n = 78) | 35.9 | stx1 (89.3); stx1 (85.7); rfb (0) | [90] | |
Camel meat (n = 50) | 14 | sta (100); uspA (42); stb (0); stb (0) | [72] | |
Frozen burger (n = 50) | 7 | sta (100); uspA (42); stb (0); lt (0) | [91] | |
Frozen chicken (n = 50) | 8 | sta (62.5); uspA (12.5); stb (0); lt (0) | ||
Frozen fish (n = 50) | 10 | sta (40); uspA (10); stb (0); lt (0) | ||
Jordan | Drinking water (n = ND) | 109 isolates | aat (12.8); aaic (2.8); eae (2.8); ipaH (1.8); stx1(0.9); stx2 (0) | [45] |
Lebanon | Shankleesh (dairy products) (n = 340) | 28.5 | eaeA (13.5); ehly (8.1); stx1 (13.5); stx2 (13.5) | [47] |
Baladi (dairy products) (n = 340) | 66.4 | eaeA (2.7); ehly (5.4); stx1 (37.8); stx1 (37.8); | ||
Kishk (dairy products) (n = 340) | 7.2 | eaeA (0); ehly (0); stx1 (10.8); stx1 (10.8); | ||
Raw vegetables (n = ND) | 60 isolates | stx1 (0); stx2 (0) | [92] | |
Morocco | Ground beef (n = 140) | 45 | eaeA (12.5); aggA (0); stx1 (4.7); stx2; (3.1); lt (0); St (0); hlyA (4.7); Saa (1.6); astA (4.7); Ial (0); ipaH (0); iucD (6.3); cnf1 (0); afa (0); sfa (1.6) | [48] |
Sausages (n = 120) | 30 | eaeA (2.8); aggA (0); stx1 (2.8); stx2 (0); Lt (5.6); St (0); hlyA (0); saa (0); astA (27.8); Ial (0); ipaH (0); iucD (16.7); cnf1 (0); afa (0); pap (5.6); sfa (0) | ||
Turkey (n = 200) | 35.5 | eaeA (2.8); aggA (0); stx1 (0); stx2 (0); lt (0); st (1.4); hlyA (2.8); saa (0); astA (19.7); ial (0); ipaH (8.5); iucD (33.8); cnf1 (0); afa (0); pap (2.8); sfa (0) | ||
Well water (n = 50) | 48 | eaeA (0); aggA (0); stx1 (0); stx2 (0); lt (0); st (4.2); hlyA (4.4); saa (0); astA (0); Ial (0); ipaH (0); iucD (4.2); cnf1 (0); afa (4.2); pap (0); sfa (0) | ||
Shellfish (n = 82) | 6.3 | eaeA (0);stx1 (100); stx2 (60) | [93] | |
Food products (n = 7200) | 3.4 | hlyA (4.3); pap (17.1); sfa (2.9); stx1 (10); stx2 (4.3); eae (4.3) | [94] | |
Ground beef (n = 140) | 2.1 | stx1 (100); stx2 (66.7); eaeA (66.7); hlyA (100) | [95] | |
Sausage (n = 120) | 0.8 | stx1 (100); stx2 (0); eaeA (0); hlyA (0) | ||
Libya | Raw cow’s milk (n = 28) | 10.7 | vt (33.3); eaeA (33.3) | [49] |
Raw camel’s milk (n = 9) | 33.3 | vt (0); eaeA (0) | ||
Raw goat’s milk (n = 7) | 28.6 | vt (100); eaeA (100) | ||
Fermented cow’s milk (n = 28) | 25 | vt (75.7); eaeA (75.7) | ||
Maasora cheese (n = 21) | 42.9 | vt (22.2); eaeA (22.2) | ||
Ricotta cheese (n = 10) | 30 | vt (0); eaeA (0) | ||
Palestine | Raw beef (n = 300) | 44 STEC isolates | stx1 (68); stx2 (63) | [96] |
Chicken meat (n = 15) | 100 | vt (0); eaeA (0); bfpA (0); aggR (6.6); daaE (0); lT (13.3); sT (46.6) | [50] | |
Turkey (n = 10) | 100 | vt (0); eaeA (0); bfpA (0); aggR (0); daaE (0); lT (0); sT (20) | ||
Qatar | Chickens (n = 158) | 65 APEC | ompT (69), hlyF (69%), iroN (68%); tsh (54%); vat (4%); iss (70%); cvi/cva (59%); iucD (65%) | [52] |
Saudi Arabia | Raw beef (n = 100) | Two E. coli O157:H7 isolates | stx1 (100); stx2 (100); eae (50); hlyA (0) | [54] |
Raw mutton (n = 40) | One E. coli O157:H7 isolate | stx1 (100); stx2 (100); eae (100); hlyA (0) | ||
Raw chicken (n = 40) | One E. coli O157:H7 isolate | stx1 (100); stx2 (100); eae (100); hlyA (0) | ||
Ground beef (n = 80) | Four E. coli O157:H7 isolates | stx1 (75); stx2 (75); eae (0); hlyA (25) | ||
Beef burger (n = 20) | Two E. coli O157:H7 isolates | stx1 (50); stx2 (0); eae (0); hlyA (50) | ||
Ground chicken (n = 20) | One E. coli O157:H7 isolate | stx1 (100); stx2 (100); eae (0); hlyA (0) | ||
Milk (n = 540) | 15.93 | eaeA (44.2); stx2 (67.4) | [53] | |
Raw meat (n = 150) | 11.3 | eaeA (58.8); stx2 (94.1) | ||
Fresh vegetables and fruits (n = ND) | 16 E. coli isolates | eae (0); stx1 (0); stx2 (0) | [55] | |
Sudan | Drinking water (n = 184) | 46 | IPaH (12.7); stx (6.5); AggR (6.5); eae (0) | [97] |
United Arab Emirates | Camel meat (n = 140) | 4.3 (E. coli O157) | rfbE (100); flicH7 (58.3); hlyA (75); uidA (0); eaeA (91.7); stx2 (100); stx1 (0) | [56] |
Goat (n = 150) | Two (E. coli O157) | rfbE (100); flicH7 (0); hlyA (50); uidA (0); eaeA (100); stx2 (100); stx1 (0) | ||
Cattle (n = 137) | 1.5 (E. coli O157) | rfbE (100); flicH7 (0); hlyA (60); uidA (0); eaeA (60); stx2 (100); stx1 (0) |
3. Pathogenic Antibiotic Resistance in E. coli
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2016. EFSA J. 2017, 15, e05077. [Google Scholar]
- ECDC; EFSA. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, 7209. [Google Scholar] [CrossRef]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food—10 states, 2009. MMWR Morb. Mortal Wkly. Rep. J. 2010, 59, 418–422. [Google Scholar]
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Harb, A.; O’Dea, M.; Abraham, S.; Habib, I. Childhood diarrhoea in the Eastern Mediterranean region with special emphasis on non-typhoidal Salmonella at the human–food interface. Pathogens 2019, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Rafei, R.; Hawli, M.; Osman, M.; Dabboussi, F.; Hamze, M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa. J. Glob. Antimicrob. Resist. 2020, 22, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.-Y.I.; Abu, A.; Aziz, S.A.; Zakaria, Z.; Khan, A.R.; Habib, I. Public health significance of Campylobacter jejuni. J. Biosci. Med. 2021, 9, 100–112. [Google Scholar]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.-Y.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. [Google Scholar] [CrossRef]
- Mohamed, M.-Y.I.; Saleha, A.A.; Jalila, A.; Khairani-Bejo, S.; Puan, C.L.; Bitrus, A.A.; Aliyu, A.B.; Awad, E.A. Occurrence of antibiotic resistant Campylobacter in wild birds and poultry. Malays. J. Microbiol. 2019, 15, 143–151. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123. [Google Scholar] [CrossRef]
- Smith, J.L.; Fratamico, P.M.; Gunther, N.W. Extraintestinal Pathogenic Escherichia coli. Foodborne. Pathog. Dis. 2007, 4, 134–163. [Google Scholar] [CrossRef]
- Mohamed, M.-Y.I.; Jalila, A.A.A.; Saleha, A.A.; Zunita, Z.; Rashid, K.A. Occurrence of antibiotic resistant C. jejuni and E. coli in wild birds, chickens, humans, and the environment in Malay villages, Kedah, Malaysia. Vet. Med-Czech. 2022, 67, 298–308. [Google Scholar] [CrossRef]
- Mohamed, M.-Y.I.; Jalila, A.; Saleha, A.A.; Zunita, Z.; Rashid, K.A.; Awad, E.A. Occurrence of antibiotic resistant C. jejuni and E. coli in wild birds, chickens, environment and humans from Orang Asli villages in Sungai Siput, Perak, Malaysia. Am. J. Anim. Vet. 2019, 14, 158–169. [Google Scholar] [CrossRef]
- Winfield, M.D.; Groisman, E.A. Role of Nonhost Environments in the Lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 3687–3694. [Google Scholar] [CrossRef]
- Mohamed, M.-Y.I.; Jalila, A.; Zunita, Z.; Rashid, K.A.; Saleha, A.A.; Bitrus, A.A.; Habib, I. Multi-Drug Resistant Pathogenic Escherichia coli Isolated from Wild Birds, Chicken, and the Environment in Malaysia. Antibiotics 2022, 11, 1275. [Google Scholar] [CrossRef] [PubMed]
- Habib, I.; Elbediwi, M.; Mohamed, M.-Y.I.; Ghazawi, A.; Abdalla, A.; Khalifa, H.O.; Khan, M. Enumeration, antimicrobial resistance and genomic characterization of extended-spectrum β-lactamases producing Escherichia coli from supermarket chicken meat in the United Arab Emirates. Int. J. Food Microbiol. 2023, 398, 110224. [Google Scholar] [CrossRef] [PubMed]
- Habib, I.; Mohamed, M.-Y.I. Chapter 3—Foodborne infections in the Middle East. In Food Safety in the Middle East; Academic Press: Cambridge, MA, USA, 2022; pp. 71–107. [Google Scholar] [CrossRef]
- Habib, I.; Al-Rifai, R.; Mohamed, M.-Y.I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Agamy, N.; Khan, M.A. Contamination Levels and Phenotypic and Genomic Characterization of Antimicrobial Resistance in Escherichia coli isolated from Fresh Salad Vegetables in the United Arab Emirates. Trop. Med. Infect. Dis. 2023, 8, 294. [Google Scholar] [CrossRef]
- Russo, T.A.; Johnson, J.R. Proposal for a New Inclusive Designation for Extraintestinal Pathogenic Isolates of Escherichia coli: ExPEC. J. Infect. Dis. 2000, 181, 1753–1754. [Google Scholar] [CrossRef]
- Madden, R.H.; Murray, K.A.; Gilmour, A. Carriage of Four Bacterial Pathogens by Beef Cattle in Northern Ireland at Time of Slaughter. Lett. Appl. Microbiol. 2007, 44, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Martinko, J.M.; Parker, J. Brock Biology of Microorganisms; Prentice-Hall: Upper Saffle River, NJ, USA, 2003. [Google Scholar]
- Feng, P.C.H.; Jinneman, K.; Scheutz, F.; Monday, S.R. Specificity of PCR and Serological Assays in Detecting Escherichia coli Shiga Toxin Subtypes. Appl. Environ. Microbiol. 2011, 77. [Google Scholar] [CrossRef] [PubMed]
- Habib, I.; Mohteshamuddin, K.; Mohamed, M.-Y.I.; Lakshmi, G.B.; Abdalla, A.; Alkaabi, A.B.A. Domestic Pets in the United Arab Emirates as Reservoirs for Antibiotic-Resistant Bacteria: A Comprehensive Analysis of Extended-Spectrum Beta-Lactamase Producing Escherichia coli Prevalence and Risk Factors. Animals 2023, 13, 1587. [Google Scholar] [CrossRef] [PubMed]
- Baumann, D.; Salia, H.; Greune, L.; Norkowski, S.; Körner, B.; Uckeley, Z.M.; Schmidt, M.A. Multitalented EspB of Enteropathogenic Escherichia coli (EPEC) Enters Cells Autonomously and Induces Programmed Cell Death in human Monocytic THP-1 Cells. Int. J. Med. Microbiol. 2018, 308, 387–404. [Google Scholar] [CrossRef] [PubMed]
- Nissim-Eliraz, E.; Nir, E.; Shoval, I.; Marsiano, N.; Nissan, I.; Shemesh, H.; Rosenshine, I. T3SS-dependent Microvascular Thrombosis and Ischemic Enteritis in Human Gut Xenografts Infected with Enteropathogenic Escherichia coli. Infect. Immun. 2017, 00558-17. [Google Scholar]
- Wang, L.; Zhang, S.; Zheng, D.; Fujihara, S.; Wakabayashi, A.; Okahata, K.; Hara-Kudo, Y. Prevalence of Diarrheagenic Escherichia coli in Foods and Fecal Specimens Obtained from Cattle, Pigs, Chickens, Asymptomatic Carriers, and Patients in Osaka and Hyogo, Japan. Jpn. J. Infect. Dis. 2017, 70, 464–469. [Google Scholar] [CrossRef]
- Alonso, M.Z.; Sanz, M.E.; Irino, K.; Krüger, A.; Lucchesi, P.M.A.; Padola, N.L. Isolation of Atypical Enteropathogenic Escherichia coli from Chicken and Chicken-derived Products. Br. Poult. Sci. 2016, 57, 161–164. [Google Scholar] [CrossRef]
- Ferhat, L.; Chahed, A.; Hamrouche, S.; Korichi-Ouar, M.; Hamdi, T.-M. Research and molecular characteristic of Shiga toxin- producing Escherichia coli isolated from sheep carcasses. Lett. Appl. Microbiol. 2019, 68, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Ferhat, L.; Chahed, A.; China, B.; Assaous, F.; Daube, G.; Rahal, K. Research and characterization of Escherichia coli O157 strains isolated from ovine carcasses of two slaughterhouses of Algiers city. HVM Bioflux 2018, 10, 46–50. [Google Scholar]
- Chahed, A.; China, B.; Mainil, J.; Daube, G. Prevalence of enterohaemorrhagic Escherichia coli from serotype O157 and other attaching and effacing Escherichia coli on bovine carcasses in Algeria. J. Appl. Microbiol. 2006, 101, 361–368. [Google Scholar] [CrossRef]
- Mohamed, L.; Ge, Z.; Yuehua, L.; Yubin, G.; Rachid, K.; Mustapha, O.; Junwei, W.; Karine, O. Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Trop. Anim. Health Prod. 2018, 50, 547–553. [Google Scholar] [CrossRef]
- Dib, A.L.; Agabou, A.; Chahed, A.; Kurekci, C.; Moreno, E.; Espigares, M.; Espigares, E. Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control 2018, 88, 54–60. [Google Scholar] [CrossRef]
- Benameur, Q.; Gervasi, T.; Giarratana, F.; Vitale, M.; Anzà, D.; La Camera, E.; Nostro, A.; Cicero, N.; Marino, A. Virulence, antimicrobial resistance and biofilm production of Escherichia coli isolates from healthy broiler chickens in western algeria. Antibiotics 2021, 10, 1157. [Google Scholar] [CrossRef] [PubMed]
- Laarem, M.; Barguigua, A.; Nayme, K.; Akila, A.; Zerouali, K.; El Mdaghri, N.; Timinouni, M. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian escherichia coli isolates from Algeria. J. Infect. Dev. Ctries. 2017, 11, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Galal, H.; Hakim, A.; Dorgham, S.M. Phenotypic and virulence genes screening of Escherichia coli strains isolated from different sources in delta Egypt. Life Sci. 2013, 10, 352–361. Available online: https://www.researchgate.net/publication/286572318 (accessed on 10 February 2013).
- Saqr, S.; Khaliel, R.; Ibrahim, M. Antibiotic resistance and virulence genes of E. coli isolated from fresh Nile Tilapia (Oreochromis Niloticus) in El-Behera Governorate, Egypt. Alex. J. Vet. Sci. 2016, 48, 83. [Google Scholar] [CrossRef]
- Merwad, A.; Gharieb, R.; Saber, T. Occurrence of shiga toxin-producing Escherichia coli in lactating cows and in contact workers in Egypt: Serotypes, virulence genes and zoonotic significance Emerging zoonoses View project Occurrence of shiga toxin-producing Escherichia coli in lactating cows and in contact workers in Egypt: Serotypes, virulence genes and zoonotic significance. Life Sci. 2014, 11, 563–571. [Google Scholar]
- Mohammed, M.A.; Sallam, K.I.; Eldaly, E.A.Z.; Ahdy, A.M.; Tamura, T. Occurrence, serotypes and virulence genes of non-O157 Shiga toxin-producing Escherichia coli in fresh beef, ground beef, and beef burger. Food Control 2014, 37, 182–187. [Google Scholar] [CrossRef]
- Hamed, O.M.; Sabry, M.A.; Hassanain, N.A.; Hamza, E.; Hegazi, A.G.; Salman, M.B. Occurrence of virulent and antibiotic-resistant Shiga toxin-producing Escherichia coli in some food products and human stool in Egypt. Vet. World. 2017, 10, 1233–1240. [Google Scholar] [CrossRef]
- Sahar, M.E.A.; Salwa, F.A.; Samy, A.S.; Mohamed, H.A.A.; Amira, M.Z.; John, D.K. Prevalence and characterization of Shiga toxin O157 and non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Ismailia, Egypt. Afr. J. Microbiol. Res. 2013, 7, 2637–2645. [Google Scholar] [CrossRef]
- Taha, Z.M.; Yassin, N.A. Prevalence of diarrheagenic Escherichia coli in animal products in Duhok province, Iraq. Iran. J. Vet. Res. 2019, 20, 255. [Google Scholar] [PubMed]
- Swedan, S.; Alrub, H.A. Antimicrobial resistance, virulence factors, and pathotypes of Escherichia coli isolated from drinking water sources in Jordan. Pathogens 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Tarawneh, K.A.; Al-Tawarah, N.M.; Abdel-Ghani, A.H.; Al-Majali, A.M.; Khleifat, K.M. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. J. Basic Microbiol. 2009, 49, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.; Zouhairi, O.; Alwan, N.; Hawi, A.; Barbour, E.; Harakeh, S. Antimicrobial resistance and pathogenicity of Escherichia coli isolated from common dairy products in the Lebanon. Ann. Trop. Med. Parasitol. 2009, 103, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Badri, S.; Filliol, I.; Carle, I.; Hassar, M.; Fassouane, A.; Cohen, N. Prevalence of virulence genes in Escherichia coli isolated from food in Casablanca (Morocco). Food Control 2009, 20, 560–564. [Google Scholar] [CrossRef]
- Garbaj, A.M.; Awad, E.M.; Azwai, S.M.; Abolghait, S.K.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Barbieri, I.; Eldaghayes, I.M. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA. Vet. World. 2016, 9, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Adwan, G.M.; Alqarem, B.R.; Adwan, K.M. Prevalence of foodborne pathogens in meat samples in Palestine. Int. Food Res. J. 2015, 22, 1806. [Google Scholar]
- Adam, M.A.; Wang, J.; Enan, K.A.; Shen, H.; Wang, H.; El Hussein, A.R.; Musa, A.B.; Khidir, I.M.; Ma, X. Molecular survey of viral and bacterial causes of childhood diarrhea in Khartoum State, Sudan. Front. Microbiol. 2018, 9, 112. [Google Scholar] [CrossRef]
- Johar, A.; Al-Thani, N.; Al-Hadidi, S.H.; Dlissi, E.; Mahmoud, M.H.; Eltai, N.O. Antibiotic resistance and virulence gene patterns associated with avian pathogenic Escherichia coli (APEC) from broiler chickens in Qatar. Antibiotics 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Al-Zogibi, O.G.; Mohamed, M.I.; Hessain, A.M.; El-Jakee, J.K.; Kabli, S.A. Molecular and serotyping characterization of shiga toxogenic Escherichia coli associated with food collected from Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 438–442. [Google Scholar] [CrossRef]
- Hessain, A.M.; Al-Arfaj, A.A.; Zakri, A.M.; El-Jakee, J.K.; Al-Zogibi, O.G.; Hemeg, H.A.; Ibrahim, I.M. Molecular characterization of Escherichia coli O157:H7 recovered from meat and meat products relevant to human health in Riyadh, Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 725–729. [Google Scholar] [CrossRef]
- Abu-Duhier, F.M. Escherichia coli contamination of selected vegetables and fruits from markets of Tabuk city, Saudi Arabia: An anticipatory surveillance using real-time PCR for the presence of pathogenic strain E. coli O104:H4. Int. J. Healthc. Biomed. Res. 2015, 4, 126–134. [Google Scholar]
- Al-Ajmi, D.; Rahman, S.; Banu, S. Occurrence, virulence genes, and antimicrobial profiles of Escherichia coli O157 isolated from ruminants slaughtered in Al Ain, United Arab Emirates. BMC Microbiol. 2020, 20, 210. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Pasqua, M.; Michelacci, V.; Di Martino, M.L.; Tozzoli, R.; Grossi, M.; Colonna, B.; Prosseda, G. The Intriguing Evolutionary Journey of Enteroinvasive, E. coli (EIEC) Toward Pathogenicity. Front. Microbiol. 2017, 8, 2390. [Google Scholar] [CrossRef]
- Marier, R.; Wells, J.G.; Swanson, R.C.; Callahan, W.; Mehlman, I.J. An Outbreak of Enteropathogenic Escherichia coli Foodborne Disease Traced to Imported French Cheese. Lancet 1973, 302, 1376–1378. [Google Scholar] [CrossRef]
- Escher, M.; Scavia, G.; Morabito, S.; Tozzoli, R.; Maugliani, A.; Cantoni, S.; Gesu, G.P. A Severe Foodborne Outbreak of Diarrhoea Linked to a Canteen in Italy Caused by Enteroinvasive Escherichia coli, an Uncommon Agent. Epidemiol. Infect. 2014, 142, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Pettengill, E.A.; Hoffmann, M.; Binet, R.; Roberts, R.J.; Payne, J.; Allard, M.; Morabito, S. Complete Genome Sequence of Enteroinvasive Escherichia coli O96: H19 Associated with a Severe Foodborne Outbreak. Genome Announc. 2015, 3, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Newitt, S.; MacGregor, V.; Robbins, V.; Bayliss, L.; Chattaway, M.A.; Dallman, T.; Hawker, J. Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014. Emerg. Infect. Dis. 2016, 22, 1178. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, P.; Zhao, Y.; Ma, X. Enterotoxigenic Escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. In Gut Microbes; Taylor and Francis: Abingdon, UK, 2022; Volume 14. [Google Scholar] [CrossRef]
- Von Mentzer, A.; Connor, T.R.; Wieler, L.H.; Semmler, T.; Iguchi, A.; Thomson, N.R.; Pickard, D. Identification of Enterotoxigenic Escherichia coli (ETEC) Clades with Long-term Global Distribution. Nat. Genet. 2014, 46, 1321. [Google Scholar] [CrossRef]
- Abdulrazzaq, K.M.; Oain, M.S.; Majeed, H.M.; Alhyani, O.H. Molecular detection of rfbO157, shiga toxins and hemolysin genes for Escherichia coli O157:H7 from canine feces in Tikrit and Mosul cities, Iraq. Iraqi J. Vet. Sci. 2021, 35, 325–329. [Google Scholar] [CrossRef]
- Mühlen, S.; Ramming, I.; Pils, M.C.; Koeppel, M.; Glaser, J.; Leong, J.; Flieger, A.; Stecher, B.; Dersch, P. Identification of antibiotics that diminish disease in a murine model of enterohemorrhagic Escherichia coli infection. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef]
- Amin, M.A.; Hashem, H.R.; El-Mahallawy, H.S.; Abdelrahman, A.A.; Zaki, H.M.; Azab, M.M. Characterization of enterohemorrhagic Escherichia coli from diarrhoeic patients with particular reference to production of Shiga-like toxin. Microb. Pathog. 2022, 166, 105538. [Google Scholar] [CrossRef] [PubMed]
- Kehl, S.C. Role of the Laboratory in the Diagnosis of Enterohemorrhagic Escherichia coli Infections. J. Clin. Microbiol. 2002, 40, 2711–2715. [Google Scholar] [CrossRef]
- Surendran-Nair, M.; Kollanoor-Johny, A.; Ananda-Baskaran, S.; Norris, C.; Lee, J.Y.; Venkitanarayanan, K. Selenium Reduces Enterohemorrhagic Escherichia coli O157:H7 Verotoxin Production and Globotriaosylceramide Receptor Expression on Host Cells. Future Microbiol. 2016, 11, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, E.; Watahiki, M.; Isobe, J.; Sata, T.; Nair, G.B.; Kurazono, H. Quantitative Detection of Shiga Toxins Directly from Stool Specimens of Patients Associated with an Outbreak of Enterohemorrhagic Escherichia coli in Japan—Quantitative Shiga Toxin Detection from Stool During EHEC Outbreak. Toxins 2015, 7, 4381–4389. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.M. Molecular characterization of diarrheagenic Escherichia coli isolated from meat products sold at Mansoura city, Egypt. Food Control 2012, 25, 159–164. [Google Scholar] [CrossRef]
- Klaif, S.F.; Saleh, Z.F.; Hussein, M.T.; Jawad, A.A.; Jawad, M.S. Molecular characterization of enterohemorrhagic E. coli O157 and O153 isolated from tissue camel and human stool samples in Al-Diwaniyah, Iraq. Iraqi J. Vet. Sci. 2019, 33, 81–86. Available online: http://www.vetmedmosul.com (accessed on 8 September 2023). [CrossRef]
- Nada, H.G.; El-Tahan, A.S.; El-Didamony, G.; Askora, A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: One health menace. BMC Microbiol. 2023, 23, 127. [Google Scholar] [CrossRef]
- Auvray, F.; Bièche-Terrier, C.; Um, M.M.; Dupouy, V.; Nzuzi, N.; David, L.; Allais, L.; Drouet, M.; Oswald, E.; Bibbal, D.; et al. Prevalence and characterization of the seven major serotypes of Shiga toxin-producing Escherichia coli (STEC) in veal calves slaughtered in France. Vet. Microbiol. 2023, 282, 109754. [Google Scholar] [CrossRef]
- Salih, M.H. Prevalence and characterization of virulence genes toxin-producing Escherichia coli enterohemorragic 0157:H7 Strain isolated from frozen imported bovine meat in Algeria. Adv. Environ. Biol. 2016, 8, 6–13. Available online: https://www.researchgate.net/publication/287314728 (accessed on 8 September 2023).
- Rogawski, E.T.; Guerrant, R.L.; Havt, A.; Lima, I.F.N.; Medeiros, P.H.Q.S.; Seidman, J.C.; Bodhidatta, L. Epidemiology of Enteroaggregative Escherichia coli Infections and Associated Outcomes in the MAL-ED Birth Cohort. PLoS Negl. Trop. Dis. 2017, 11, e0005798. [Google Scholar] [CrossRef]
- Rajan, A.; Robertson, M.J.; Carter, H.E.; Poole, N.M.; Clark, J.R. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog. 2020, 16, e1008851. [Google Scholar] [CrossRef]
- Petro, C.D.; Duncan, J.K.; Seldina, Y.I.; Allué-Guardia, A.; Eppinger, M.; Riddle, M.S.; Tribble, D.R.; Johnson, R.C.; Dalgard, C.L.; Sukumar, G. Genetic and Virulence Profiles of Enteroaggregative Escherichia coli (EAEC) Isolated from Deployed Military Personnel (DMP) With Travelers’ Diarrhea. Front. Cell. Infect. Microbiol. 2020, 10, 200. [Google Scholar] [CrossRef]
- Bejide, O.S.; Odebode, M.A.; Ogunbosi, B.O.; Adekanmbi, O.; Akande, K.O.; Ilori, T.; Ogunleye, V.O.; Nwachukwu, V.U.; Grey-Areben, A.; Akande, E.T.; et al. Diarrhoeal pathogens in the stools of children living with HIV in Ibadan, Nigeria. Front. Cell. Infect. Microbiol. 2023, 13, 1108923. [Google Scholar] [CrossRef]
- Huang, D.B.; Nataro, J.P.; DuPont, H.L.; Kamat, P.P.; Mhatre, A.D.; Okhuysen, P.C.; Chiang, T. Enteroaggregative Escherichia coli is A Cause of Acute Diarrheal Illness: A Meta-analysis. Clin. Infect. Dis. 2006, 43, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Breiman, R.F. Burden and Aetiology of Diarrhoeal Disease in Infants and Young Children in Developing Countries (The Global Enteric Multicenter Study, GEMS): A Prospective, Case-control Study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Mero, S.; Timonen, S.; Lääveri, T.; Løfberg, S.; Kirveskari, J.; Ursing, J.; Rombo, L.; Kofoed, P.E.; Kantele, A. Prevalence of diarrhoeal pathogens among children under five years of age with and without diarrhoea in guinea-bissau. PLoS Negl. Trop. Dis. 2021, 15, e0009709. [Google Scholar] [CrossRef]
- Lounis, M.; Zhao, G.; Li, Y.; Gao, Y.; Wang, J.; Oumouna, M.; Oumouna, K. Molecular profile of avian pathogenic Escherichia coli (APEC) from poultry associated with colibacillosis in Algeria. J. Hellenic. Vet. Med Soc. 2020, 71, 2113. [Google Scholar] [CrossRef]
- El-Jakee, J.K.; EL-Jakee, J.; Moussa, E.; Mohamed, K.F.; Mohamed, G. Using Molecular Techniques for Characterization of Escherichia coli Isolated from Water Sources in Egypt. Glob. Vet. 2009, 3, 354–362. [Google Scholar]
- Ammar, A.M.; Abd El-Hamid, M.I.; Eid, S.E.A.; El Oksh, A.S. Insights into antimicrobial resistance and virulence genes of emergent multidrug resistant avian pathogenic Escherichia coli in Egypt: How closely related are they? Detection of Shiga-like Toxin Producing Escherichia coli in Food of Animal Origin by Street Vendors at Luxor City View project. In. Revue. Méd. Vét. 2015, 166, 304–314. Available online: https://www.researchgate.net/publication/285812668 (accessed on 8 September 2023).
- Ombarak, R.A.; Hinenoya, A.; Awasthi, S.P.; Iguchi, A.; Shima, A.; Elbagory, A.R.M.; Yamasaki, S. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int. J. Food Microbiol. 2016, 221, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Elmonir, W.; Abo-Remela, E.M.; Sobeih, A. Public health risks of Escherichia coli and staphylococcus aureus in raw bovine milk sold in informal markets in Egypt. J. Infect. Dev. Ctries. 2018, 12, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, A.E.; Gohar, M.K.; Atta, A.H. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt. Int. J. Microbiol. 2016, 2016, 6240703. [Google Scholar] [CrossRef] [PubMed]
- Elmonir, W.; Shalaan, S.; Tahoun, A.; Mahmoud, S.F.; Remela, E.M.A.; Eissa, R.; El-Sharkawy, H.; Shukry, M.; Zahran, R.N. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alttai, N.A.; Alsanjary, R.A.; Sheet, O.H. Detection of some virulence gene stx1, stx2 and rfb of Escherichia coli isolated from fish in Nineveh governorate, Iraq. Iraqi J. Vet. Sci. 2023, 37, 453–457. [Google Scholar] [CrossRef]
- Abbas, B.A.; Alghanim, A.M. 34 Detection of Virulence Genes in Escherichia coli Isolated from Frozen Meat in Basrah Market. Basra J. Vet. Res. 2016, 15, 134–138. [Google Scholar]
- Faour-Klingbeil, D.; Kuri, V.; Fadlallah, S.; Matar, G.M. Prevalence of antimicrobial-resistant Escherichia coli from raw vegetables in Lebanon. J. Infect. Dev. Ctries. 2016, 10, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Bennani, M.; Badri, S.; Baibai, T.; Oubrim, N.; Hassar, M.; Cohen, N.; Amarouch, H. First detection of shiga toxin-producing Escherichia coli in shellfish and coastal environments of morocco. Appl. Biochem. Biotechnol. 2011, 165, 290–299. [Google Scholar] [CrossRef]
- Nayme, K.; Barguigua, A.; Bouchrif, B.; Karraouan, B.; El Otmani, F.; Elmdaghri, N.; Zerouali, K.; Timinouni, M. Genotypic characterization of quinolone resistant-Escherichia coli isolates from retail food in Morocco. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 107–114. [Google Scholar] [CrossRef]
- Badri, S.; Fassouane, A.; Filliol, I.; Hassar, M.; Cohen, N. Detection of shiga toxin-producing Escherichia coli in meat marketed in casablanca (Morocco). Cell. Mol. Biol. 2011, 57, 1476–1479. [Google Scholar] [CrossRef]
- Adwan, G.M.; Adwan, K.M. Isolation of shiga toxigenic Escherichia coli from raw beef in Palestine. Int. J. Food Microbiol. 2004, 97, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Adam, O.A.E.J. Detection of Virulence Genes of Diarrhea Genic Escherichia coli Strains, Isolated from Drinking Water in Khartoum State. Ph.D. Thesis, Sudan University of Science and Technology College of Graduate Studies, Khartoum, Sudan, 2017. [Google Scholar]
- Zhao, S.; Maurer, J.J.; Hubert, S.; De Villena, J.F.; McDermott, P.F.; Meng, J.; White, D.G. Antimicrobial Susceptibility and Molecular Characterization of Avian Pathogenic Escherichia coli Isolates. Vet. Microbiol. 2005, 107, 215–224. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, J.H.; Hu, G.Z.; Pan, Y.S.; Liu, Z.M.; Mo, J.; Wei, Y.J. Molecular Characterization of Extended-spectrum β-lactamase-producing Escherichia coli Isolates from Chickens in Henan Province, China. J. Med. Microbiol. 2009, 58, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, Z.G.; Xia, L.N.; Shen, J.Z.; Dai, L.; Wang, Y.; Wu, C.M. Characterization of Antimicrobial Resistance and Molecular Determinants of Beta- lactamase in Escherichia coli Isolated from Chickens in China During 1970–2007. Vet. Microbiol. 2010, 144, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Bywater, R.; Deluyker, H.; Deroover, E.; De Jong, A.; Marion, H.; McConville, M.; Walters, J. A European Survey of Antimicrobial Susceptibility Among Zoonotic and Commensal Bacteria Isolated from Food-producing Animals. J. Antimicrob. Chemother. 2004, 54, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Hemeg, H.A. Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi J. Biol. Sci. 2018, 25, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Elafify, M.; Khalifa, H.O.; Al-Ashmawy, M.; Elsherbini, M.; El Latif, A.A.; Okanda, T.; Matsumoto, T.; Koseki, S.; Abdelkhalek, A. Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Messaili, C.; Messai, Y.; Bakour, R. Virulence gene profiles, antimicrobial resistance and phylogenetic groups of fecal Escherichia coli strains isolated from broiler chickens in Algeria. Vet. Ital. 2019, 55, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Meguenni, N.; Chanteloup, N.; Tourtereau, A.; Ahmed, C.A.; Bounar-Kechih, S.; Schouler, C. Virulence and antibiotic resistance profile of avian Escherichia coli strains isolated from colibacillosis lesions in central of Algeria. Vet. World. 2019, 12, 1840–1848. [Google Scholar] [CrossRef]
- Allami, M.; Bahreini, M.; Sharifmoghadam, M.R. Antibiotic Resistance, Phylogenetic Typing and Virulence Genes Prole Analysis of Uropathogenic Escherichia coli Isolated from Patients in Southern Iraq. J. Appl. Genet. 2022, 63, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Al-Sa’ady, A.T.; Mohammad, G.J.; Hussen, B.M. Genetic relation and virulence factors of carbapenemase-producing Uropathogenic Escherichia coli from urinary tract infections in Iraq. Gene Rep. 2020, 21, 100911. [Google Scholar] [CrossRef]
- Martinez, J.L. The Role of Natural Environments in the Evolution of Resistance Traits in Pathogenic Bacteria. Proc. R. Soc. Lond. B Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.-Y.I.; Habib, I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2023, 12, 3726. https://doi.org/10.3390/foods12203726
Mohamed M-YI, Habib I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods. 2023; 12(20):3726. https://doi.org/10.3390/foods12203726
Chicago/Turabian StyleMohamed, Mohamed-Yousif Ibrahim, and Ihab Habib. 2023. "Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review" Foods 12, no. 20: 3726. https://doi.org/10.3390/foods12203726
APA StyleMohamed, M.-Y. I., & Habib, I. (2023). Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods, 12(20), 3726. https://doi.org/10.3390/foods12203726