Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Methods
2.3.1. Vinegar Production
2.3.2. Physicochemical Analyses
2.3.3. Organic Acid Determination
2.3.4. Phenolic Compound Determination
2.3.5. Antioxidant Capacity and Total Phenolic Content
Extraction Procedure
Determination of Antioxidant Capacity
Determination of Total Phenolic Content
Bioaccessibility %
2.3.6. Determination of Total Anthocyanin Content
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. pH and Total Titratable Acidity
3.2. Organic Acids
3.3. Phenolic Compounds
3.4. The Bioactive Potential of Vinegar Samples
3.5. Chemometrics
3.6. Linear Correlation
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K. Overview of vinegar production. PalArch’s J. Archaeol. Egypt/Egyptol. 2020, 17, 4027–4037. Available online: https://archives.palarch.nl/index.php/jae/article/view/1638 (accessed on 1 August 2023).
- Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; El Ghouizi, A.; Conte, R.; Lyoussi, B.; El Arabi, I. Fruits vinegar: Quality characteristics, phytochemistry, and functionality. Molecules 2021, 27, 222. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- de Man, J.M.; Finley, J.W.; Hurst, W.J.; Lee, C.Y.; Lee, C.Y. Fruits and vegetables. In Principles of Food Chemistry; Springer: Cham, Switzerland; Berlin, Germany, 2018; pp. 435–455. [Google Scholar] [CrossRef]
- Sivapragasam, N.; Neelakandan, N.; Rupasinghe, H.V. Potential health benefits of fermented blueberry: A review of current scientific evidence. Trends Food Sci. Technol. 2023, 132, 103–120. [Google Scholar] [CrossRef]
- Yıkmış, S. Optimization of uruset apple vinegar production using response surface methodology for the enhanced extraction of bioactive substances. Foods 2019, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical, Chemists International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical, Chemists International: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef]
- Selli, S. Phenolic compounds in pomegranate vinegars. Online J. Sci. Technol. 2017, 7, 162–167. [Google Scholar]
- Vitali, D.; Dragojević, I.V.; Šebečić, B. Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem. 2009, 114, 1462–1469. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Celik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Mateo Anson, N.; Berg, R.v.D.; Havenaar, R.; Haenen, G.; Bast, A. Antioxidant and anti-inflammatory potency of different wheat varieties and fractions. Proc. Nutr. Soc. 2008, 67, E56. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Erdal, B.; Yıkmış, S.; Demirok, N.T.; Bozgeyik, E.; Levent, O. Effects of non-thermal treatment on gilaburu vinegar (Viburnum opulus L.): Polyphenols, amino acid, antimicrobial, and anticancer properties. Biology 2022, 11, 926. [Google Scholar] [CrossRef]
- FDA (Food and Drug Administration) Acetic Acid Use in Foods—Labeling of Foods in Which Used. 1989. Available online: https://www.fda.gov/iceci/compliancemanuals/compliancepolicyguidancemanual/ucm074577.htm (accessed on 5 August 2023).
- Budak, N.H.; Ozcelik, F.; Guzel-Seydim, Z.B. Antioxidant activity and phenolic content of apple cider. Turk. J. Agric. Food Sci. Technol. 2015, 3, 356–360. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Kilic, G.; Ozturk, B. Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Sci. Biotechnol. 2020, 29, 401–408. [Google Scholar] [CrossRef]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Velioglu, Y.S. Food Acids: Organic Acids, Volatile Organic Acids, and Phenolic Acids. In Advances in Food Biochemistry; Taylor and Francis Group: London, UK, 2009; p. 313. [Google Scholar]
- Liu, F.; He, Y. Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chem. 2009, 115, 1430–1436. [Google Scholar] [CrossRef]
- Song, N.E.; Jeong, D.Y.; Baik, S.H. Application of indigenous Saccharomyces cerevisiae to improve the black raspberry (Rubus coreanus Miquel) vinegar fermentation process and its microbiological and physicochemical analysis. Food Sci. Biotechnol. 2019, 28, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Zannini, E.; Wilkinson, S.; Daenen, L.; Arendt, E.K. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Compr. Rev. Food Sci. Food Saf. 2019, 18, 587–625. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, H.A.; Tutun, H.; Keyvan, E.; Balkan, B.M. Investigation of chemical, antibacterial and antiradical properties of home-made apple and grape vinegars. Ank. Univ. J. Vet. Fac. 2022, 69, 139–148. [Google Scholar] [CrossRef]
- Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J. Characterization of organic acids and phenolic compounds of cereal vinegars and fruit vinegars in China. J. Food Process. Preserv. 2017, 41, e12937. [Google Scholar] [CrossRef]
- Kim, E.J.; Cho, K.M.; Kwon, S.J.; Seo, S.H.; Park, S.E.; Son, H.S. Factors affecting vinegar metabolites during two-stage fermentation through metabolomics study. LWT-Food Sci. Technol. 2021, 135, 110081. [Google Scholar] [CrossRef]
- Ozdemir, N.; Budak, N.H. Bioactive compounds and volatile aroma compounds in rose (Rosa damascena Mill.) vinegar during the aging period. Food Biosci. 2022, 50, 102062. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: Antioxidant activity and chemical composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef]
- Padureanu, C.; Badarau, C.L.; Maier, A.; Padureanu, V.; Lupu, M.I.; Canja, C.M.; Branescu, G.R.; Bujor, O.-C.; Matei, F.; Poiana, M.-A.; et al. Ultrasound Treatment Influence on Antioxidant Properties of Blueberry Vinegar. Fermentation 2023, 9, 600. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—A critical review on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Gao, Q.; Song, Y.; Liang, Y.; Li, Y.; Chang, Y.; Ma, R.; Cao, X.; Wang, S. Dynamics of physicochemical properties, functional compounds and antioxidant capacity during spontaneous fermentation of Lycium ruthenicum Murr. (Qinghai–Tibet Plateau) Natural Vinegar. Foods 2022, 11, 1344. [Google Scholar] [CrossRef]
- Michalska, A.; Łysiak, G. Bioactive compounds of blueberries: Post-harvest factors influencing the nutritional value of products. Int. J. Mol. Sci. 2015, 16, 18642–18663. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tao, Y.; Li, D.; Wen, G.; Zhou, J.; Manickam, S.; Han, Y.; Chai, W.S. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 2021, 276, 130090. [Google Scholar] [CrossRef]
- Kvalheim, T.V.; Karstang, O.M. Multivariate Pattern Recognition in Chemometrics, Illustrated by Case Studies; Elsevier Science Publishers: Amsterdam, The Netherlands, 1991; pp. 209–248. [Google Scholar]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Ousaaid, D.; Ghouizi, A.E.; Laaroussi, H.; Bakour, M.; Mechchate, H.; Es-safi, I.; Kamaly, O.A.; Saleh, A.; Conte, R.; Lyoussi, B.; et al. Anti-anemic effect of antioxidant-rich apple vinegar against phenylhydrazine-induced hemolytic anemia in rats. Life 2022, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Es-sbata, I.; Castro, R.; Zouhair, R.; Durán-Guerrero, E. Effect of the type of acetic fermentation process on the chemical composition of prickly pear vinegar (Opuntia ficus-indica). J. Sci. Food Agric. 2023, 103, 264–272. [Google Scholar] [CrossRef]
Organic Acid | Cas Number | Linearity Calibration Curve (mg/L) | Regression Equation * | Correlation Coefficient | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|---|---|
Maleic acid | 110-16-7 | 0.50–5.0 0 | y = 89.3899x + 0.2609 | 0.9999 | 16.65 | 55.07 |
Malonic acid | 141-82-2 | 100.00–1000.00 | y = 0.7908x + 1.5608 | 0.9999 | 102.55 | 341.85 |
Barbituric acid | 67-52-7 | 0.50–5.00 | y = 70.1854x − 0.8500 | 0.9998 | 1.35 | 4.50 |
Phytic acid | 83-86-3 | 400.00–4000.00 | y = 0.1575x − 28.0443 | 0.9962 | 162.11 | 540.36 |
DL-Isocitric acid | 1637-73-6 | 16.00–160.0 | y = 4.8577x − 1.9689 | 0.9999 | 14.75 | 49.16 |
(-)Quinic acid | 77-95-2 | 200.00–2000.00 | y = 0.4157x + 0.5559 | 0.9999 | 83.24 | 277.47 |
Shikimic acid | 138-59-0 | 2.50–25.00 | y = 47.4045x + 1.5608 | 0.9999 | 1.10 | 3.66 |
Adipic acid | 124-04-9 | 200.00–2000.00 | y = 0.5847x − 1.1275 | 0.9998 | 131.47 | 438.24 |
Oxalic-Dihydrate | 6153-56-6 | 8.00–80.00 | y = 10.9688x + 0.0661 | 0.9999 | 7.29 | 24.30 |
Oxalic acid | 144-62-7 | 12.00–60.00 | y = 12.7195x − 0.6878 | 0.9999 | 6.39 | 21.29 |
Citric acid | 77-92-9 | 80.00–400.00 | y = 0.8280x + 0.0829 | 0.9998 | 3.96 | 13.20 |
D-(−)-Tartaric acid | 147-71-7 | 60.00–300.00 | y = 1.0772x + 1.5076 | 0.9999 | 14.37 | 47.90 |
D-(+)-Malic acid | 636-61-3 | 96.00 –480.00 | y = 0.7336x − 0.1788 | 0.9997 | 16.77 | 55.90 |
Succinic acid | 110-15-6 | 112.00–560.00 | y = 0.4397 x + 2.2500 | 0.9997 | 70.11 | 233.70 |
L-(+)-Lactic acid | 79-33-4 | 120.00–600.00 | y = 0.5787 x + 1.2572 | 0.9999 | 43.86 | 146.20 |
Formic acid | 64-18-6 | 20.00–100.00 | y = 3.9434 x − 2.6180 | 0.9994 | 22.05 | 73.50 |
Acetic acid | 64-19-7 | 180.00–900.00 | y = 0.2598x − 0.0077 | 0.9998 | 30.39 | 101.30 |
Fumaric acid | 110-17-8 | 1.00–5.00 | y = 112.0394x + 0.4167 | 0.9998 | 18.48 | 61.60 |
Propionic acid | 79-09-4 | 40.00–200.00 | y = 3.7163x + 8.8626 | 0.9997 | 26.16 | 87.02 |
Isobutyric acid | 79-31-2 | 40.00–200.00 | y = 4.5562x + 0.6342 | 0.9998 | 25.59 | 85.30 |
Butyric acid | 107-92-6 | 60.00–200.00 | y = 3.1371 x + 1.0894 | 0.9999 | 32.86 | 109.54 |
Organic Acid (mg/L) | Apple Vinegar | Grape Vinegar | Rosehip Vinegar | Pomegranate Vinegar | Fig Vinegar | Guelder-Rose Vinegar | Blackberry Vinegar | Raspberry Vinegar | Blueberry Vinegar |
---|---|---|---|---|---|---|---|---|---|
Maleic Acid | nd. * | nd. | nd. | nd. | nd. | 0.93 ± 0.00 b | 0.23 ± 0.01 c | 1.25 ± 0.01 a | nd. |
Malonic acid | 31.59 ± 0.06 d ** | 6.53 ± 0.18 f | 64.43 ± 0.08 c | nd. | 13.73 ± 0.13 e | 74.24 ± 0.17 b | nd. | nd. | 123.01 ± 0.15 a |
Barbituric acid | 3.38 ± 0.11 c | 3.14 ± 0.09 d | 4.59 ± 0.03 b | 4.66 ± 0.34 b | 1.15 ± 0.03 e | 11.93 ± 0.06 a | 4.68 ± 0.04 b | 2.01 ± 0.02 e | 3.20 ± 0.07 d |
Oxalic-Dihydrate | 6.27 ± 0.03 a | nd. | nd. | nd. | 0.86 ± 0.00 b | nd. | nd. | nd. | nd. |
DL-Isocitric acid | 4.50 ± 0.05 ı | 16.05 ± 0.09 f | 40.44 ± 0.21 d | 967.35 ± 1.07 a | 26.16 ± 0.08 e | 6.78 ± 0.15 g | 155.95 ± 0.10 c | 325.49 ± 0.30 b | 5.17 ± 0.07 h |
(-)Quinic acid | nd. | nd. | nd. | nd. | nd. | 143.63 ± 0.22 b | nd. | nd. | 244.75 ± 0.82 a |
Shikimic acid | 4.21 ± 0.21 f | 4.60 ± 0.14 e | 6.55 ± 0.12 c | 7.39 ± 0.19 b | 1.55 ± 0.03 h | 17.67 ± 0.02 a | 6.86 ± 0.07 d | 2.87 ± 0.08 g | 4.58 ± 0.26 e |
Adipic acid | 933.53 ± 0.96 b | 951.10 ± 0.10 a | 749.28 ± 0.07 c | nd. | 587.83 ± 0.54 d | 270.93 ± 0.35 f | 273.63 ± 0.52 e | nd. | nd. |
Oxalic acid | 4.03 ± 0.10 a | nd. | nd. | nd. | 0.75 ± 0.00 b | nd. | nd. | nd. | nd. |
Citric acid | 23.37 ± 0.59 g | 92.41 ± 0.52 f | 239.57 ± 0.38 d | 5335.26 ± 42.07 a | 160.43 ± 0.29 e | 36.59 ± 0.36 g | 903.97 ± 0.21 c | 1904.66 ± 1.75 b | 26.80 ± 0.17 g |
D-(−)-Tartaric acid | 27.94 ± 0.21 c | 601.06 ± 0.90 a | nd. | nd. | nd. | 23.60 ± 0.16 d | nd. | 115.08 ± 0.05 b | 22.30 ± 0.15 e |
D-(+)-Malic acid | 31.48 ± 0.39 d, e | nd. | 72.28 ± 0.15 c | 3971.76 ± 39.36 a | 23.92 ± 0.05 e | 55.37 ± 0.42 c | 626.62 ± 0.42 b | 51.29 ± 0.36 c, d | 19.72 ± 0.39 e, f |
Succinic acid | 462.09 ± 0.72 g | 498.58 ± 1.18 f | 691.80 ± 0.43 d | 763.36 ± 1.38 b | 166.69 ± 0.27 ı | 1902.47 ± 1.67 a | 741.21 ± 0.64 c | 304.51 ± 2.69 h | 514.41 ± 0.49 e |
L-(+)-Lactic acid | 39.62 ± 0.28 g | 843.07 ± 0.13 b | 365.26 ± 0.50 c | nd. | 1344.70 ± 9.27 a | 67.66 ± 0.17 e | 53.88 ± 0.26 f | 22.47 ± 0.08 h | 278.22 ± 2.40 d |
Acetic acid | 48,650.63 ± 162.31 d | 29,968.43 ± 320.06 h | 39,177.90 ± 349.65 g | 45,912.03 ± 385.67 f | 47,618.77 ± 142.46 e | 58,806.27 ± 197.60 b | 49,515.90 ± 54.99 c | 60,592.87 ± 318.75 a | 30,150.70 ± 123.12 h |
Fumaric acid | 0.41 ± 0.00 b | 0.28 ± 0.00 c | 4.81 ± 0.06 a | nd. | nd. | nd. | nd. | nd. | nd. |
Propionic acid | 148.31 ± 1.23 a | 140.81 ± 0.15 b | 115.09 ± 0.33 c | nd. | 89.97 ± 0.25 d | nd. | 14.59 ± 0.23 e | 10.86 ± 0.05 f | nd. |
Isobutyric acid | nd. | nd. | nd. | nd. | nd. | nd. | nd. | 13.57 ± 0.25 a | nd. |
Butyric acid | 0.49 ± 0.02 a | nd. | nd. | nd. | nd. | nd. | nd. | nd. | nd. |
Total | 50,371.86 ± 35.36 | 33,126.06 ± 69.81 | 41,532.01 ± 79.27 | 56,961.83 ± 84.13 | 50,036.51 ± 31.03 | 61,418.06 ± 43.08 | 52,297.52 ± 11.98 | 63,346.93 ± 69.50 | 31,392.87 ± 29.82 |
Compound (mg/L) | Apple Vinegar | Grape Vinegar | Rosehip Vinegar | Pomegranate Vinegar | Fig Vinegar | Guelder-Rose Vinegar | Blackberry Vinegar | Raspberry Vinegar | Blueberry Vinegar |
---|---|---|---|---|---|---|---|---|---|
Ascorbic acid | 0.13 ± 0.00 e * | 1.03 ± 0.00 b | 0.37 ± 0.00 c | 1.40 ± 0.01 a | 0.04 ± 0.00 g | nd. | 0.26 ± 0.00 d | 0.09 ± 0.00 f | nd. |
Gallic acid | 9.97 ± 0.14 ı | 29.21 ± 0.08 d | 15.75 ± 0.02 h | 58.09 ± 0.18 a | 25.87 ± 0.04 e | 47.98 ± 0.06 c | 55.44 ± 0.05 b | 19.65 ± 0.02 f | 12.75 ± 0.04 g |
Protocatechuic acid | 5.52 ± 0.03 c | 1.26 ± 0.00 ı | 14.77 ± 0.01 a | 2.55 ± 0.02 e | 2.31 ± 0.02 g | 3.47 ± 0.01 d | 10.67 ± 0.04 b | 2.36 ± 0.01 f | 2.03 ± 0.00 h |
Catechin | 0.28 ± 0.01 e | nd. | 0.28 ± 0.00 e | 0.81 ± 0.01 d | 9.10 ± 0.06 a | 4.92 ± 0.01 b | 1.36 ± 0.02 c | 0.09 ± 0.00 f | nd. |
Hydroxybenzoic acid | 3.02 ± 0.03 d | 0.76 ± 0.00 f | 2.98 ± 0.02 d | 13.64 ± 0.05 a | 0.98 ± 0.03 g | 1.40 ± 0.03 e | 7.02 ± 0.06 b | 5.20 ± 0.03 c | nd. |
Vanillic acid | 6.12 ± 0.02 c | 2.38 ± 0.00 g | 4.08 ± 0.04 e | 3.80 ± 0.03 f | 4.24 ± 0.02 d | 43.88 ± 0.05 a | 1.26 ± 0.06 h | 0.75 ± 0.00 ı | 9.98 ± 0.08 b |
Gentisic acid | nd. | nd. | 1.48 ± 0.01 c | nd. | 1.75 ± 0.02 b | 4.20 ± 0.06 a | 0.44 ± 0.01 d | 0.27 ± 0.01 e | nd. |
p-coumaric acid | 4.99 ± 0.03 a | 0.09 ± 0.00 f | 0.10 ± 0.00 f | 0.09 ± 0.00 f | 0.17 ± 0.00 e | 0.70 ± 0.00 b | 0.16 ± 0.00 e | 0.31 ± 0.01 c | 0.23 ± 0.00 d |
Rutin | 5.52 ± 0.06 a | 2.22 ± 0.01 d | 2.20 ± 0.03 d, e | 2.16 ± 0.02 e | 2.71 ± 0.00 b | 1.90 ± 0.00 f | 0.91 ± 0.01 h | 1.54 ± 0.05 g | 2.44 ± 0.00 c |
Ferulic acid | 24.61 ± 0.05 a | 0.74 ± 0.03 f | 2.73 ± 0.03 e | 20.49 ± 0.04 b | 0.25 ± 0.01 g | 0.75 ± 0.03 f | 8.68 ± 0.01 c | 5.99 ± 0.02 d | 0.75 ± 0.00 f |
Naringin | nd. | 15.79 ± 0.06 a | 2.72 ± 0.05 d | 0.71 ± 0.00 h | 7.15 ± 0.04 b | 6.89 ± 0.03 c | 1.23 ± 0.01 f | 1.13 ± 0.00 g | 2.37 ± 0.02 e |
o-coumaric acid | 0.56 ± 0.01 ı | 2.36 ± 0.03 c | 5.54 ± 0.02 a | 0.99 ± 0.03 g | 0.74 ± 0.04 h | 3.33 ± 0.02 b | 1.97 ± 0.04 d | 1.12 ± 0.01 f | 1.62 ± 0.00 e |
Neohesperidin | 0.66 ± 0.02 b | 0.77 ± 0.01 a | nd. | 0.30 ± 0.01 f | 0.59 ± 0.03 c | 0.35 ± 0.02 e | 0.44 ± 0.04 d | 0.60 ± 0.03 c | 0.21 ± 0.04 g |
Coumarin | 1.15 ± 0.03 c | 0.08 ± 0.00 f | 1.52 ± 0.01 b | 0.13 ± 0.00 e | 0.15 ± 0.01 e | 4.77 ± 0.03 a | 0.15 ± 0.00 e | 0.29 ± 0.01 d | 0.05 ± 0.00 f |
Resveratrol | nd. | 0.03 ± 0.00 h | 0.07 ± 0.00 f | 0.34 ± 0.01 d | 0.86 ± 0.02 a | 0.41 ± 0.00 c | 0.10 ± 0.00 e | 0.05 ± 0.00 g | 0.48 ± 0.01 b |
Quercetin | 1.63 ± 0.02 b | 0.38 ± 0.00 f | 0.38 ± 0.01 f | 0.36 ± 0.04 f, g | 0.33 ± 0.01 g | 1.11 ± 0.03 d | 0.46 ± 0.01 e | 1.34 ± 0.01 c | 1.76 ± 0.02 a |
Trans-cinnamic | 1.33 ± 0.02 c | 0.17 ± 0.00 f | 0.09 ± 0.00 g | 0.10 ± 0.00 g | 0.12 ± 0.01 g | 4.59 ± 0.05 a | 0.34 ± 0.01 e | 0.74 ± 0.04 d | 2.01 ± 0.02 b |
Hesperidin | 1.57 ± 0.06 a | nd. | 0.14 ± 0.00 d | nd. | 0.03 ± 0.00 e | 0.40 ± 0.01 b | nd. | nd. | 0.19 ± 0.01 c |
Alizarin | nd. | 0.03 ± 0.00 c | nd. | 0.34 ± 0.02 a | 0.10 ± 0.00 b | nd. | nd. | nd. | nd. |
Total | 60.15 ± 0.22 | 57.29 ± 0.24 | 55.21 ± 0.26 | 106.28 ± 0.48 | 57.49 ± 0.36 | 131.05 ± 0.44 | 90.89 ± 0.37 | 41.53 ± 0.24 | 36.86 ± 0.24 |
Parameter | Discriminating Power (104) |
---|---|
pH | 1219 |
Total acidity | 761 |
dL-isocitric acid | 413 |
Gallic acid | 366 |
Hydroxybenzoic acid | 180 |
Barbituric acid | 125 |
Protocatechuic acid | 76 |
Ascorbic acid | 71 |
Acetic acid | 56 |
Adipic acid | 30 |
o-coumaric acid | 26 |
Ferulic acid | 24 |
Resveratrol | 14 |
Succinic acid | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, E. Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics. Foods 2023, 12, 3769. https://doi.org/10.3390/foods12203769
Yildiz E. Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics. Foods. 2023; 12(20):3769. https://doi.org/10.3390/foods12203769
Chicago/Turabian StyleYildiz, Elif. 2023. "Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics" Foods 12, no. 20: 3769. https://doi.org/10.3390/foods12203769
APA StyleYildiz, E. (2023). Characterization of Fruit Vinegars via Bioactive and Organic Acid Profile Using Chemometrics. Foods, 12(20), 3769. https://doi.org/10.3390/foods12203769