Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. Edible Coating Formulation and Application and Sampling
2.3. Headspace Gas Analysis, General Parameters and Microbial Counts
2.4. Instrumental Color and Texture Measurement
2.5. Lipid and Protein Oxidation
2.6. Statistical Analysis
3. Results
3.1. General Parameters and Microbial Counts
3.2. Instrumental Color and Texture
3.3. Lipid and Protein Oxidation
4. Discussion
4.1. General Parameters and Microbial Counts
4.2. Instrumental Color and Texture
4.3. Lipid and Protein Oxidation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanner, J. Oxidative processes in meat and meat-products—Quality implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Tebar, N.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Viuda-Martos, M. Chitosan edible films and coatings with added bioactive compounds: Antibacterial and antioxidant properties and their application to food products: A review. Polymers 2023, 15, 396. [Google Scholar] [CrossRef]
- Assanti, E.; Karabagias, V.K.; Karabagias, I.K.; Badeka, A.; Kontominas, M.G. Shelf life evaluation of fresh chicken burgers based on the combination of chitosan dip and vacuum packaging under refrigerated storage. J. Food Sci. Technol. 2021, 58, 870–883. [Google Scholar] [CrossRef]
- Florez, M.; Guerra-Rodriguez, E.; Cazon, P.; Vazquez, M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Wu, Z.X.; Yin, F.W.; Song, S.; Li, A.; Zhu, B.W.; Yu, L.L. Chitosan and derivatives: Bioactivities and application in foods. Annu. Rev. Food Sci. Technol. 2021, 12, 407–432. [Google Scholar] [CrossRef]
- Diaz-Montes, E.; Castro-Munoz, R. Trends in chitosan as a primary biopolymer for functional films and coatings manufacture for food and natural products. Polymers 2021, 13, 767. [Google Scholar] [CrossRef]
- Famiglietti, M.; Savastano, A.; Gaglione, R.; Arciello, A.; Naviglio, D.; Mariniello, L. Edible films made of dried olive leaf extract and chitosan: Characterization and applications. Foods 2022, 11, 2078. [Google Scholar] [CrossRef]
- Farokhzad, P.; Dastgerdi, A.A.; Nimavard, J.T. The effect of chitosan and rosemary essential oil on the quality characteristics of chicken burgers during storage. J. Food Process. Preserv. 2023, 2023, 8381828. [Google Scholar] [CrossRef]
- Bagheri, R.; Ariaii, P.; Motamedzadegan, A. Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. J. Food Meas. Charact. 2021, 15, 256–264. [Google Scholar] [CrossRef]
- Georgantelis, D.; Blekas, G.; Katikou, P.; Ambrosiadis, I.; Fletouris, D.J. Effect of rosemary extract, chitosan and alpha-tocopherol on lipid oxidation and colour stability during frozen storage of beef burgers. Meat Sci. 2007, 75, 256–264. [Google Scholar] [CrossRef]
- Duran, A.; Kahve, H.I. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci. 2020, 162, 107961. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, V.; Hosseini, S.E.; Sharifan, A. Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Sci. Nutr. 2018, 6, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Contini, L.R.F.; Zerlotini, T.D.; Brazolin, I.F.; dos Santos, J.W.S.; Silva, M.F.; Lopes, P.S.; Sampaio, K.A.; de Carvalho, R.A.; Venturini, A.C.; Yoshida, C.M.P. Antioxidant chitosan film containing lemongrass essential oil as active packaging for chicken patties. J. Food Process. Preserv. 2022, 46, e16136. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P. Effect of lutein, sesamol, ellagic acid and olive leaf extract on the quality and shelf-life stability of packaged raw minced beef patties. Meat Sci. 2010, 84, 613–620. [Google Scholar] [CrossRef]
- Delgado-Adamez, J.; Bote, E.; Parra-Testal, V.; Martin, M.; Ramirez, R. Effect of the olive leaf extracts in vitro and in active packaging of sliced iberian pork loin. Packag. Technol. Sci. 2016, 29, 649–660. [Google Scholar] [CrossRef]
- Borjan, D.; Leitgeb, M.; Knez, Z.; Hrncic, M.K. Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Khwaldia, K.; Attour, N.; Matthes, J.; Beck, L.; Schmid, M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr. Rev. Food Sci. Food 2022, 21, 1218–1253. [Google Scholar] [CrossRef]
- Difonzo, G.; Squeo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Caponio, F. The challenge of exploiting polyphenols from olive leaves: Addition to foods to improve their shelf-life and nutritional value. J. Sci. Food Agric. 2021, 101, 3099–3116. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gomez-Caravaca, A.M.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Muíno, I.; Díaz, M.T.; Apeleo, E.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Cañeque, V.; Lauzurica, S.; de la Fuente, J. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 2017, 140, 924–932. [Google Scholar] [CrossRef]
- Amaro-Blanco, G.; Delgado-Adamez, J.; Martin, M.; Ramirez, R. Active packaging using an olive leaf extract and high pressure processing for the preservation of sliced dry-cured shoulders from Iberian pigs. Innov. Food Sci. Emerg. Technol. 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Amaro-Blanco, G.; Manzano, R.; Delgado-Adamez, J.; Ramirez, R. Volatile compounds of sliced high quality (Montanera) dry-cured Iberian shoulder subjected to high pressure processing and/or with an active packaging of olive leaf extract. Food Packag. Shelf 2021, 27, 100606. [Google Scholar] [CrossRef]
- Crizel, T.D.; Rios, A.D.; Alves, V.D.; Bandarra, N.; Moldao-Martins, M.; Flores, S.H. Active food packaging prepared with chitosan and olive pomace. Food Hydrocoll. 2018, 74, 139–150. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food Biosci. 2016, 13, 69–75. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.; Soliman, S. Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar] [CrossRef]
- Moreira, M.D.; Roura, S.I.; Ponce, A. Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT-Food Sci. Technol. 2011, 44, 2335–2341. [Google Scholar] [CrossRef]
- ISO 17410:2019; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Psychrotrophic Microorganisms. ISO: Geneva, Switzerland, 2019.
- Wyszecki, G.; Stiles, W.S. Color science. In Concepts and Methods Quantitative Data and Formula, 2nd ed.; John Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Sorensen, G.; Jorgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Z. Für Lebensm. Unters. Und Forsch. 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Batifoulier, F.; Mercier, Y.; Gatellier, P.; Renerre, M. Influence of vitamin E on lipid and protein oxidation induced by H2O2-activated MetMb in microsomal membranes from turkey muscle. Meat Sci. 2002, 61, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.M.; Salsi, M.S.; Tiburzi, M.C.; Rafaghelli, R.C.; Tessi, M.A.; Coutaz, V.R. Spoilage microflora in fresh chicken breast stored at 4 degrees C: Influence of packaging methods. J. Appl. Microbiol. 1997, 83, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; He, P.; Kang, H.B.; Li, X.L. Antioxidant and antimicrobial effects of edible coating based on chitosan and bamboo vinegar in ready to cook pork chops. LWT-Food Sci. Technol. 2018, 93, 470–476. [Google Scholar] [CrossRef]
- Soultos, N.; Tzikas, Z.; Abrahim, A.; Georgantelis, D.; Ambrosiadis, I. Chitosan effects on quality properties of Greek style fresh pork sausages. Meat Sci. 2008, 80, 1150–1156. [Google Scholar] [CrossRef]
- Sagoo, S.; Board, R.; Roller, S. Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiol. 2002, 19, 175–182. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.V.; Carr, T. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Mehrabi, F.A.; Sharifi, A.; Ahvazi, M. Effect of chitosan coating containing Nepeta pogonosperma extract on shelf life of chicken fillets during chilled storage. Food Sci. Nutr. 2021, 9, 4517–4528. [Google Scholar] [CrossRef] [PubMed]
- Paparella, A.; Mazzarrino, G.; Chaves-Lopez, C.; Rossi, C.; Sacchetti, G.; Guerrieri, O.; Serio, A. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiol. 2016, 59, 23–31. [Google Scholar] [CrossRef]
- Yen, M.T.; Yang, J.H.; Mau, J.L. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid Oxidation; The Oily Press Ltd.: Dundee, UK, 1998. [Google Scholar]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT-Food Sci. Technol. 2013, 53, 321–326. [Google Scholar] [CrossRef]
- Weist, J.L.; Karel, M. Development of a fluorescence sensor to monitor lipid oxidation. 1. Fluorescence-spectra of chitosan powder and polyamide powder after exposure to volatile lipid oxidation-products. J. Agric. Food Chem. 1992, 40, 1158–1162. [Google Scholar] [CrossRef]
- Jongberg, S.; Skov, S.H.; Torngren, M.A.; Skibsted, L.H.; Lund, M.N. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem. 2011, 128, 276–283. [Google Scholar] [CrossRef] [PubMed]
One-Way | Two-Way (Stored Samples) | |||
---|---|---|---|---|
(Control Samples) | Time | Coating | Interaction | |
O2 * | <0.001 | <0.001 | <0.001 | <0.001 |
CO2 * | <0.001 | <0.001 | <0.001 | <0.001 |
Weight loss (%) | 0.110 | 0.006 | 0.377 | 0.846 |
Moisture (%) | 0.239 | 0.099 | 0.104 | 0.400 |
pH * | <0.001 | <0.001 | 0.208 | <0.001 |
Aerobic psychrotrophic bacteria * | <0.001 | <0.001 | 0.005 | <0.001 |
Lactic acid bacteria | <0.001 | <0.001 | 0.894 | 0.109 |
L* | 0.049 | 0.013 | 0.066 | 0.360 |
a* * | <0.001 | <0.001 | 0.262 | <0.001 |
b* * | <0.001 | <0.001 | 0.153 | 0.008 |
C* * | <0.001 | <0.001 | 0.550 | 0.028 |
H° * | <0.001 | <0.001 | 0.029 | <0.001 |
Hardness * | <0.001 | <0.001 | <0.001 | <0.001 |
Adhesiveness | 0.001 | <0.001 | 0.278 | 0.188 |
Springiness | 0.457 | 0.001 | 0.280 | 0.584 |
Cohesiveness | 0.026 | 0.002 | 0.002 | 0.273 |
Gumminess * | <0.001 | <0.001 | <0.001 | <0.001 |
Chewiness * | <0.001 | <0.001 | <0.001 | <0.001 |
Resilience | <0.001 | 0.068 | 0.015 | 0.063 |
MDA * | <0.001 | <0.001 | <0.001 | 0.006 |
Thiols * | <0.001 | <0.001 | 0.038 | <0.001 |
O2 (%) | CO2 (%) | Weight Loss (%) | Moisture (%) | pH | Aerobic Psychrotrophic Bacteria (log cfu/g) | Lactic Acid Bacteria (log cfu/g) | ||
---|---|---|---|---|---|---|---|---|
Day 0 | Control | 48.0 ± 2.1 1,2 | 20.2 ± 0.9 1 | - | 66.9 ± 0.4 | 6.4 ± 0.0 2 | 3.5 ± 0.5 3 | 5.3 ± 0.3 4 |
Day 3 | Control | 50.7 ± 1.5 1 | 19.2 ± 1.2 2 | 0.1 ± 0.0 | 66.4 ± 1.6 | 6.5 ± 0.0 a,1 | 6.5 ± 0.2 2 | 6.4 ± 0.1 3 |
Chitosan | 50.2 ± 1.6 1 | 18.7 ± 0.9 2 | 0.1 ± 0.0 | 68.3 ± 2.2 | 6.4 ± 0.0 b,2 | 6.6 ± 0.2 3 | 5.4 ± 0.8 2 | |
Chitoex | 51.4 ± 1.8 1 | 18.4 ± 0.8 2 | 0.2 ± 0.1 | 67.2 ± 3.1 | 6.4 ± 0.0 b | 7.3 ± 0.6 2 | 6.6 ± 0.1 | |
Pcoating | PSE: 0.528 | PSE: 0.414 | Po: 0.009 | Po: 0.448 | PSE < 0.001 | PSE: 0.043 | Po: 0.440 | |
Day 6 | Control | 45.4 ± 1.9 b,2 | 20.8 ± 0.6 a,2 | 0.3 ± 0.2 | 67.1 ± 2.2 | 6.4 ± 0.0 b,2 | 8.9 ± 0.7 a,1 | 7.1 ± 0.1 2 |
Chitosan | 48.4 ± 1.8 a,1 | 19.6 ± 1.0 b,2 | 0.3 ± 0.2 | 65.9 ± 7.6 | 6.4 ± 0.0 b,3 | 7.2 ± 0.3 b,2 | 7.2 ± 0.3 1 | |
Chitoex | 49.0 ± 1.8 a,1 | 19.2 ± 0.8 b,2 | 0.3 ± 0.2 | 70.8 ± 0.7 | 6.4 ± 0.0 a | 7.3 ± 0.3 b,2 | 7.0 ± 0.1 | |
Pcoating | PSE: 0.019 | PSE: 0.019 | Po: 0.993 | Po: 0.249 | PSE < 0.001 | PSE < 0.001 | Po: 0.553 | |
Day 11 | Control | 3.6 ± 2.7 c,3 | 57.2 ± 1.0 a,1 | 0.2 ± 0.1 | 68.3 ± 1.2 | 6.4 ± 0.1 b,2 | 8.5 ± 0.5 1 | 7.8 ± 0.2 1 |
Chitosan | 7.4 ± 2.1 b,2 | 54.5 ± 1.9 b,1 | 0.3 ± 0.2 | 69.8 ± 1.9 | 6.5 ± 0.0 a,1 | 8.1 ± 0.2 1 | 8.3 ± 0.9 1 | |
Chitoex | 14.2 ± 3.5 a,2 | 49.6 ± 2.5 c,1 | 0.4 ± 0.2 | 71.7 ± 4.4 | 6.5 ± 0.0 a | 8.4 ± 0.2 1 | 7.5 ± 1.3 | |
Pcoating | PSE < 0.001 | PSE < 0.001 | Po: 0.442 | Po: 0.212 | PSE < 0.001 | PSE: 0.359 | Po: 0.612 |
L* | a* | b* | C* | H° | ||
---|---|---|---|---|---|---|
Day 0 | Control | 50.9 ± 1.6 1,2 | 20.3 ± 1.1 1 | 12.4 ± 0.6 1 | 23.8 ± 1.2 1 | 31.3 ± 0.2 2 |
Day 3 | Control | 50.0 ± 2.4 2 | 19.0 ± 0.7 1 | 11.6 ± 0.3 1 | 22.3 ± 0.7 1 | 31.3 ± 0.4 c,2 |
Chitosan | 52.2 ± 1.7 | 18.1 ± 1.7 1 | 11.6 ± 0.7 1 | 21.5 ± 1.8 1 | 32.7 ± 1.1 b,2 | |
Chitoex | 50.4 ± 1.5 | 17.2 ± 0.7 1 | 12.1 ± 0.5 1 | 21.1 ± 0.8 1 | 35.1 ± 0.5 a | |
Pcoating | Po: 0.217 | PSE: 0.077 | PSE: 0.213 | PSE: 0.311 | PSE < 0.001 | |
Day 6 | Control | 51.7 ± 1.7 1,2 | 16.8 ± 1.0 2 | 9.8 ± 0.6 b,2 | 19.5 ± 1.2 2 | 30.3 ± 0.3 b,2 |
Chitosan | 52.9 ± 1.3 | 16.8 ± 0.8 1 | 10.5 ± 0.9 ab,1,2 | 19.9 ± 0.7 1 | 32.0 ± 3.0 ab,2 | |
Chitoex | 51.7 ± 0.9 | 15.9 ± 1.5 1 | 11.1 ± 0.6 a,2 | 19.4 ± 1.4 2 | 34.9 ± 2.2 a | |
Pcoating | Po: 0.298 | PSE: 0.392 | PSE: 0.047 | PSE: 0.799 | PSE: 0.017 | |
Day 11 | Control | 53.6 ± 1.6 1 | 9.0 ± 0.8 b,3 | 9.9 ± 0.5 a,2 | 13.4 ± 0.6 b,3 | 47.7 ± 3.0 a,1 |
Chitosan | 53.0 ± 1.2 | 11.7 ± 1.0 a,2 | 9.4 ± 0.3 ab,2 | 15.1 ± 0.8 a,2 | 38.8 ± 2.5 b,1 | |
Chitoex | 51.6 ± 1.9 | 12.0 ± 0.5 a,2 | 9.2 ± 0.2 b,3 | 15.2 ± 0.3 a,3 | 37.5 ± 1.7 b | |
Pcoating | Po: 0.178 | PSE < 0.001 | PSE: 0.038 | PSE: 0.001 | PSE < 0.001 |
Hardness (N) | Adhesiveness (N × s) | Springiness (cm) | Cohesiveness | Gumminess (N) | Chewiness (N × cm) | Resilience | ||
---|---|---|---|---|---|---|---|---|
Day 0 | Control | 73.00 ± 4.96 2 | −14.31 ± 3.64 1 | 0.89 ± 0.05 | 0.52 ± 0.02 1 | 38.03 ± 1.33 1,2 | 33.81 ± 1.95 2 | 0.17 ± 0.01 1 |
Day 3 | Control | 71.48 ± 1.71 2 | −18.90 ± 3.46 1 | 0.91 ± 0.03 | 0.49 ± 0.01 2 | 35.28 ± 2.43 2 | 32.14 ± 2.72 2 | 0.14 ± 0.01 2 |
Chitosan | 77.27 ± 5.27 | −16.32 ± 5.39 1 | 0.87 ± 0.04 2 | 0.47 ± 0.02 | 36.05 ± 1.88 2 | 31.35 ± 1.21 3 | 0.14 ± 0.02 | |
Chitoex | 73.49 ± 8.39 | −19.44 ± 9.41 1 | 0.90 ± 0.04 1,2 | 0.50 ± 0.02 | 36.29 ± 4.09 | 32.74 ± 3.91 | 0.15 ± 0.01 | |
Pcoating | PSE: 0.349 | Po: 0.731 | Po: 0.291 | Po: 0.056 | PSE: 0.855 | PSE: 0.743 | Po: 0.586 | |
Day 6 | Control | 81.34 ± 7.72 2 | −22.24 ± 5.18 1 | 0.91 ± 0.02 | 0.52 ± 0.01 1,2 | 41.85 ± 3.76 a,2 | 38.12 ± 3.25 a,2 | 0.15 ± 0.01 1,2 |
Chitosan | 85.91 ± 11.60 | −17.60 ± 3.22 1 | 0.89 ± 0.03 1,2 | 0.47 ± 0.03 | 39.74 ± 3.64 ab,1,2 | 35.17 ± 2.21 ab,2 | 0.14 ± 0.01 | |
Chitoex | 73.03 ± 7.51 | −11.16 ± 2.32 1 | 0.90 ± 0.03 2 | 0.48 ± 0.02 | 35.23 ± 2.86 b | 31.64 ± 3.39 b | 0.15 ± 0.01 | |
Pcoating | PSE: 0.119 | Po: 0.002 | Po: 0.437 | Po: 0.010 | PSE: 0.029 | PSE: 0.017 | Po: 0.095 | |
Day 11 | Control | 111.11 ± 5.06 a,1 | −33.64 ± 10.33 2 | 0.93 ± 0.05 | 0.52 ± 0.02 1 | 58.35 ± 3.26 a,1 | 54.35 ± 5.64 a,1 | 0.17 ± 0.01 1 |
Chitosan | 87.16 ± 7.13 b | −29.37 ± 5.74 2 | 0.93 ± 0.02 1 | 0.51 ± 0.03 | 43.83 ± 3.34 b,1 | 40.79 ± 2.78 b,1 | 0.15 ± 0.01 | |
Chitoex | 76.72 ± 10.05 b | −35.04 ± 10.23 2 | 0.95 ± 0.02 1 | 0.51 ± 0.03 | 39.15 ± 3.61 b | 37.11 ± 3.23 b | 0.14 ± 0.01 | |
Pcoating | PSE < 0.001 | Po: 0.599 | Po: 0.648 | Po: 0.568 | PSE < 0.001 | PSE: <0.001 | Po: 0.007 |
MDA (mg/kg) | Thiol (nmol/mg Protein) | ||
---|---|---|---|
Day 0 | Control | 0.25 ± 0.11 3 | 214.81 ± 7.75 a,1 |
Day 3 | Control | 1.39 ± 0.27 a,2 | 219.04 ± 26.12 a,1 |
Chitosan | 0.83 ± 0.37 b | 204.82 ± 24.55 a,1 | |
Chitoex | 0.32 ± 0.09 c | 163.60 ± 7.22 b | |
Pcoating | PSE < 0.001 | PSE: 0.004 | |
Day 6 | Control | 2.38 ± 0.50 a,1 | 119.52 ± 11.92 b,2 |
Chitosan | 1.24 ± 0.19 b | 160.44 ± 16.51 a,2 | |
Chitoex | 0.34 ± 0.17 c | 160.15 ± 12.37 a | |
Pcoating | PSE < 0.001 | PSE: 0.001 | |
Day 11 | Control | 2.41 ± 0.26 a,1 | 130.63 ± 3.53 b,2 |
Chitosan | 1.26 ± 0.20 b | 144.45 ± 7.20 a,b,2 | |
Chitoex | 0.80 ± 0.28 c | 147.56 ± 14.12 a | |
Pcoating | PSE < 0.001 | PSE: 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrapiso, A.I.; Pimienta, M.; Martín, L.; Cardenia, V.; Andrés, A.I. Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers. Foods 2023, 12, 3757. https://doi.org/10.3390/foods12203757
Carrapiso AI, Pimienta M, Martín L, Cardenia V, Andrés AI. Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers. Foods. 2023; 12(20):3757. https://doi.org/10.3390/foods12203757
Chicago/Turabian StyleCarrapiso, Ana Isabel, Manuel Pimienta, Lourdes Martín, Vladimiro Cardenia, and Ana Isabel Andrés. 2023. "Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers" Foods 12, no. 20: 3757. https://doi.org/10.3390/foods12203757
APA StyleCarrapiso, A. I., Pimienta, M., Martín, L., Cardenia, V., & Andrés, A. I. (2023). Effect of a Chitosan Coating Enriched with an Olive Leaf Extract on the Characteristics of Pork Burgers. Foods, 12(20), 3757. https://doi.org/10.3390/foods12203757