Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drying Methods
2.3. Chemical Analyses
2.3.1. Protein Content
2.3.2. Total Fat Content
2.3.3. Lipid Oxidation
2.3.4. Fatty Acids
2.3.5. Tocopherols and Retinol Content
2.3.6. Water Activity
2.4. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition
3.2. Tocopherols and Retinol
3.3. TBARS
3.4. Fatty Acid Profile
3.5. Matrix of Correlation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskander, M. Drying and salting fish using different methods and their effect on the sensory, chemical and microbial indices. Multidiscip. Rev. 2020, 3, 1–7. [Google Scholar]
- Akhter, S.; Rahman, M.S. Effects of drying as a preservation technique on nutrient contents of beef. J. Bangladesh Agric. Univ. 2010, 7, 63–68. [Google Scholar] [CrossRef]
- Mishra, B.; Mishra, J.; Pati, P.; Rath, P. Dehydrated Meat Products: A Review. Int. J. Livest. Res. 2017, 7, 10–22. [Google Scholar] [CrossRef]
- Chabbouh, M.; Ben Hadj Ahmed, S.; Farhat, A.; Sahli, A.; Bellagha, S. Studies on the salting step of Tunisian kaddid meat: Experimental kinetics, modeling and quality. Food Bioprocess Technol. 2012, 5, 1882–1895. [Google Scholar] [CrossRef]
- Hajji, W.; Bellagha, S.; Allaf, K. Energy-saving new drying technology: Interval starting accessibility drying (ISAD) used to intensify dehydrofreezing efficiency. Dry. Technol. 2020, 40, 284–298. [Google Scholar] [CrossRef]
- Akinneye, J.O.; Amoo, I.A.; Bakare, O.O. Effect of drying methods on the chemical composition of three species of fish (Bonga spp., Sardinella spp. and Heterotis niloticus). Afr. J. Biotechnol. 2010, 9, 4369–4373. [Google Scholar]
- Wazir, H.; Chay, S.Y.; Zarei, M.; Hussin, F.S.; Mustapha, N.A.; Wan Ibadullah, W.Z.; Saari, N. Effects of Storage Time and Temperature on Lipid Oxidation and Protein Co-Oxidation of Low-Moisture Shredded Meat Products. Antioxidants 2019, 8, 486. [Google Scholar] [CrossRef]
- Esturk, O. Intermittent and Continuous Microwave-Convective Air-Drying Characteristics of Sage (Salvia officinalis) Leaves. Food Bioprocess Technol. 2012, 5, 1664–1673. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1999. [Google Scholar]
- AOCS. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; AOCS Press: Urbana, IL, USA, 2005. [Google Scholar]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Tweed, J.K.S.; Kim, E.J.; Scollan, N.D. Beef, chicken and lamb fatty acid analysis—A simplified direct bimethylation procedure using freeze-dried material. Meat Sci. 2012, 92, 863–866. [Google Scholar] [CrossRef]
- Bertolín, J.R.; Joy, M.; Rufino-Moya, P.J.; Lobón, S.; Blanco, M. Simultaneous determination of carotenoids, tocopherols, retinol and cholesterol in ovine lyophilised samples of milk, meat, and liver and in unprocessed/raw samples of fat. Food Chem. 2018, 257, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Tibaoui, S.; Smeti, S.; Essid, I.; Bertolín, J.R.; Joy, M.; Atti, N. Physicochemical Characteristics, Fatty Acid Profile, Alpha-Tocopherol Content, and Lipid Oxidation of Meat from Ewes Fed Different Levels of Distilled Myrtle Residues. Molecules 2020, 25, 4975. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Ripoll, G.; Lobón, S.; Bertolín, J.R.; Casasús, I.; Joy, M. The Inclusion of Pea in Concentrates Had Minor Effects on the Meat Quality of Light Lambs. Animals 2021, 11, 2385. [Google Scholar] [CrossRef]
- Hampel, V.D.S.; Poli, C.H.E.C.; Devincenzi, T.; Pötter, L. Feeding systems and tocopherol level in the diet and their effects on the quality of lamb meat: A meta-analysis. Rev. Bras. Zootec. 2019, 48. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Popova, T.; Bermúdez, P.R.; Tolsdorf, A.; Geß, A.; Pires, J. Fatty acid composition of lamb meat from Italian and German local breeds. Small Rumin. Res. 2021, 200, 106384. [Google Scholar] [CrossRef]
- Gliguem, H.; Hajji, W.; Rekik, C.; Allaf, K.; Bellagha, S. Evaluating the Performances of Interval Starting Accessibility Drying (ISAD) through Protein and Total Polyphenol Contents of Blue Crabmeat (Portunus segnis). Processes 2021, 9, 1698. [Google Scholar] [CrossRef]
- Van Lieshout, G.A.; Lambers, T.T.; Bragt, M.C.; Hettinga, K. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2422–2445. [Google Scholar] [CrossRef]
- Ojha, K.S.; Granato, D.; Rajuria, G.; Barba, F.J.; Kerry, J.P.; Tiwari, B.K. Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chem. 2018, 239, 544–550. [Google Scholar] [CrossRef]
- Rao, W.; Wang, Z.; Shen, Q.; Li, G.; Song, X.; Zhang, D. LF-NMR to Explore Water Migration and Water-Protein Interaction of Lamb Meat Being Air Dried at 35 °C. Dry. Technol. 2017, 36, 366–373. [Google Scholar] [CrossRef]
- Rubio-Celorio, M.; Fulladosa, E.; Garcia-Gil, N.; Bertram, H.C. Multiple spectroscopic approach to elucidate water distribution and watereprotein interactions in dry-cured ham after high pressure processing. J. Food Eng. 2015, 169, 291–297. [Google Scholar] [CrossRef]
- Apata, E.S.; Osidibo, O.O.; Apata, O.C.; Okubanjo, A.O. Effects of Different Solar Drying Methods on Quality Attributes of Dried Meat Product (Kilishi). J. Food Res. 2013, 2, 80. [Google Scholar] [CrossRef]
- Lebret, B.; Picard, B. Les principales composantes de la qualité des carcasses et des viandes dans les différentes espèces animales. INRA Prod. Anim. 2015, 28, 93–98. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Brogna, N.; Canestrari, G.; Bonfante, E.; Eusebi, S.; Mammi, L.M.; Giaretta, E.; Formigoni, A. Effects of breed and different lipid dietary supplements on beef quality. Anim. Sci. J. 2019, 90, 619–627. [Google Scholar] [CrossRef]
- Thippareddi, H.; Sanchez, M. Thermal Processing of Meat Products. In Thermal Food Processing: New Technologies and Quality Issues; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- González-Calvo, L.; Ripoll, G.; Molino, F.; Calvo, J.H.; Joy, M. The relationship between muscle α-tocopherol concentration and meat oxidation in light lambs fed vitamin E supplements prior to slaughter. J. Sci. Food Agric. 2015, 95, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Bellés, M.; del Mar Campo, M.; Roncalés, P.; Beltrán, J.A. Supranutritional doses of vitamin E to improve lamb meat quality. Meat Sci. 2019, 149, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N. Vitamin E and fatty acid content of lamb meat from perennial pasture or annual pasture systems with supplements. Anim. Prod. Sci. 2012, 52, 255–262. [Google Scholar] [CrossRef]
- Sabliov, C.M.; Fronczek, C.; Astete, C.E.; Khachaturyan, M.; Khachatryan, L.; Leonardi, C. Effects of Temperature and UV Light on Degradation of α-Tocopherol in Free and Dissolved Form. J. Am. Oil Chem. Soc. 2009, 86, 895. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhuang, H.; Li, L.; Chen, X.; Zhang, J. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons. J. Food Sci. 2015, 80, C547–C555. [Google Scholar] [CrossRef]
- Teixeira, A.; Fernandes, A.; Pereira, E.; Manuel, A.; Rodrigues, S. Effect of salting and ripening on the physicochemical and sensory quality of goat and sheep cured legs. Meat Sci. 2017, 134, 163–169. [Google Scholar] [CrossRef]
- Dorg, S.; Tsagaan, A.; Sekikawa, M. Quality of dried meats from different livestock species. Mong. J. Agric. Sci. 2015, 15, 3. [Google Scholar] [CrossRef]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidative quality and shelf life of meats. Meat Sci. 1996, 43, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Aguirrezábal, M.M.; Mateo, J.; Domınguez, M.C.; Zumalacárregui, J.M. The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Sci. 2000, 54, 77–81. [Google Scholar] [CrossRef] [PubMed]
- De Lima, D.M., Jr.; do Nascimento Rangel, A.H.; Urbano, S.A.; Moreno, G.M.B. Oxidação Lipídica e Qualidade da Carne Ovina [Lipid oxidation and lamb meat quality]. Acta Vet. Bras. 2013, 7, 14–28. [Google Scholar]
- Amaral, A.; Silva, M.; Lannes, S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M. Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Sci. 2012, 92, 610–618. [Google Scholar] [CrossRef]
- Cooper, J.V.; Suman, S.P.; Wiegand, B.R.; Schumacher, L.; Lorenzen, C.L. Impact of Light Source on Color and Lipid Oxidative Stabilities from a Moderately Color-Stable Beef Muscle during Retail Display. Meat Muscle Biol. 2018, 2, 102. [Google Scholar] [CrossRef]
- Bader, R.; Becila, S.; Ruiz, P.; Djeghim, F.; Sanah, I.; Boudjellal, A.; Gatellier, P.; Portanguen, S.; Talon, R.; Leroy, S. Physicochemical and microbiological characteristics of El-Guedid from meat of different animal species. Meat Sci. 2021, 171, 108277. [Google Scholar] [CrossRef]
- Martinez-Cerezo, S.; Sañudo, C.; Panea, B.; Medel, I.; Delfa, R.; Sierra, I.; Beltrán, J.A.; Cepero, R.; Olleta, J.L. Breed, slaughter weight and ageing time effects on physico-chemical characteristics of lamb meat. Meat Sci. 2005, 69, 325–333. [Google Scholar] [CrossRef]
- Salvatori, G.; Pantaleo, L.; Di Cesare, C.; Maiorano, G.; Filetti, F.; Oriani, G. Fatty acid composition and cholesterol content of muscles as related to genotype and vitamin E treatment in crossbred lambs. Meat Sci. 2004, 67, 45–55. [Google Scholar] [CrossRef]
- Smeti, S.; Yagoubi, Y.; Srihi, H.; Lobón, S.; Bertolín, J.R.; Mahouachi, M.; Joy, M.; Atti, N. Effects of Using Rosemary Residues as a Cereal Substitute in Concentrate on Vitamin E, Antioxidant Activity, Color, Lipid Oxidation, and Fatty Acid Profile of Barbarine Lamb Meat. Animals 2021, 11, 2100. [Google Scholar] [CrossRef]
- Sampels, S.; Pickova, J.; Wiklund, E. Fatty acids, antioxidants and oxidation stability of processed reindeer meat. Meat Sci. 2004, 67, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Hamezah, H.S.; Jam, F.A.; Mahadi, N.F.; Chan, S.X.Y.; Rohani, E.R.; Lah, N.H.C.; Azlan, U.K.; Annuar, N.A.K.; Abas, F.; et al. A comprehensive review of drying meat products and the associated effects and changes. Front. Nutr. 2022, 9, 1057366. [Google Scholar] [CrossRef] [PubMed]
RM | Storage Time | Mode | Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
SD | ISAD | CCD | P Mode | P Time | P m × t | SEM | |||
Protein (g/kg DM) | 8.07 z | t = 0 | 6.44 w, a | 7.26 y, a | 6.55 wx, a | 0.0157 | 0.005 | 0.082 | 0.122 |
t = 45 | 6.98 wx, b | 7.27 x, a | 7.34 x, b | ||||||
IMF (g/kg DM) | 1.28 xy | t = 0 | 1.65 z, a | 1.20 xy, a | 1.50 yz, b | 0.0051 | 0.001 | 0.66 | 0.071 |
t = 45 | 1.33 xy, b | 0.91 w, ab | 1.04 wx, a |
RM | Storage Time | Mode | Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
SD | ISAD | CCD | P Mode | P Time | P m × t | SEM | |||
α-tocopherol | 9.74 y | t = 0 | 1.56 w, a | 7.11 x, b | 7.80 x, b | <0.0001 | <0.0001 | 0.0004 | 0.728 |
t = 45 | 1.19 y, a | 2.26 xy, a | 3.41 x, a | ||||||
ϒ-tocopherol | 0.55 x | t = 0 | 0.26 w, a | 0.21 w, a | 0.63 x, b | <0.0001 | 0.17 | 0.0008 | 0.034 |
t = 45 | 0.32 w, a | 0.29 w, a | 0.35 w, a | ||||||
δ-tocopherol | 0.16 z | t = 0 | 0.08 wx, a | 0.04 w, a | 0.13 y, b | 0.0048 | 0.49 | 0.0005 | 0.008 |
t = 45 | 0.09 y, a | 0.10 y, b | 0.09 y, a | ||||||
Retinol | 0.13 x | t = 0 | 0.04 w, a | 0.12 x, a | 0.20 y, b | <0.0001 | <0.0001 | <0.0001 | 0.013 |
t = 45 | 0.04 w, a | 0.09 x, a | 0.05 w, a |
RM | Storage Time | Mode | Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
Fatty Acids | SD | ISAD | CCD | P Mode | P Time | P m × t | SEM | ||
C14:0 | 2.93 x | t = 0 | 3.42 w, a | 3.74 w, a | 3.2 w, a | 0.044 | 0.390 | 0.911 | 0.09 |
t = 45 | 3.47 w, a | 3.94 w, a | 3.39 w, a | ||||||
C16:0 | 20.38 w | t = 0 | 22.54 x, a | 23.17 x, a | 20.79 w, a | 0.003 | 0.351 | 0.053 | 0.22 |
t = 45 | 22.39 w, a | 21.81 w, a | 21.42 w, a | ||||||
C16:1 9c | 1.439 wx | t = 0 | 1.912 x, a | 1.34 wx, a | 0.87 w, a | 0.223 | <0.0001 | 0.0001 | 0.14 |
t = 45 | 1.90 w, a | 1.95 w, a | 2.68 w, b | ||||||
C18:0 | 13.93 w | t = 0 | 11.77 w, a | 19.99 xy, b | 21.75 y, b | <0.0001 | <0.0001 | <0.0001 | 0.78 |
t = 45 | 12.51 w, a | 12.38 w, a | 11.70 w, a | ||||||
C18:1 9c | 30.34 x | t = 0 | 34.22 x, a | 29.51 wx, a | 25.72 w, a | 0.006 | 0.011 | 0.012 | 0.61 |
t = 45 | 33.50 w, a | 31.22 w, a | 33.15 w, b | ||||||
C18:1 11c | 0.97 w | t = 0 | 0.91 w, b | 1.24 x, b | 1.32 x, b | 0.0001 | <0.0001 | <0.0001 | 0.06 |
t = 45 | 0.82 w, a | 0.85 w, a | 0.72 w, a | ||||||
C18:2 n6 | 7.02 w | t = 0 | 4.89 x, a | 3.99 w, a | 4.86 x, a | 0.582 | 0.001 | 0.074 | 0.15 |
t = 45 | 5.24 x, a | 5.63 x, b | 5.41 x, b | ||||||
C18:3 n3 | 0.507 z | t = 0 | 0.339 x, a | 0.416 y, b | 0.290 w, a | <0.0001 | 0.07 | 0.0003 | 0.009 |
t = 45 | 0.360 w, a | 0.373 w, a | 0.360 w, b |
RM | Storage Time | Mode | Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
Fatty Acids Groups | SD | ISAD | CCD | P Mode | P Time | P m × t | SEM | ||
SFA | 43.31 w | t = 0 | 44.19 w, a | 54.06 x, b | 51.88 x, b | 0.0005 | <0.0001 | 0.0001 | 4.45 |
t = 45 | 44.65 w, a | 44.38 w, a | 43.12 w, a | ||||||
MUFA | 46.34 w | t = 0 | 48.39 w, a | 38.75 x, a | 41.11 x, a | 0.001 | <0.0001 | 0.0003 | 3.92 |
t = 45 | 47.32 w, a | 47.53 w, b | 48.69 w, b | ||||||
PUFA | 10.34 x | t = 0 | 7.42 w, a | 7.18 w, a | 7.01 w, a | 0.940 | 0.012 | 0.755 | 1.22 |
t = 45 | 8.03 w, a | 8.09 w, a | 8.18 w, a | ||||||
PUFA/SFA | 0.24 x | t = 0 | 0.16 w, a | 0.13 w, a | 0.13 w, a | 0.291 | 0.0002 | 0.094 | 0.38 |
t = 45 | 0.18 w, a | 0.18 w, b | 0.19 w, b | ||||||
n6/n3 | 9.64 x | t = 0 | 11.60 x, a | 6.12 w, a | 11.44 x, a | 0.002 | 0.030 | <0.0001 | 0.006 |
t = 45 | 10.33 w, a | 11.63 w, b | 10.14 w, a |
TBARS | α-toco | ϒ-toco | δ-toco | Retinol | Protein | IMF | SFA | MUFA | PUFA | PUFA/SFA | Storage Time | Mode | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TBARS | 1.000 | −0.692 | X | X | −0.681 | X | X | X | X | X | X | X | X |
α-toco | −0.692 | 1.000 | X | X | 0.867 | X | X | 0.595 | −0.668 | X | −0.597 | −0.503 | −0.616 |
ϒ-toco | X | X | 1.000 | 0.770 | X | X | X | X | X | X | X | X | X |
δ-toco | X | X | 0.770 | 1.000 | X | −0.499 | X | X | X | X | X | X | X |
retinol | −0.681 | 0.867 | X | 0.247 | 1.000 | X | X | 0.656 | −0.684 | X | −0.597 | X | −0.647 |
protein | X | X | X | −0.499 | X | 1.000 | −0.870 | X | X | 0.525 | X | 0.568 | −0.485 |
IMF | X | X | X | X | X | −0.870 | 1.000 | X | X | −0.602 | −0.516 | −0.610 | 0.616 |
SFA | X | 0.595 | X | X | 0.656 | X | X | 1.000 | −0.971 | X | −0.792 | −0.610 | X |
MUFA | X | −0.668 | X | X | −0.684 | X | X | −0.971 | 1.000 | X | 0.723 | 0.610 | X |
PUFA | X | X | X | X | X | 0.525 | −0.602 | X | X | 1.000 | 0.888 | 0.632 | X |
PUFA/SFA | X | −0.597 | X | X | −0.597 | X | −0.516 | −0.792 | 0.723 | 0.888 | 1.000 | 0.744 | X |
Storage Time | X | −0.503 | X | X | X | 0.568 | −0.610 | −0.610 | 0.610 | 0.632 | 0.744 | 1.000 | X |
Mode | X | −0.616 | X | X | −0.647 | −0.485 | 0.616 | X | X | X | X | X | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zioud, A.; Hajji, W.; Lobón, S.; Joy, M.; Bertolin, J.R.; Smeti, S.; Chabbouh, M.; Bellagha, S.; Essid, I. Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid. Foods 2023, 12, 3837. https://doi.org/10.3390/foods12203837
Zioud A, Hajji W, Lobón S, Joy M, Bertolin JR, Smeti S, Chabbouh M, Bellagha S, Essid I. Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid. Foods. 2023; 12(20):3837. https://doi.org/10.3390/foods12203837
Chicago/Turabian StyleZioud, Amira, Wafa Hajji, Sandra Lobón, Margalida Joy, Juan R. Bertolin, Samir Smeti, Meriem Chabbouh, Sihem Bellagha, and Ines Essid. 2023. "Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid" Foods 12, no. 20: 3837. https://doi.org/10.3390/foods12203837
APA StyleZioud, A., Hajji, W., Lobón, S., Joy, M., Bertolin, J. R., Smeti, S., Chabbouh, M., Bellagha, S., & Essid, I. (2023). Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid. Foods, 12(20), 3837. https://doi.org/10.3390/foods12203837