A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Lipid Extraction of Pracaxi Nuts by Supercritical Fluid Extraction (SFE-CO2)
2.4. Experimental Design for Extraction of Bioactive Compounds from Pracaxi Nuts Cake by Pressurized Liquid Extraction (PLE)
2.5. Chemical Characterization of Lipids Obtained by SFE-CO2 from Pracaxi Nuts
2.5.1. HPLC-CSH-Q-TOF MS/MS Analysis
2.5.2. GC-Q-TOF MS Analysis
2.6. Extraction Yield, Total Phenolic Content, and Total Flavonoid Content
2.7. ROS/RNS Scavenging Capacity, AChE/BChE, and LOX Inhibitory Activity in the Extracts Obtained by PLE from Pracaxi Nuts Cake
2.8. Chemical Characterization of Pracaxi Nuts Cake PLE Extracts Using HPLC-C18-Q-TOF MS/MS
3. Results and Discussion
3.1. Extraction Yield and Chemical Characterization of the Lipids Obtained by SFE-CO2 from Pracaxi Nuts
3.2. Optimization of Bioactive Compounds Extraction Conditions from Pracaxi Cake by PLE
3.3. Comparison between the Two PLE Optimum Conditions
3.4. Chemical Characterization of Extracts from Pracaxi Nuts Cake Obtained by PLE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diniz, M.B.; Teixeira, M.J.; Ferreira e Silva, A.L.; Cardoso de Barrios, M.L.; Ferreira Lima, E.B. Região Amazônica: Biodiversidade E Possibilidades De Transformação Industrial. Cad. CEPEC 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Nobre Lamarão, M.L.; Ferreira, L.M.M.C.; Gyles Lynch, D.; Morais, L.R.B.; Silva-Júnior, J.O.C.; Ribeiro-Costa, R.M. Pentaclethra macroloba: A Review of the Biological, Pharmacological, Phytochemical, Cosmetic, Nutritional and Biofuel Potential of This Amazonian Plant. Plants 2023, 12, 1330. [Google Scholar] [CrossRef] [PubMed]
- Péter, S.; Friedel, A.; Roos, F.F.; Wyss, A.; Eggersdorfer, M.; Hoffmann, K.; Weber, P. A Systematic Review of Global Alpha-Tocopherol Status as Assessed by Nutritional Intake Levels and Blood Serum Concentrations. Int. J. Vitam. Nutr. Res. 2015, 85, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Czapski, G.A.; Czubowicz, K.; Strosznajder, J.B.; Strosznajder, R.P. The Lipoxygenases: Their Regulation and Implication in Alzheimer’s Disease. Neurochem. Res. 2015, 41, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Pandey, S.N.; Singh, G.; Chander, B.; Gupta, G.; Saad, K.; Almalki, W.; Albratty, M.; Najmi, A.; Meraya, A.M. Therapeutic Approaches of Nutraceuticals in the Prevention of Alzheimer’s Disease. J. Food Biochem. 2022, 46, e14426. [Google Scholar] [CrossRef]
- Grodzicki, W.; Dziendzikowska, K. The Role of Selected Bioactive Compounds in the Prevention of Alzheimer’s Disease. Antioxidants 2020, 9, 229. [Google Scholar] [CrossRef]
- Roumani, M.; Duval, E.; Ropars, A.; Risler, A.; Robin, C.; Larbat, R. Phenolamides: Plant Specialized Metabolites with a Wide Range of Promising Pharmacological and Health-Promoting Interests. Biomed. Pharmacother. 2020, 131, 110762. [Google Scholar] [CrossRef] [PubMed]
- Polmann, G.; Badia, V.; Danielski, R.; Salvador, S.; Mara, J. Non-Conventional Nuts: An Overview of Reported Composition and Bioactivity and New Approaches for Its Consumption and Valorization of Co-Products. Futur. Foods 2021, 4, 100099. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Galvao, L.; Mazzutti, S.; Bernardo Gonçalves, C.; Salvador Ferreira, S.R.; Mara Block, J. Composition, Thermal Behavior and Antioxidant Activity of Pracaxi (Pentaclethra macroloba) Seed Oil Obtained by Supercritical CO2. Biocatal. Agric. Biotechnol. 2020, 24, 101521. [Google Scholar] [CrossRef]
- Pereira, E.; Cravo Ferreira, M.; AraújoSampaio, K.; Grimaldi, R.; de Almeida Meirelles, A.J.; Maximo, G.J. Physical Properties of Amazonian Fats and Oils and Their Blends. Food Chem. 2019, 278, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Cruz, E.; Demétrio Barros, H.S. Germinação de Sementes de Espécies Amazônicas: Pracaxi [Pentaclethra macroloba (Willd.) Kuntze]. Embrapa Comun. Téc. 2016, 269, 1–5. [Google Scholar] [CrossRef]
- Herrero, M.; Ibañez, E. Green Extraction Processes, Biorefineries and Sustainability: Recovery of High Added-Value Products from Natural Sources. J. Supercrit. Fluids 2018, 134, 252–259. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Herrero, M.; Sánchez-Camargo, A.d.P.; Cifuentes, A.; Ibáñez, E. Plants, Seaweeds, Microalgae and Food by-Products as Natural Sources of Functional Ingredients Obtained Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef]
- Catchpole, O.; Moreno, T.; Montañes, F.; Tallon, S. Perspectives on Processing of High Value Lipids Using Supercritical Fluids. J. Supercrit. Fluids 2018, 134, 260–268. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vandergheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Suárez-Montenegro, Z.J.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Study of the Potential Neuroprotective Effect of Dunaliella salina Extract in SH-SY5Y Cell Model. Anal. Bioanal. Chem. 2022, 414, 5357–5371. [Google Scholar] [CrossRef] [PubMed]
- Koşar, M.; Dorman, H.J.D.; Hiltunen, R. Effect of an Acid Treatment on the Phytochemical and Antioxidant Characteristics of Extracts from Selected Lamiaceae Species. Food Chem. 2005, 91, 525–533. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of Pressurized Liquid Extraction by Response Surface Methodology of Goji Berry (Lycium barbarum L.) Phenolic Bioactive Compounds. Electrophoresis 2018, 39, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibanez, E.; Cifuentes, A. In Vitro Neuroprotective Potential of Terpenes from Industrial Orange Juice By-Products. Food Funct. 2021, 12, 302–314. [Google Scholar] [CrossRef]
- Ho, S.; Tang, Y.; Lin, S.; Liew, Y. Evaluation of Peroxynitrite-Scavenging Capacities of Several Commonly Used Fresh Spices. Food Chem. 2010, 119, 1102–1107. [Google Scholar] [CrossRef]
- Whent, M.O.W.; Ping, T.; Kenworthy, W.; Yu, L. High-Throughput Assay for Detection of Soybean Lipoxygenase-1. J. Agric. Food Chem. 2010, 58, 12602–12607. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Suffredini, I.B.; Frana, S.A.; Santos, Á.M.M.; Díaz, I.E.C.; Bernardi, M.M. Pracaxi Impairs General Activity and Locomotion in Male Mice. Pharmacology 2017, 3, 91–104. [Google Scholar]
- Serra, J.L.; da Cruz Rodrigues, A.M.; Alves de Freitas, R.; de Almeida Meirelles, A.J.; Darnet, S.H.; Meller da Silva, L.H. Alternative Sources of Oils and Fats from Amazonian Plants: Fatty Acids, Methyl Tocols, Total Carotenoids and Chemical Composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Liebman, M. Oxalate Content of Legumes, Nuts, and Grain-Based Flours. J. Food Compos. Anal. 2005, 18, 723–729. [Google Scholar] [CrossRef]
- Ritter, M.M.C.; Savage, G.P. Soluble and Insoluble Oxalate Content of Nuts. J. Food Compos. Anal. 2007, 20, 169–174. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Comparative Study of Conventional and Pressurized Liquid Extraction for Recovering Bioactive Compounds from Lippia citriodora Leaves. Food Res. Int. 2018, 109, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants Traditionally Used in Age Related Brain Disorders—A Survey of Ethnobotanical Literature. J. Ethnopharmacol. 2007, 113, 363–381. [Google Scholar] [CrossRef]
- Suárez-Montenegro, Z.J.; Ballesteros-Vivas, D.; Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A.; Silva, M.F. Neuroprotective Potential of Tamarillo (Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front. Nutr. 2021, 8, 769617. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, H.M. Avaliação da Atividade Antioxidante e Otimização das Condições de Microencapsulação Por Spray Drying do Extrato Seco do Subproduto Agro-Industrial do Pracaxi (Pentaclethra macroloba Willd.). Master’s Thesis, Universidade Federal do Pará: Belém, Brazil, 2018. [Google Scholar]
- Silva da Costa, R.; Gabbay Alves, V.; Lopes da Silva, R.; de Meneses Costa, M. Agro-Industrial By-Products from Amazonian Fruits: Use for Obtaining Bioproducts. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; Intechopen: London, UK, 2021; pp. 1–20. [Google Scholar]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Porto, G.; Cabrita, E.J.; Marques, M.M.B.; Fernandes, E. Inhibition of LOX by Flavonoids: A Structure-Activity Relationship Study. Eur. J. Med. Chem. 2014, 72, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Cuenca, C.E.; Vincken, J.P.; Gruppen, H. Identification and Quantification of (Dihydro) Hydroxycinnamic Acids and Their Conjugates in Potato by UHPLC-DAD-ESI-MSn. Food Chem. 2012, 130, 730–738. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Zhao, X.; Xia, Y.; Sun, X.; Xie, W.; Ye, Y.; Lu, X.; Xu, G. Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry and Its in Silico Database. Anal. Chem. 2018, 90, 14321–14330. [Google Scholar] [CrossRef] [PubMed]
- Parr, A.J.; Mellon, F.A.; Colquhoun, I.J.; Davies, H.V. Dihydrocaffeoyl Polyamines (Kukoamine and Allies) in Potato (Solanum tuberosum) Tubers Detected during Metabolite Profiling. J. Agric. Food Chem. 2005, 53, 5461–5466. [Google Scholar] [CrossRef]
- Viana, F.A.; Braz-Filho, R.; Pouliquen, Y.B.M.; Andrade Neto, M.; Santiago, G.M.P.; Rodrigues-Filho, E. Triterpenoid Saponins from Stem Bark of Pentaclethra macroloba. J. Braz. Chem. Soc. 2004, 15, 595–602. [Google Scholar] [CrossRef]
- Rezgui, A.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Lacaille-Dubois, M.A. Oleanolic Acid and Hederagenin Glycosides from Weigela stelzneri. Phytochemistry 2016, 123, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-Inflammatory Activity of Saponins from Quinoa (Chenopodium quinoa Willd.) Seeds in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages Cells. J. Food Sci. 2014, 79, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
Sample | Temperature (°C) | Solvent Composition | Extraction Yield (%) | TPC (mg GAE/g) | ROS (IC50 μg/mL) | AChE (IC50 μg/mL) |
---|---|---|---|---|---|---|
1 | 115 | 50% EtOH | 12.2 | 147.5 ± 1.2 | 4.7 ± 0.3 | 334 ± 28 |
2 | 115 | 50% EtOH | 12.0 | 108.1 ± 4.4 | 3.0 ± 0.2 | 315 ± 32 |
3 | 180 | 50% EtOH | 17.4 | 167.4 ± 2.5 | 2.4 ± 0.1 | 247 ± 25 |
4 | 50 | 50% EtOH | 7.1 | 99.7 ± 1.2 | 11.3 ± 1.4 | 301 ± 16 |
5 | 115 | 100% water | 7.2 | 112.3 ± 4.4 | 5.5 ± 0.7 | 395 ± 48 |
6 | 180 | 100% water | 14.4 | 176.5 ± 2.1 | 1.9 ± 0.3 | 378 ± 28 |
7 | 115 | 100% EtOH | 17.9 | 116.6 ± 5.3 | 3.1 ± 0.2 | 1018 ± 126 |
8 | 115 | 50% EtOH | 13.7 | 134.9 ± 1.2 | 3.4 ± 0.4 | 320 ± 5 |
9 | 180 | 100% EtOH | 22.8 | 163.8 ± 9.2 | 2.7 ± 0.1 | 342 ± 25 |
10 | 115 | 50% EtOH | 14.0 | 144.8 ± 0.1 | 3.2 ± 0.3 | 352 ± 9 |
11 | 50 | 100% water | 3.5 | 75.0 ± 14.7 | 11.4 ± 1.2 | 629 ± 26 |
12 | 50 | 100% EtOH | 8.2 | 122.2 ± 3.2 | 3.0 ± 0.9 | 1071 ± 33 |
Sample | Extraction Yield (%) | TPC (mg GAE/g) | TFC (mg QE/g) | ROS (IC50 μg/mL) | RNS (IC50 μg/mL) | AChE (IC50 μg/mL) | BChE (IC50 μg/mL) | LOX (IC50 μg/mL) |
---|---|---|---|---|---|---|---|---|
PLE80 | 24.0 ± 3.0 * | 91.9 ± 0.9 | 6.6 ± 0.2 | 1.5 ± 1.0 | 2092 ± 217 | 276 ± 17 | 348 ± 25 * | 18.6 ± 1.0 |
PLE12.5 | 15.9 ± 1.8 | 103.9 ± 0.5 | 7.0 ± 0.1 * | 1.6 ± 1.0 | 2559 ± 331 | 315 ± 29 | 457 ± 38 | 14.9 ± 1.2 * |
Galantamine | 0.8 ± 0.1 | 3.1 ± 0.3 | ||||||
Quercetin | 12.2 ± 0.7 | |||||||
Ascorbic acid | 3.2 ± 0.2 | 1120 ± 16 |
No | Tentative Compound Name | Molecular Formula | HPLC-C18-Q-TOF MS ESI (+) | HPLC-C18-Q-TOF MS ESI (−) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RT | PLE80/PLE12.5 | RT | PLE80/PLE12.5 | |||||||
VIP | FC | p-Val | VIP | FC | p-Val | |||||
1 | Agmatine | C5H14N4 | 0.497 | 0.16 | 1.05 | 0.840 | ||||
2 | L-Arginine | C6H14N4O2 | 0.537 | 0.40 | 0.87 | 0.612 | ||||
3 | Serine | C3H7NO3 | 0.545 | 0.90 | 0.73 | 0.189 | ||||
4 | D-Asparagine | C4H8N2O3 | 0.552 | 0.52 | 0.61 | 0.482 | ||||
5 | Threonine | C4H9NO3 | 0.554 | 0.07 | 1.02 | 0.929 | ||||
6 | D-Arabinonic acid | C5H10O6 | 0.571 | 0.32 | 0.84 | 0.675 | ||||
7 | Galactonic acid | C6H12O7 | 0.572 | 0.18 | 0.90 | 0.811 | ||||
8 | Choline cation | C5H14NO | 0.585 | 0.01 | 1.00 | 0.997 | ||||
9 | D-Lyxose | C5H10O5 | 0.611 | 1.33 | 0.16 | 0.009 | ||||
10 | Glycerophosphocholine | C8H20NO6P | 0.616 | 1.39 | 0.46 | 0.007 | ||||
11 | L-Monomethylarginine | C7H16N4O2 | 0.618 | 0.78 | 0.82 | 0.284 | ||||
12 | 4-O-.beta.-Galactopyranosyl-D-mannopyranose | C12H22O11 | 0.634 | 0.66 | 0.91 | 0.379 | 0.639 | 0.58 | 0.94 | 0.428 |
13 | Trigonelline | C7H7NO2 | 0.650 | 1.20 | 0.82 | 0.054 | ||||
14 | 3-Hydroxypyridine | C5H5NO | 0.656 | 0.76 | 1.14 | 0.301 | ||||
15 | 5-Hydroxy-2-methylpyridine | C6H7NO | 0.673 | 0.85 | 0.84 | 0.236 | ||||
16 | Betaine | C5H11NO2 | 0.674 | 0.46 | 1.21 | 0.551 | ||||
17 | Malic acid | C4H6O5 | 0.677 | 0.82 | 1.18 | 0.242 | ||||
18 | Cadaverine | C5H14N2 | 0.678 | 1.44 | 2.69 | 0.002 | ||||
19 | His-Pro | C11H16N4O3 | 0.680 | 0.01 | 1.00 | 0.999 | ||||
20 | N-Methyl-L-leucine | C7H15NO2 | 0.681 | 1.31 | 32.87 | 0.021 | ||||
21 | D-Pyroglutamic acid | C5H7NO3 | 0.690 | 0.13 | 1.03 | 0.867 | ||||
22 | alpha-Cyclopropyl-3-pyridinemethanol | C9H11NO | 0.692 | 0.34 | 1.33 | 0.664 | ||||
23 | 3-Hydroxypicolinic acid | C6H5NO3 | 0.725 | 0.43 | 1.39 | 0.569 | ||||
24 | Succinic acid | C4H6O4 | 1.083 | 0.39 | 0.71 | 0.601 | ||||
25 | 2-Amino-2-methylpentanoic acid | C6H13NO2 | 1.135 | 0.12 | 1.07 | 0.883 | ||||
26 | 4-aminobutyrate | C4H9NO2 | 1.379 | 0.88 | 2.56 | 0.218 | ||||
27 | Itaconic acid | C5H6O4 | 1.788 | 0.12 | 0.95 | 0.876 | ||||
28 | Adenosine | C10H13N5O4 | 1.886 | 1.29 | 0.76 | 0.027 | ||||
29 | Guanosine | C10H13N5O5 | 1.969 | 0.23 | 0.88 | 0.766 | ||||
30 | N-(2,4-Dimethylphenyl)formamide | C9H11NO | 2.003 | 0.38 | 1.31 | 0.621 | ||||
31 | 4-Methyl-1H-benzimidazole | C8H8N2 | 2.055 | 1.22 | 2.42 | 0.048 | ||||
32 | L-Phenylalanine | C9H11NO2 | 2.079 | 0.97 | 0.56 | 0.164 | ||||
33 | 1,3-Dimethyl-1H-pyrazole-4-carbaldehyde | C6H8N2O | 2.361 | 0.22 | 1.11 | 0.778 | ||||
34 | 5-Hydroxymethylfurfural | C6H6O3 | 2.650 | 1.00 | 1.73 | 0.146 | ||||
35 | Catechol | C6H6O2 | 2.661 | 0.40 | 0.77 | 0.597 | ||||
36 | 5,6-Dimethylbenzimidazole | C9H10N2 | 2.712 | 0.55 | 1.54 | 0.475 | ||||
37 | L-Tryptophan | C11H12N2O2 | 2.846 | 0.03 | 1.03 | 0.974 | ||||
38 | N-Acetyl-DL-valine | C7H13NO3 | 3.014 | 0.14 | 1.09 | 0.860 | ||||
39 | N-L-amma-Glutamyl-L-leucine | C11H20N2O5 | 3.061 | 0.12 | 1.08 | 0.878 | 2.903 | 0.50 | 0.86 | 0.507 |
40 | 3,4-Dihydroxybenzaldehyde | C7H6O3 | 3.033 | 1.30 | 0.40 | 0.014 | ||||
41 | N-(3-(Aminomethyl)benzyl)acetamidine | C10H15N3 | 3.125 | 1.10 | 1.73 | 0.095 | ||||
42 | Diethyl L-glutamate | C9H17NO4 | 3.164 | 1.09 | 8.28 | 0.097 | ||||
43 | N-N′-bis-(dihydrocaffeoyl) spermidine-monoglucoside (+C6H10O5) | C31H45N3O11 | 3.766 | 0.73 | 1.76 | 0.320 | 3.604 | 1.29 | 3.37 | 0.016 |
44 | N-N′-bis-(dihydrocaffeoyl) spermidine isomer 1 | C25H35N3O6 | 4.013 | 0.70 | 0.85 | 0.350 | 3.657 | 0.96 | 1.69 | 0.152 |
45 | N-N′-bis-(dihydrocaffeoyl) spermidine-monoglucoside (+C5H8O4) | C30H43N3O10 | 4.096 | 1.45 | 0.34 | 0.001 | 3.726 | 1.31 | 0.41 | 0.013 |
46 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+CH2) | C26H37N3O6 | 4.148 | 1.30 | 3.37 | 0.024 | 3.763 | 1.40 | 8.70 | 0.001 |
47 | N-N′-bis-(dihydrocaffeoyl) spermidine isomer 2 | C25H35N3O6 | 4.230 | 0.88 | 3.40 | 0.214 | 3.891 | 0.56 | 1.72 | 0.452 |
48 | N-coumaroyl-N′-dihydrocaffeoyl spermidine | C25H33N3O5 | 4.231 | 1.24 | 3.46 | 0.040 | 3.840 | 1.06 | 2.42 | 0.099 |
49 | N-caffeoyl-N′-dihydrocaffeoyl spermidine-conjugate (+C5H2O) | C30H35N3O7 | 4.242 | 1.33 | 0.01 | 0.017 | 3.886 | 1.43 | 0.06 | 0.001 |
50 | N-caffeoyl-N′-dihydrocaffeoyl spermidine isomer 1 | C25H33N3O6 | 4.303 | 0.66 | 1.51 | 0.376 | 3.945 | 1.00 | 1.88 | 0.128 |
51 | N-N′-bis-(dihydrocaffeoyl) spermidine-monoglucoside (+C6H10O4) | C31H45N3O10 | 4.327 | 1.11 | 0.41 | 0.087 | ||||
52 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C2H4) | C27H39N3O6 | 4.334 | 1.10 | 5.49 | 0.093 | 3.964 | 1.01 | 8.35 | 0.123 |
53 | N-dihydrocoumaroyl-N′-dihydrocaffeoyl spermidine | C25H35N3O5 | 4.440 | 0.03 | 0.99 | 0.973 | 4.061 | 0.70 | 1.82 | 0.332 |
54 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H2) | C30H37N3O6 | 4.468 | 1.46 | 1.94 | 0.001 | ||||
55 | N-caffeoyl-N′-dihydrocaffeoyl spermidine isomer 2 | C25H33N3O6 | 4.519 | 0.74 | 1.68 | 0.315 | 4.167 | 0.89 | 4.82 | 0.193 |
56 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H6) | C29H41N3O6 | 4.538 | 1.05 | 37.36 | 0.117 | ||||
57 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H2O) isomer 1 | C30H37N3O7 | 4.634 | 0.85 | 0.69 | 0.236 | 4.313 | 0.21 | 1.16 | 0.785 |
58 | N-dihydroferuloyl-N′-dihydrocaffeoyl spermidine | C26H37N3O6 | 4.637 | 0.38 | 1.47 | 0.627 | 4.253 | 0.68 | 1.57 | 0.349 |
59 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H5N) | C29H40N4O6 | 4.679 | 1.39 | 1.73 | 0.006 | ||||
60 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H3N) | C29H38N4O6 | 4.763 | 0.83 | 0.76 | 0.253 | 4.374 | 0.81 | 0.66 | 0.248 |
61 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H6O2) | C29H41N3O8 | 4.834 | 1.24 | 2.50 | 0.038 | 4.425 | 1.41 | 12.75 | 0.001 |
62 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H5N) isomer 1 | C31H40N4O6 | 4.831 | 0.99 | 1.79 | 0.153 | ||||
63 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H9NO) | C31H44N4O7 | 4.888 | 1.11 | 1.27 | 0.090 | ||||
64 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H5N) | C30H40N4O6 | 4.941 | 0.40 | 1.08 | 0.611 | 4.560 | 0.60 | 1.46 | 0.415 |
65 | N-feruroyl-N′-dihydrocaffeoyl spermidine | C26H35N3O6 | 4.954 | 0.28 | 1.15 | 0.721 | 4.563 | 0.65 | 1.57 | 0.371 |
66 | N-dihydrocoumaroyl-N′-dihydrocaffeoyl spermidine conjugate (+C5H2O) | C30H37N3O6 | 5.065 | 1.19 | 0.42 | 0.056 | 4.719 | 0.99 | 0.49 | 0.136 |
67 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H3N) | C30H38N4O6 | 5.078 | 1.46 | 56.70 | 0.001 | 4.749 | 1.35 | 23.37 | 0.006 |
68 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C7H7N) | C32H42N4O6 | 5.136 | 1.30 | 0.64 | 0.022 | 4.738 | 1.00 | 0.47 | 0.126 |
69 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H8O2) | C30H43N3O8 | 5.190 | 1.40 | 1.83 | 0.005 | 4.796 | 1.24 | 2.45 | 0.030 |
70 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H7N) | C31H42N4O6 | 5.344 | 1.11 | 3.29 | 0.089 | 4.951 | 1.09 | 6.91 | 0.081 |
71 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H5N) isomer 2 | C31H40N4O6 | 5.351 | 1.41 | 2.27 | 0.004 | 4.984 | 0.91 | 4.54 | 0.181 |
72 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+CO) | C26H35N3O7 | 5.388 | 0.79 | 1.29 | 0.280 | 5.339 | 1.27 | 2.63 | 0.022 |
73 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H7N) | C33H42N4O6 | 5.395 | 1.14 | 0.59 | 0.076 | ||||
74 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H9N) isomer 1 | C33H44N4O6 | 5.543 | 1.35 | 2.39 | 0.013 | ||||
75 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C2H2O) | C27H37N3O7 | 5.563 | 1.46 | 0.61 | 0.001 | 5.511 | 0.97 | 0.80 | 0.147 |
76 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H2O3) | C29H37N3O9 | 5.747 | 1.06 | 3.21 | 0.113 | 5.697 | 1.00 | 4.37 | 0.127 |
77 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H9N) isomer 2 | C33H44N4O6 | 5.756 | 0.88 | 2.36 | 0.219 | ||||
78 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H4O5) | C31H39N3O11 | 5.824 | 1.34 | 4.68 | 0.016 | 5.783 | 1.24 | 5.50 | 0.029 |
79 | N-dihydrocoumaroyl-N′-dihydrocaffeoyl spermidine-conjugate (+C2H2O) | C27H37N3O6 | 6.058 | 1.48 | 0.33 | 0.001 | 6.010 | 1.35 | 0.50 | 0.006 |
80 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H6O3) | C33H41N3O9 | 6.160 | 1.18 | 7.49 | 0.061 | ||||
81 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H2O2) | C29H37N3O8 | 6.230 | 0.78 | 1.75 | 0.286 | 6.179 | 0.85 | 2.11 | 0.222 |
82 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C3H2O2) | C28H37N3O8 | 6.233 | 0.09 | 1.05 | 0.908 | 6.188 | 0.49 | 1.29 | 0.515 |
83 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H4O2) | C31H39N3O8 | 6.944 | 1.19 | 1.28 | 0.056 | 6.897 | 1.21 | 1.98 | 0.039 |
84 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H8O5) | C33H43N3O11 | 7.216 | 1.24 | 35.78 | 0.041 | 7.169 | 1.09 | 62.32 | 0.085 |
85 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H5N) isomer 3 | C31H40N4O6 | 7.359 | 1.14 | 3.39 | 0.077 | 7.423 | 1.11 | 4.03 | 0.073 |
86 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H2O2) | C30H37N3O8 | 7.610 | 1.27 | 5.69 | 0.031 | 7.562 | 1.14 | 7.82 | 0.063 |
87 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C5H2O) isomer 2 | C30H37N3O7 | 7.930 | 0.05 | 0.98 | 0.950 | 7.886 | 0.58 | 1.47 | 0.431 |
88 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C4H2) | C29H37N3O6 | 8.246 | 1.02 | 1.71 | 0.136 | 8.224 | 1.10 | 2.89 | 0.079 |
89 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C6H4O) | C31H39N3O7 | 8.257 | 0.71 | 0.78 | 0.337 | 8.234 | 0.17 | 1.06 | 0.822 |
90 | N-dihydrocoumaroyl-N′-dihydrocaffeoyl spermidine-conjugate (+C5H2O) | C30H37N3O6 | 8.278 | 1.07 | 0.56 | 0.109 | 8.254 | 0.53 | 0.79 | 0.472 |
91 | N-N′-bis-(dihydrocaffeoyl) spermidine-conjugate (+C8H8O2) | C33H43N3O8 | 8.452 | 0.69 | 1.78 | 0.359 | 8.437 | 0.73 | 2.00 | 0.309 |
92 | Hederagenin-tetraglucoside | C53H86O22 | 8.851 | 1.14 | 0.80 | 0.076 | 8.835 | 1.12 | 0.83 | 0.073 |
93 | Hederagenin-triglucoside | C47H76O17 | 8.952 | 1.10 | 0.80 | 0.092 | 8.936 | 0.74 | 0.91 | 0.300 |
94 | Hederagenin-diglucoside | C41H66O13 | 9.078 | 1.39 | 0.29 | 0.006 | 9.061 | 1.29 | 0.33 | 0.016 |
95 | Oleanolic acid-tetraglucoside | C53H86O21 | 9.199 | 1.28 | 0.78 | 0.028 | 9.180 | 1.33 | 0.90 | 0.009 |
96 | alpha-hederin | C41H66O12 | 9.245 | 0.90 | 0.86 | 0.207 | 9.247 | 1.04 | 0.95 | 0.106 |
97 | Oleanolic acid-triglucoside | C47H76O16 | 9.353 | 1.11 | 1.28 | 0.090 | 9.369 | 1.12 | 1.33 | 0.071 |
98 | Hederagenin-monoglucoside | C35H56O8 | 9.395 | 1.36 | 0.30 | 0.011 | 9.393 | 1.34 | 0.29 | 0.008 |
99 | Oleanolic acid-diglucoside | C41H66O12 | 9.566 | 1.31 | 0.37 | 0.021 | 9.543 | 1.17 | 0.49 | 0.051 |
100 | 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine | C44H84NO8P | 9.665 | 0.26 | 1.07 | 0.741 | ||||
101 | Beta-hederin | C41H66O11 | 9.732 | 0.09 | 0.97 | 0.906 | 9.767 | 0.75 | 1.12 | 0.292 |
102 | 1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine | C42H82NO8P | 9.816 | 0.48 | 1.26 | 0.532 | ||||
103 | Hederagenin | C30H48O4 | 9.835 | 1.48 | 0.11 | 0.001 | 9.823 | 1.41 | 0.16 | 0.001 |
104 | 1-Palmitoyl-sn-glycero-3-phosphocholine | C24H50NO7P | 9.852 | 0.40 | 0.57 | 0.611 | ||||
105 | Oleanolic acid-monoglucoside | C35H56O7 | 10.003 | 0.55 | 0.66 | 0.472 | 9.983 | 1.32 | 0.30 | 0.011 |
106 | Palmitoyl ethanolamide | C18H37NO2 | 10.581 | 1.30 | 0.40 | 0.023 | ||||
107 | 1-Oleoyl-sn-glycero-3-phosphocholine | C26H52NO7P | 10.689 | 0.19 | 1.41 | 0.808 | ||||
108 | N-Oleoylethanolamine | C20H39NO2 | 10.700 | 1.22 | 0.43 | 0.046 | ||||
109 | 16-Hydroxypalmitic acid | C16H32O3 | 10.566 | 1.31 | 0.38 | 0.013 | ||||
110 | Oleanolic acid | C30H48O3 | 10.701 | 1.47 | 0.09 | 0.000 | 10.686 | 1.39 | 0.21 | 0.002 |
111 | Triethylene glycol bis(2-ethylhexanoate) | C22H42O6 | 10.834 | 1.30 | 1.37 | 0.022 | ||||
112 | Diisodecyl phthalate | C28H46O4 | 12.202 | 1.48 | 7.96 | 0.000 | ||||
113 | Oleic acid | C18H34O2 | 11.195 | 1.07 | 0.85 | 0.092 | ||||
114 | Brassicasterol 3-monoglucoside | C34H56O6 | 11.708 | 1.40 | 0.09 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadnezhad, P.; Valdés, A.; Barrientos, R.E.; Ibáñez, E.; Block, J.M.; Cifuentes, A. A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach. Foods 2023, 12, 3879. https://doi.org/10.3390/foods12203879
Mohammadnezhad P, Valdés A, Barrientos RE, Ibáñez E, Block JM, Cifuentes A. A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach. Foods. 2023; 12(20):3879. https://doi.org/10.3390/foods12203879
Chicago/Turabian StyleMohammadnezhad, Pouya, Alberto Valdés, Ruth E. Barrientos, Elena Ibáñez, Jane Mara Block, and Alejandro Cifuentes. 2023. "A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach" Foods 12, no. 20: 3879. https://doi.org/10.3390/foods12203879
APA StyleMohammadnezhad, P., Valdés, A., Barrientos, R. E., Ibáñez, E., Block, J. M., & Cifuentes, A. (2023). A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach. Foods, 12(20), 3879. https://doi.org/10.3390/foods12203879