Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds
Abstract
:1. Introduction
2. Microencapsulation Applications in Food Industry: Global Trends
3. Relevance of by-Products to Food Industry
4. Encapsulation Technologies
- Good rheological characteristics at high concentration and straightforward workability during encapsulation;
- The capacity to stabilise the created emulsion and disseminate or emulsify the active substance;
- Non-reactivity during processing and after extended storage with the material to be enclosed;
- The capacity to contain the active substance inside its structure while being processed or stored;
- Under drying or other de-solventization conditions, the ability to entirely release the solvent or other ingredients utilised during the encapsulation process;
- The capacity to offer the active material the best defence possible against environmental factors (such as oxygen, heat, light, and humidity);
- The food sector accepts solvent solubility (such as ethanol and water);
- The active core materials’ chemical inertness;
- Affordable and food-grade status.
4.1. Spray Drying
4.2. Spray Chilling/Cooling
4.3. Extrusion
4.4. Fluidized Bed Coating
4.5. Liposome Entrapment
4.6. Coacervation
4.7. Centrifugal Suspension Separation
4.8. Inclusion Complexation
5. Applications and Benefits of Encapsulated Products Derived from Food Industry Waste and By-Products
6. In Vitro Digestibility and Release Profile of Encapsulated Bioactive Compounds
6.1. In Vitro Digestion Models
6.1.1. Static Models
6.1.2. Dynamic Models
7. Release Profile
7.1. Burst Release
7.2. Sustained Release
7.3. Delayed Release
7.4. Triggered (or Stimuli Responsive) Release
7.5. Targeted Release
8. Safety and Toxicity of Encapsulated Bioactive Compounds from Food Waste
9. Summary and Future Trends
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. Applications of advanced technologies in the development of functional medical textile materials. In Medical Textile Materials; Woodhead Publishing Series in Textiles; Qin, Y., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 55–70. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Jal, M.; Suñé-Negre, J.M.; Pérez-Lozano, P.; García-Montoya, E. Trends in the food and sports nutrition industry: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2405–2421. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.; Kairam, N. Preparation of omega 3 rich oral supplement using dairy and non-dairy based ingredients. J. Food Sci. Technol. 2018, 55, 760–766. [Google Scholar] [CrossRef]
- Trifković, K.; Đorđević, V.; Balanč, B.; Kalušević, A.; Lević, S.; Bugarski, B.; Nedović, V. Novel approaches in nanoencapsulation of aromas and flavors. In Encapsulations; Academic Press: Cambridge, MA, USA, 2016; pp. 363–419. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Mendoza, M.R.; García, O.; Jimenez-Fernandez, V.M.; Jimenez, M. Micro encapsulation of vanilla (Vanilla planifolia Andrews) and pow der characterization. Powder Technol. 2018, 323, 416–423. [Google Scholar] [CrossRef]
- Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar]
- Bjørndal, T.; Fernandez-Polanco, J.; Lappo, A.; Lem, A. Consumer Trends and Preferences in the Demand for Food. 2013. Available online: https://openaccess.nhh.no/nhh-xmlui/handle/11250/225387 (accessed on 13 September 2019).
- Kaushik, P.; Dowling, K.; Barrow, C.J.; Adhikari, B. Microen capsulation of omega-3 fatty acids: A review of microencapsula tion and characterization methods. J. Funct. Foods 2015, 19, 868–881. [Google Scholar] [CrossRef]
- Sartori, T.; Consoli, L.; Hubinger, M.D.; Menegalli, F.C. Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT Food Sci. Technol. 2015, 63, 353–360. [Google Scholar] [CrossRef]
- Microencapsulation Market (By Technology: Emulsion, Spray; By Application: Pharmaceutical, Home & Personal Care; By Coating Material)—Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022–2030.Vision Research Report, 2022–2030. Available online: https://www.visionresearchreports.com/ (accessed on 15 August 2023).
- Morales, P.; Barros, L.; Ramírez-Moreno, E.; Santos-Buelga, C.; Ferreira, I. Xoconostle fruit (Opuntia matudae Scheinvar cv. Rosa) by-products as potential functional ingredients. Food Chem. 2015, 185, 289–297. [Google Scholar] [CrossRef]
- Shui, G.; Leong, L.P. Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem. 2006, 97, 277–284. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turining pomegranate peels into a valuable food ingredient using ultrasound assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Rana, S.; Gupta, S.; Rana, A.; Bhushan, S. Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Sci. Hum. Wellness 2015, 4, 180–187. [Google Scholar] [CrossRef]
- Dietmar, R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Rabetafikaa, H.N.; Bchirb, B.; Bleckerb, C.; Richela, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Poli, A.; Anzelmo, G.; Fiorentino, G.; Nicolaus, B.; Tommonaro, G.; Di Donato, P. Polysaccharides from wastes of vegetable industrial processing: New opportunities for their eco-friendly re-use. In Biotechnology of Biopolymers; InTech Open: London, UK, 2011; Volume 365, pp. 33–56. [Google Scholar]
- Iguttia, A.M.; Pereira, A.C.I.; Fabiano, L.; Silva, R.A.F.; Ribeiro, E.P. Substitution of ingredients by green coconut (Cocos nucifera L.) pulp in ice cream formulation. Procedia Food Sci. 2011, 1, 1610–1617. [Google Scholar] [CrossRef]
- Gibbs, F.; Kermasha, S.; Inteaz, A.; Catherinem, N.; Mulligan, B. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar]
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- De Zarn, T.J. Food ingredient encapsulation. In Encapsulation and Controlled Release of Food Ingredients; Risch, S.J., Reineccius, G.A., Eds.; ACS Symposium Series 590; American Chemical Society: Washington, DC, USA, 1995; pp. 74–86. [Google Scholar]
- Kirby, C.J. Controlled delivery of functional food ingredients: Opportunities for liposomes in the food industry. Liposome Technol. 1993, 2, 215–232. [Google Scholar]
- Dias, M.I.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct. 2015, 6, 1035–1052. [Google Scholar] [CrossRef]
- Alvim, I.D.; Stein, M.A.; Koury, I.P. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci. Technol. 2016, 65, 689–694. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Kosaraju, S.L. Colon targeted delivery systems: Review of polysaccharides for encapsulation and delivery. Crit. Rev. Food Sci. Nutr. 2005, 45, 251–258. [Google Scholar] [CrossRef]
- Swisher, H.E.; Taylor, A.H. Encapsulation systems and their applications in the flavor industry. Food 1983, 5, 48–52. [Google Scholar]
- New RRC. Preparation of lipsomes. In Lipsomes, a Practical Approach; RCC New, Ed.; IRL Press: New York, NY, USA, 1993; pp. 33–104. [Google Scholar]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release—A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Chadha, S. Recent advances in nano-encapsulation technologies for controlled release of biostimulants and antimicrobial agents. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture; Woodhead Publishing: Cambridge, UK, 2021; pp. 29–55. [Google Scholar] [CrossRef]
- Okuro, P.K.; de Matos Junior, F.E.; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol. 2013, 51, 171. [Google Scholar]
- Priyanka; Kumar, K.; Teotia, D. A Comprehensive Review on Pharmaceutical Oral Dissolving Films. J. Drug Deliv. Ther. 2019, 9, 170–174. [Google Scholar] [CrossRef]
- Vilas, C.; Alonso, A.A.; Balsa-Canto, E.; López-Quiroga, E.; Trelea, I.C. Model-Based Real Time Operation of the Freeze-Drying Process. Processes 2020, 8, 325. [Google Scholar] [CrossRef]
- Goud, K.; Park, H.J. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar]
- Oxley, J.D. Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: Cambridge, UK, 2012; pp. 110–130. [Google Scholar]
- Mozafari, M.R.; Khosravi-Darani, K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 2008, 11, 833–844. [Google Scholar] [CrossRef]
- Ghychy, M.; Gareiss, J. Industrial preparation of liposomes for cosmetic products. In Proceedings of the Workshop on the Controlled Delivery of Consumer Products, Controlled Release Society, Mount Laurel, NJ, USA, 26–27 October 1993; pp. 21–23. [Google Scholar]
- Tyle, P.; Ritschel, W.A.; Banakar, U.V. Introduction to specialized drug delivery systems: From lab research to production. Drugs Pharm. Sci. 1990, 41, 3–36. [Google Scholar]
- Larisch, B.C. Microencapsulation of Lactococcus lactis subsp. cremoris for Application in the Dairy Industry. Master’s Thesis, McGill University, Montréal, QC, Canada, 1990. [Google Scholar]
- Luzzi, L.A.; Gerraughty, R.J. Effects of Selected Variables on the Extractability of Oils from Coacervate Capsules. J. Pharm. Sci. 1964, 53, 429–431. [Google Scholar] [CrossRef]
- Negi, P.S. Stability of phytochemicals at the point of sale. In Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; Central Food Technological Research Institute: Mysore, India, 2013; pp. 375–395. [Google Scholar] [CrossRef]
- Eghbal, N.; Choudhary, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT 2018, 90, 254–264. [Google Scholar] [CrossRef]
- Bakan, J.A. National CashRegister. U.S. Patent No. 3,436,355, 1 April 1969. [Google Scholar]
- Castro Islas, Y. Evaluación de la Protección de Diferentes Matrices de Almidón Modificado como Materiales Encapsulantes Durante la Extrusión Termoplástica de Compuestos de Sabor Encapsulados. 2014. Available online: https://tesis.ipn.mx/handle/123456789/13041 (accessed on 20 August 2023).
- Westing, L.L.; Reineccius, G.A.; Caporaso, F. Shelf Life of Orange Oil: Effects of Encapsulation by Spray-Drying, Extrusion, and Molecular Inclusion; American Chemical Society: Washington, DC, USA, 1988. [Google Scholar]
- Ayar, A.; Siçramaz, H.; Öztürk, S.; Yilmaz, S. Öztürk Probiotic properties of ice creams produced with dietary fibres from by-products of the food industry. Int. J. Dairy Technol. 2018, 71, 174–182. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of apple pomace on quality characteristics of brown rice based cracker. J. Saudi Soc. Agric. Sci. 2017, 16, 25–32. [Google Scholar] [CrossRef]
- Natukunda, S.; Muyonga, J.H.; Mukisa, I.M. Effect of tamarind (Tamarindus indica L.) seed on antioxidant activity, phytocompounds, physicochemical characteristics, and sensory acceptability of enriched cookies and mango juice. Food Sci. Nutr. 2015, 4, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.; Dorta, E.; Lobo, M.G.; González-Mendoza, L.A.; Díaz, C.; González, M. Use of banana (Musa acuminata Colla AAA) peel extract as an antioxidant source in orange juices. Plant Foods Hum. Nutr. 2017, 72, 60–66. [Google Scholar] [CrossRef]
- Ortiz, L.; Dorta, E.; Lobo, M.G.; González-Mendoza, L.A.; Díaz, C.; González, M. Use of banana peel extract to stabilise antioxidant capacity and sensory properties of orange juice during pasteurisation and refrigerated storage. Food Bioprocess Technologyl. 2017, 10, 1883–1891. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Čanadanović-Brunet, J.; Ćetković, G.; Šaponjac, V.T. Microencapsulates and extracts from red beetroot pomace modify antioxidant capacity, heat damage and colour of pseudocereals enriched einkorn water biscuits. Food Chem. 2018, 268, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Demirkol, M.; Tarakci, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.; Zeppa, G. Physico-chemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Costa, A.S.; Cunha, L.M. Effect of Touriga nacional grape extract on characteristics of mechanically deboned chicken meat kept under frozen storage. J. Food Process. Eng. 2017, 40, e12434. [Google Scholar] [CrossRef]
- Utpott, M.; Assis, R.Q.; Pagno, C.H.; Krigger, S.P.; Rodrigues, E.; Rios, A.d.O.; Flôres, S.H. Evaluation of the Use of Industrial Wastes on the Encapsulation of Betalains Extracted from Red Pitaya Pulp (Hylocereus polyrhizus) by Spray Drying: Powder Stability and Application. Food Bioprocess Technol. 2020, 13, 1940–1953. [Google Scholar] [CrossRef]
- Costa, C.; Lucera, A.; Marinelli, V.; Del Nobile, M.A.; Conte, A. Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. J. Food Sci. Technol. 2018, 55, 4174–4183. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, A.A.; Lanteri, S.; Perego, P. Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT Food Sci. Technol. 2015, 62, 376–383. [Google Scholar] [CrossRef]
- Kumar, V.; Kushwaha, R.; Goyal, A.; Tanwar, B.; Kaur, J. Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract. Food Chem. 2018, 245, 168–177. [Google Scholar] [CrossRef]
- Bobinaite, R.; Viskelis, P.; Bobinas, Č.; Mieželiene, A.; Alenčikiene, G.; Venskutonis, P.R. Raspberry marc extracts increase antioxidative potential, ellagic acid, ellagitannin and anthocyanin concentrations in fruit purees. LWT Food Sci. Technol. 2016, 66, 460–467. [Google Scholar] [CrossRef]
- Mutua, J.K.; Imathiu, S.; Owino, W.O. Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci. Nutr. 2017, 5, 349–357. [Google Scholar] [CrossRef]
- Ismail, T.; Akhtar, S.; Riaz, M.; Hameed, A.; Afzal, K.; Sheikh, A.S. Oxidative and Microbial Stability of Pomegranate Peel Extracts and Bagasse Supplemented Cookies. J. Food Qual. 2016, 39, 658–668. [Google Scholar] [CrossRef]
- Sandhya, S.; Khamrui, K.; Prasad, W.; Kumar, M. Preparation of pomegranate peel extract powder and evaluation of its effect on functional properties and shelf life of curd. LWT 2018, 92, 416–421. [Google Scholar] [CrossRef]
- Campos, D.A.; Coscueta, E.R.; Vilas-Boas, A.A.; Silva, S.; Teixeira, J.A.; Pastrana, L.M.; Pintado, M.M. Impact of functional flours from pineapple by-products on human intestinal microbiota. J. Funct. Foods 2020, 67, 103830. [Google Scholar] [CrossRef]
- Adiamo, O.Q.; Ghafoor, K.; Al-Juhaimi, F.; Babiker, E.E.; Ahmed, I.A.M. Thermosonication process for optimal functional properties in carrot juice containing orange peel and pulp extracts. Food Chem. 2018, 245, 79–88. [Google Scholar] [CrossRef]
- Amofa-Diatuo, T.; Anang, D.M.; Barba, F.J.; Tiwari, B.K. Development of new apple beverages rich in isothiocyanates by using extracts obtained from ultrasound-treated cauliflower by-products: Evaluation of physical properties and consumer acceptance. J. Food Compos. Anal. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chem. 2017, 233, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Hari, N.; Nair, A.J. Development and characterization of chitosan-based antimicrobial films incorporated with streptomycin loaded starch nanoparticles. NEW Horiz. Transl. Med. 2016, 3, 22–29. [Google Scholar] [CrossRef]
- Perrie, Y.; Rades, T. Pharmaceutics: Drug Delivery and Targeting; Pharmaceutical Press: London, UK, 2012. [Google Scholar]
- Boostani, S.; Jafari, S.M. Controlled release of nano encapsulated food ingredients. In Release and Bioavailability of Nano Encapsulated Food Ingredients; Academic Press: Cambridge, MA, USA, 2020; Volume 5, pp. 27–78. [Google Scholar]
- Isailović, B.D.; Kostić, I.T.; Zvonar, A.; Đorđević, V.B.; Gašperlin, M.; Nedović, V.A.; Bugarski, B.M. Resveratrol loaded liposomes produced by different techniques. Innov. Food Sci. Emerg. Technol. 2013, 19, 181–189. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Yamauchi, R.; Iwamoto, S. Stability of bioactive compounds from Thai Rice berry bran extract encapsulated within gelatin matrix during in vitro gastrointestinal digestion. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 136–142. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.; Wu, P.; Chen, X.D. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Ding, H. Modified-release drug products and drug devices. In Applied Biopharmaceutics & Pharmacokinetics; Shargel, L., Yu, A.B.C.Y., Eds.; McGraw-Hill Education: New York, NY, USA, 2016; Volume 7, pp. 569–613. [Google Scholar]
- Flores, F.P.; Kong, F. In Vitro Release Kinetics of Microencapsulated Materials and the Effect of the Food Matrix. Annu. Rev. Food Sci. Technol. 2017, 8, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Su, J.; Shu, X.; Yuan, F.; Mao, L.; Liu, J.; Gao, Y. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chem. 2021, 337, 128019. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef] [PubMed]
- Beltran, J.D.; Sandoval-Cuellar, C.E.; Bauer, K.; Quintanilla-Carvajal, M.X. In vitro digestion of high-oleic palm oil nanoliposomes prepared with unpurified soy lecithin: Physical stability and nano-liposome digestibility. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123603. [Google Scholar] [CrossRef]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, T.; Liu, J.; Tan, Y.; Bai, L.; Rojas, O.J.; McClements, D.J. Chitin nanocrystals reduce lipid digestion and β-carotene bio accessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocoll. 2021, 113, 106494. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Gonçalves, R.F.; Madalena, D.A.; Vicente, A.A. Towards the understanding of the behaviour of bio-based nanostructures during in vitro digestion. Curr. Opin. Food Sci. 2017, 15, 79–86. [Google Scholar] [CrossRef]
- Thuenemann, E.C.; Mandalari, G.; Rich, G.T.; Faulks, R.M. Dynamic Gastric Model (DGM). In The Impact of Food Bioactives on Health; Springer: Berlin/Heidelberg, Germany, 2015; pp. 47–59. [Google Scholar] [CrossRef]
- Visentini, F.F.; Ferrado, J.B.; Perez, A.A.; Santiago, L.G. Simulated gastrointestinal digestion of inclusion complexes based on ovalbumin nanoparticles and conjugated linoleic acid. Food Funct. 2019, 10, 2630–2641. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Sarkar, A. Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study. Food Funct. 2019, 10, 5498–5509. [Google Scholar] [CrossRef]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Barba, F.J., Saraiva, J.M.A., Cravotto, G., Lorenzo, J.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 23–54. [Google Scholar]
- Boostani, S.; Jafari, S.M. A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends Food Sci. Technol. 2021, 109, 303–321. [Google Scholar] [CrossRef]
- Dalmolin, L.F.; Khalil, N.M.; Mainardes, R. Delivery of vanillin by poly (lactic acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. Mater. Sci. Eng. C 2016, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Assad-Bustillos, M.; Palier, J.; Rabesona, H.; Choiset, Y.; Della Valle, G.; Feron, G. Role of the bolus degree of structure on the protein digestibility during in vitro digestion of a pea protein-fortified sponge cake chewed by elderly. J. Texture Stud. 2019, 51, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Bernela, M.; Kaur, P.; Chopra, M.; Thakur, R. Synthesis, characterization of nisin loaded alginate–chitosan–pluronic composite nanoparticles and evaluation against microbes. LWT 2014, 59, 1093–1099. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q. A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocoll. 2015, 43, 593–602. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M.L. Bio accessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Malaki, N.A.; Wright, A.J.; Corredig, M. Micellization of beta-carotene from soy-protein stabilized oil-in-water emulsions under in vitro conditions of lipolysis. J. Am. Oil Chem. Soc. 2011, 88, 1397–1407. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef]
- Bahrami, A.; Delshadi, R.; Jafari, S.M.; Williams, L. Nano encapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends Food Sci. Technol. 2019, 94, 20–31. [Google Scholar] [CrossRef]
- Parris, N.; Cooke, P.H.; Hicks, K.B. Encapsulation of essential oils in zein nano spherical particles. J. Agric. Food Chem. 2005, 53, 4788–4792. [Google Scholar] [CrossRef]
- Pujara, N.; Jambhrunkar, S.; Wong, K.Y.; McGuckin, M.; Popat, A. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. J. Colloid Interface Sci. 2017, 488, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Assadpour, E.; Mahdi Jafari, S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59, 3129–3151. [Google Scholar] [CrossRef] [PubMed]
- Morris, V. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 2011, 29, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Amenta, V.; Aschberger, K.; Arena, M.; Bouwmeester, H.; Moniz, F.B.; Brandhoff, M.P.; Gottardo, S.; Marvin, H.J.P.; Mech, A.; Pesudo, L.Q.; et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul. Toxicol. Pharmacol. 2015, 73, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Subramani, T.; Ganapathyswamy, H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020, 57, 3545–3555. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.; Gil-Izquierdo, Á.; García-Viguera, C.; Domínguez-Perles, R. Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New “Smart-Foods” for Health. Foods 2018, 7, 72. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rajakumar, G.; Chung, I.-M. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech 2018, 8, 74. [Google Scholar] [CrossRef]
- Altin, G.; Gültekin-Özgüven, M.; Ozcelik, B. Liposomal dispersion and powder systems for delivery of cocoa hull waste phenolics via Ayran (drinking yoghurt): Comparative studies on in-vitro bioaccessibility and antioxidant capacity. Food Hydrocoll. 2018, 81, 364–370. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, H.; Ru, Q. Bioavailability and Delivery of Nutraceuticals Using Nanotechnology. J. Food Sci. 2010, 75, R50–R57. [Google Scholar] [CrossRef]
- Morsy, M.K.; Mekawi, E.; Elsabagh, R. Impact of pomegranate peel nanoparticles on quality attributes of meatballs during refrigerated storage. LWT 2018, 89, 489–495. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Sharayei, P.; Azarpazhooh, E.; Ramaswamy, H.S. Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. J. Food Sci. Technol. 2020, 57, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Dehalu, V.; Weigel, S.; Rebe, S.; Grombe, R.; Löbenberg, R.; Delahaut, P. Production and characterization of antibodies against crosslinked gelatin nanoparticles and first steps toward developing an ELISA screening kit. Anal. Bioanal. Chem. 2012, 403, 2851–2857. [Google Scholar] [CrossRef]
- Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Jafari, S.M.; McClements, D.J. Chapter One—Nanotechnology Approaches for Increasing Nutrient Bioavailability; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 81, pp. 1–30. ISBN 1043-4526. [Google Scholar]
- McClements, D.J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Sci. Food 2017, 1, 6. [Google Scholar] [CrossRef]
- Wu, H.; Yin, J.-J.; Wamer, W.G.; Zeng, M.; Lo, Y.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 2014, 22, 86–94. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Design of Nano-Laminated Coatings to Control Bioavailability of Lipophilic Food Components. J. Food Sci. 2010, 75, R30–R42. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Martín-Belloso, O.; McClements, D.J. Excipient Nano emulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials 2016, 6, 17. [Google Scholar] [CrossRef]
- Badr, A.N.; Gromadzka, K.; Shehata, M.G.; Stuper-Szablewska, K.; Drzewiecka, K.; Abdel-Razek, A.G.; Youssef, M.M. Encapsulated Bioactive Ingredients of grape by-products applicate in fresh-cut fruit and juices diminished the ochratoxins. J. Food Process. Preserv. 2021, 45, e15112. [Google Scholar] [CrossRef]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef] [PubMed]
Technique | Major Steps in Encapsulation | Reference |
---|---|---|
Spray drying |
| [26,27] |
Spray chilling |
| [28] |
Spray cooling |
| [28] |
Extrusion |
| |
Fluidized bed coating |
| [28] |
Lyophilization |
| [29,30] |
Coacervation |
| [24,25] |
Centrifugal suspension separation |
| [25] |
Inclusion complexation |
| [31] |
Raw Materials | Waste Part | Value-Added Product | Improvements Reported in Functionality | References |
---|---|---|---|---|
Apple (Malus pumila) | Pomace | Gluten-free cracker Ice cream | Especially beneficial to celiac disease sufferers, these items are high in dietary fibre, antioxidants, and minerals. | [49,49] |
Tamarind (Tamarindus indica L.) | Seed | Cookies and mango juice | Natural antioxidants improve the nutritional benefits. | [50] |
Banana (Musa sp.) | Peel | Orange juice | Increased antioxidant activity | [51,52] |
Grapes (Vitis sp.) | Pomace | Yogurt cheese | Antioxidant capabilities, anti-inflammatory activities, anti-cancer properties, antibacterial qualities, and cardiovascular safety properties; | [53,54] |
Bread | support for type 2 diabetes, atherosclerosis, cancer, and cardiovascular disease prevention; | [55] | ||
Meat | Antioxidant properties; | [56] | ||
Cheese | Improved nutritional properties, sensory attributes like friability and adhesiveness | [57] | ||
Fermented milk | Natural antioxidants | [58] | ||
Beetroot (Beta vulgaris L.) | Pomace | Candy and biscuit | Rich in betalain, antioxidant, and phenolics Increased pathogen resistance, anti-inflammatory effect, and antioxidant activities | [59,60] |
Raspberry (Rubus idaeus) | Pomace | Fruit purees | Antioxidant, antimutagenic, anticarcinogenic, antibacterial, and antiviral properties | [61] |
Orange (Citrus sinensis) | Peel and pulp | Carrot juice | Improved functional quality and shelf life | [62] |
Mango (Mangifera indica) | Seed Kernel | Mango powder | Natural antibiotic and antifungal properties | [63] |
Pomegranate (Punica granatum L.) | Peel | Curd and cookies | Increase the anti-oxidative attributes and shelf life of the product Antioxidant, antimicrobial & nutraceutical properties | [64,65] |
Pineapple (Ananas comosus) | Peel and stems | Flour | Enhance the growth of good bacteria in the human microbiota, high antioxidant activity in human gut | [66] |
Tomato (Lycopersicon esculentum) | Peels and seeds | Butter | Extended shelf life of butter with antioxidant properties | [67] |
Cauliflower (Brassica oleracea var. botrytis) | Leaves and stem | Apple juice beverage | Anticarcinogenic properties | [68,69] |
Analysis | Methodologies |
---|---|
Intestinal absorption availability | In vitro: gastrointestinal static digestion models and gastrointestinal dynamic digestion models |
Pre-systemic metabolism and gastrointestinal absorption | In situ: intestinal perfusion in animals Ex vivo: gastrointestinal organs In vitro: cell culture (mainly Caco-2 cells) |
Gut microbiota and the availability of intestinal absorption | In vitro: microbial fermentation models |
Blood plasma bioactive chemical content | In vivo: rodents, rabbits, pigs and calves |
Product | Bioactive Components | Source | Encapsulation Technique | Reference |
---|---|---|---|---|
Juice and fruit salad | p-Coumaric and ferulic acids, epicatechin, and quercetin | Grape stem and leaf extracts | Microencapsulation | [107] |
Yogurt | Catechin, epicatechin, quercetin, ferulic acid, gallic acid, and p-coumaric acid | Cocoa hull waste | Liposomal systems | [90,108] |
Cupcakes | Betalains and polyphenols | Red pitaya peel and Pomegranate peel | Microencapsulation | [109] |
Beef meatballs | Polyphenols | Pomegranate peel | Nano-encapsulation | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borah, M.S.; Tiwari, A.; Sridhar, K.; Narsaiah, K.; Nayak, P.K.; Stephen Inbaraj, B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023, 12, 3823. https://doi.org/10.3390/foods12203823
Borah MS, Tiwari A, Sridhar K, Narsaiah K, Nayak PK, Stephen Inbaraj B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods. 2023; 12(20):3823. https://doi.org/10.3390/foods12203823
Chicago/Turabian StyleBorah, Mriganka Shekhar, Ajita Tiwari, Kandi Sridhar, Kairam Narsaiah, Prakash Kumar Nayak, and Baskaran Stephen Inbaraj. 2023. "Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds" Foods 12, no. 20: 3823. https://doi.org/10.3390/foods12203823
APA StyleBorah, M. S., Tiwari, A., Sridhar, K., Narsaiah, K., Nayak, P. K., & Stephen Inbaraj, B. (2023). Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods, 12(20), 3823. https://doi.org/10.3390/foods12203823