A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incubation Tests in Anaerobiosis and spCO2 Conditions
2.1.1. Microbiological Analysis and Yeast Biodiversity
2.1.2. Physicochemical Analysis
2.1.3. Sensory Analysis
2.2. Table Olive Processing Tests with spCO2
Scanning Electron Microscope (SEM) Observation
2.3. Low-Salt Packaging Trials with Table Olives Processed under spCO2 Conditions
2.3.1. Olive Pulp Biophenol Analysis
Preparation of Phenolic Extract
HPLC Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Incubation Tests in Anaerobiosis and spCO2
3.2. Table Olive Processing Tests with spCO2
3.3. Low-Salt Packaging Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Olive Council (IOC). Economic Affairs & Promotion Unit. World Table Olive Figures. 2022. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/#figures (accessed on 25 May 2023).
- Değirmencioğlu, N. Modern techniques in the production of table olives. In Products from Olive Tree; Boskou, D., Clodoveo, M.K., Eds.; IntechOpen: London, UK, 2016; p. 215. [Google Scholar]
- Johnson, R.L.; Mitchell, A.E. Reducing Phenolics Related to Bitterness Table Olives. J. Food Qual. 2018, 2018, 3193185. [Google Scholar] [CrossRef]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Ciafadini, G.; Zullo, B.A. Use of air-protected headspace to prevent yeast film formation on the brine of Leccino and Taggiasca black table olives processed in industrial-scale plastic barrels. Foods 2020, 9, 941. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, Y.; Guven, E.; Ozturk, A. Understanding the characteristics of oleuropein for table olive processing. J. Food Process Technol. 2014, 5, 1000328. [Google Scholar]
- Anagnostopoulos, D.A.; Tsaltas, D. Current status, recent advances, and main challenges on table olive fermentation: The present meets the future. Front. Microbiol. 2021, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Reducing Salt Intake in Populations: Report of a WHO Forum and Technical Meeting; WHO Document Publication Services: Geneva, Switzerland, 2007. Available online: https://www.who.int/dietphysicalactivity/Salt_Report_VC_april07.pdf (accessed on 10 July 2021).
- Chrysant, S.G. Effects of high salt intake on blood pressure and cardiovascular disease. The role of COX inhibitors. Clin. Cardiol. 2016, 39, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Us Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.2020. Available online: DietaryGuidelines.gov (accessed on 20 October 2023).
- European Parliament and Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. Eur. Union 2011, 304, 18–63. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R1169 (accessed on 25 May 2023).
- Penland, M.; Pawtowski, A.; Pioli, A.; Maillard, M.B.; Debaets, S.; Deutsch, S.M.; Coton, M. Brine salt concentration reduction and inoculation with autochthonous consortia: Impact on Protected Designation of Origin Nyons black table olive fermentation. J. Food Res. Int. 2022, 155, 111069. [Google Scholar] [CrossRef] [PubMed]
- Bautista Gallego, J.; Arroyo Lopez, F.N.; Romero Gil, V.; Rodríguez Gómez, F.; García García, P.; Garrido Fernández, A. Chloride salt mixture affect Gordal cv. green Spanish-style table olive fermentation. Food Microb. 2011, 28, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgiliis, C. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives. Food Microb. 2017, 63, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Zullo, B.A.; Ciafardini, G. Use of Slightly Pressurized Carbon Dioxide to Enhance the Antimicrobial Properties of Brines in Naturally Processed Black Table Olives. Microorganisms 2022, 10, 2049. [Google Scholar] [CrossRef] [PubMed]
- Haas, G.J.; Prescott, H.E.; Dudley, E.; Dik, R.; Hintlian, C.; Keane, L. Inactivation of microorganisms by carbon dioxide under pressure. J. Food Saf. 1989, 9, 253–265. [Google Scholar] [CrossRef]
- James, A.D.; Rajagopalan, K.; Syed, S.N.R. A review of effects of carbon dioxide on microbial growth and food quality. J. Food Prot. 1985, 48, 532–537. [Google Scholar]
- Wei, C.I.; Balabam, M.O.; Fernando, S.Y.; Peplow, A.J. Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella. J. Food Prot. 1991, 54, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Dong, J.; Yu, J.; Chang, Z.; Qian, Z.; Liu, M.; Huang, S.; Hu, X.; Liu, X.; Deng, J.; et al. A preliminary study about the influence of high hydrostatic pressure processing on the physic-chemical and sensorial properties of a cloudy wheat beer. J. Inst. Brew. 2016, 112, 462–467. [Google Scholar] [CrossRef]
- Huang, H.W.; Wu, S.J.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current status and future trends of high-pressure processing in food industry. Food Cont. 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Zullo, B.A.; Ciafardini, G. Differential microbial composition of monovarietal and blended extra virgin olive oil determines oil quality during storage. Microorganisms 2020, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- Garrido Fernández, A.; Fernández Diaz, M.J.; Adams, M.R. Table Olives: Production and Processing, 1st ed.; Chapman and Hall: London, UK, 1997. [Google Scholar]
- International Olive Council (IOC). (IOC/OT) MO No. 1/Rev. 3; IOC: Madrid, Spain, 2021. [Google Scholar]
- International Olive Council (IOC). Trade Standard Applying to Table Olives; IOC: Madrid, Spain, 2004; Available online: https://www.internationaloliveoil.org/wp-content/upload/2019/11/COI-OT-NC1-2004-Eng.pdf (accessed on 11 April 2023).
- Goh, E.L.C.; Hocking, A.D.; Stewart, C.M.; Buckle, K.E.; Graham, H.F. Baroprotective effect of increased solute concentration on yeasts and moulds during high pressure processing. Inn. Food Sci. Emer. Technol. 2007, 8, 535–542. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Schillinger, U.; Franz, C.M.A.P.; Nychas, G.J. Microbiological and biochemical profile of c.v. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 2008, 25, 348–358. [Google Scholar] [CrossRef] [PubMed]
Month | Total Yeasts (Log CFU mL−1) | Preeminent Yeast Species (%) | Total Bacteria (Log CFU mL−1) | Total Molds (Log CFU mL−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Anaerobiosis | SpCO2 | ∆ (%) 1 | Anaerobiosis | SpCO2 | Anaerobiosis | SpCO2 | Anaerobiosis | SpCO2 | |
1 | 4.67 ± 0.12 a | 1.85 ± 0.21 b | −60 | C.b. (100) | S.c. (63) C.b. (27) W.a. (8) G.a. (2) | 1.06 ± 0.50 | 0 2 | 1.50 ± 0.10 | 0 |
3 | 6.73 ± 0.02 a | 0.70 ± 0.01 b | −90 | C.b. (94) C.d. (6) | S.c. (50) C.b. (30) W.a. (20) | 0 | 0 | 0 | 0 |
6 | 6.43 ± 0.11 a | 4.29 ± 0.16 b | −33 | C.b. (95) Others (5) | S.c. (55) C.b. (25) N.m.(20) | 0 | 0 | 0 | 0 |
9 | 5.80 ± 0.11 a | 5.23 ± 0.20 a | −10 | P.m. (92) Others (8) | S.c. (92) Others (8) | 0 | 0 | 0 | 0 |
12 | 5.90 ± 0.15 a | 5.02 ± 0.10 a | −15 | P.m. (80) Others (20) | S.c. (90) Others (10) | 0 | 0 | 0 | 0 |
Parameters | Anaerobiosis | SpCO2 | ||
---|---|---|---|---|
Olive Brine | Olive Pulp | Olive Brine | Olive Pulp | |
pH | 4.27 ± 0.13 | n.d. 1 | 4.30 ± 0.23 | n.d. |
Acidity (g citric acid L−1) | 3.58 ± 0.28 b | n.d. | 4.45 ± 0.40 a | n.d. |
Acidity (g lactic acid L−1) | 4.63 ± 0.18 b | n.d. | 5.75 ± 0.20 a | n.d. |
NaCl (%, w v−1) | 4.70 ± 0.13 | 4.50 ± 0.25 | 4.19 ± 0.15 | 4.00 ± 0.10 |
Bitterness (K225) | n.d. | 2.51 ± 0.40 | n.d. | 2.54 ± 0.54 |
Total polar phenols 2 (mg CAE g−1) | 1.72 ± 0.09 c | 2.01 ± 0.05 b | 2.38 ± 0.11 a | 2.41 ± 0.06 a |
Gustatory and Olfactory Attributes | Anaerobiosis 1 | SpCO2 |
---|---|---|
Acid | 3 | 3 |
Salty | 3 | 3 |
Bitter | 4 | 4 |
Abnormal fermentation | 2 | 4 |
Musty | 3 | 3 |
Rancid | 2 | 3 |
Overall quality | 3 | 4 |
Month | UNINOCULATED | INOCULATED | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Citric Acid 1 | Citric Acid | |||||||||||
0.3% | 0.6% | 0.3% | 0.6% | |||||||||
Total Yeasts 2 | Predominant Yeast Species | Others 3 | Total Yeasts | Predominant Yeast Species | Others | Total Yeasts | Predominant Yeast Species | Others | Total Yeasts | Predominant Yeast Species | Others | |
3 | 5.78 ± 0.10 a | S.c. (76) 4 C.b. (24) | 0 5 | 3.10 ± 0.09 b | S.c. (60) C.b. (30) Others (10) | 0 | 5.04 ± 0.23 a | S.c. (100) | 0 | 5.47 ± 0.09 a | S.c. (100) | 0 |
6 | 5.74 ± 0.20 a | S.c. (60) C.b. (30) Others (10) | 0 | 4.80 ± 0.15 b | S.c. (70) C.b. (20) W.a. (10) | 0 | 5.73 ± 0.17 a | S.c. (100) | 0 | 5.68 ± 0.15 a | S.c. (100) | 0 |
9 | 6.21 ± 0.18 | S.c. (70) W.a. (15) Others (15) | 0 | 5.50 ± 0.21 | S.c. (60) W.a. (20) Others (20) | 0 | 6.42 ± 0.13 | S.c. (100) | 0 | 5.89 ± 0.19 | S.c. (100) | 0 |
12 | 5.60 ± 0.13 | S.c. (92) Z.m. (8) | 0 | 5.04 ± 0.06 | S.c. (90) Others (10) | 0 | 5.70 ± 0.15 | S.c. (100) | 0 | 6.06 ± 0.09 | S.c. (100) | 0 |
Month | UNINOCULATED | INOCULATED | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Citric Acid 1 | Citric Acid | |||||||||||
0.3% | 0.6% | 0.3% | 0.6% | |||||||||
Total Yeasts 2 | Predominant Yeast Species | Others 3 | Total Yeasts | Predominant Yeast Species | Others | Total Yeasts | Predominant Yeast Species | Others | Total Yeasts | Predominant Yeast Species | Others | |
3 | 4.05 ± 0.18 b | S.c. (70) 4 C.b. (20) Others (10) | 0 5 | 0 | - | 0 | 5.20 ± 0.08 a | S.c. (100) | 0 | 3.01 ± 0.20 c | S.c. (100) | 0 |
6 | 6.02 ± 0.20 a | S.c. (70) C.b. (30) | 0 | 0 | - | 0 | 5.60 ± 0.12 a | S.c. (100) | 0 | 3.90 ± 0.35 b | S.c. (100) | 0 |
9 | 6.19 ± 0.23 a | S.c. (80) Z.m. (20) | 0 | 3.50 ± 0.10 b | S.c. (60) C.b. (30) Others (10) | 0 | 5.93 ± 0.05 a | S.c. (100) | 0 | 4.06 ± 0.10 b | S.c. (100) | 0 |
12 | 5.20 ± 0.30 a | S.c. (80) Z.m. (15) C.b. (5) | 0 | 4.50 ± 0.12 b | S.c. (55) Z.m. (35) C.b. (10) | 0 | 5.82 ± 0.07 a | S.c. (100) | 0 | 4.62 ± 0.10 b | S.c. (100) | 0 |
Parameters | NaCl 6% | NaCl 11% | ||||||
---|---|---|---|---|---|---|---|---|
UNINOCULATED | INOCULATED | UNINOCULATED | INOCULATED | |||||
Citric Acid 1 | Citric Acid | Citric Acid | Citric Acid | |||||
0.3% | 0.6% | 0.3% | 0.6% | 0.3% | 0.6% | 0.3% | 0.6% | |
Brine pH | 4.39 ± 0.33 | 4.44 ± 0.15 | 4.32 ± 0.28 | 4.39 ± 0.18 | 4.36 ± 0.26 | 4.35 ± 0.22 | 4.31 ± 0.31 | 4.38 ± 0.11 |
Brine acidity (g citric acid L−1) | 3.05 ± 0.37 b | 5.29 ± 0.31 a | 3.55 ± 0.23 ab | 5.80 ± 0.29 a | 3.98 ± 0.39 ab | 5.10 ± 0.12 a | 3.52 ± 0.19 ab | 6.30 ± 0.05 a |
Brine NaCl (%) | 5.04 ± 0.28 b | 4.71 ± 0.24 b | 4.97 ± 0.20 b | 4.74 ± 0.21 b | 8.19 ± 0.41 a | 7.90 ± 0.23 a | 9.01 ± 0.36 a | 7.70 ± 0.47 a |
Olive pulp NaCl (%) | 4.09 ± 0.10 b | 3.82 ± 0.15 b | 3.60 ± 0.12 b | 3.43 ± 0.22 b | 7.72 ± 0.20 a | 7.45 ± 0.10 a | 7.60 ± 0.15 a | 7.01 ± 0.21 a |
Brine total polar phenols (mg CAE mL−1) | 2.01 ± 0.10 | 2.07 ± 0.05 | 2.04 ± 0.05 | 2.02 ± 0.01 | 2.10 ± 0.16 | 2.11 ± 0.04 | 2.02 ± 0.08 | 2.15 ± 0.01 |
Olive total polar phenols (mg CAE g−1 pulp) | 2.28 ± 0.06 | 2.30 ± 0.01 | 2.35 ± 0.07 | 2.38 ± 0.05 | 2.64 ± 0.01 | 2.70 ± 0.04 | 2.70 ± 0.03 | 2.75 ± 0.02 |
Parameters | NaCl 6% (w v−1) | NaCl 11% (w v−1) | ||||
---|---|---|---|---|---|---|
Original | Packaged | ∆ (%) 1 | Original | Packaged | ∆ (%) | |
Brine NaCl (%, w v−1) | 5.04 ± 0.28 b | 4.04 ± 0.07 c | −20 | 8.19 ± 0.41 a | 4.23 ± 0.11 c | −48 |
Pulp olive NaCl (%, w w−1) | 4.09 ± 0.02 c | 3.75 ± 0.27 c | −8 | 7.72 ± 0.20 a | 6.80 ± 0.36 b | −12 |
Whole olive NaCl (%, w w−1) | 2.86 ± 0.12 b | 2.63 ± 0.15 b | −8 | 5.40 ± 0.22 a | 4.76 ± 0.30 a | −12 |
Pulp olive biophenol 2: | ||||||
Hydroxytyrosol | 218 ± 12 ab | 153 ± 9 c | −30 | 248 ± 10 a | 201 ± 8 b | −19 |
Tyrosol | 22 ± 0.56 b | 20 ± 0.43 b | −9 | 30 ± 0.92 a | 30 ± 1 a | 0 |
Vanillic acid | 9 ± 0.10 ab | 8 ± 0.12 b | −11 | 13 ± 0.88 a | 12 ± 0.67 ab | −8 |
Hydroxytyrosol acetate | 0 | 0 | - | 17 ± 0.54 | 17 ± 0.87 | 0 |
p-Coumaric acid | <1 | <1 | 0 | <1 | <1 | 0 |
Decarboxymethyl oleuropein aglycone, oxidized dialdehyde form | 54 ± 9 a | 7 ± 0.30 c | −87 | 57 ± 8 a | 29 ± 0.76 b | −49 |
Decarboxymethyl oleuropein aglycone, dialdehyde form | <1 | <1 | 0 | 2 ± 0.10 | <1 | −55 |
Oleuropein | 6 ± 0.11 ab | 3 ± 0.09 b | −50 | 9 ± 0.17 a | 8 ± 0.12 a | −11 |
Oleuropein aglycone, dialdehyde form | <1 | <1 | 0 | 5 ± 0.06 | 4 ± 0.03 | −20 |
Tyrosol acetate | 19 ± 0.87 b | 7 ± 0.10 c | −63 | 26 ± 1 a | 20 ± 0.9 ab | −23 |
Decarboxymethyl ligstroside aglycone, dialdehyde form | 1 ± 0.01 | <1 | −10 | <1 | <1 | 0 |
Pinoresinol, 1-acetoxy- pinoresinol | 3 ± 0.08 b | 2 ± 0.01 b | −33 | 7 ± 0.07 a | 7 ± 0.10 a | 0 |
Cinnamic acid | 7 ± 0.0 a | 1 ± 0.01 b | −86 | 1 ± 0.00 b | 1 ± 0.01 b | 0 |
Oleuropein aglycone, aldehyde and hydroxylic form | 17 ± 0.87 ab | 15 ± 0.98 b | −12 | 24 ± 1 a | 24 ± 1 a | 0 |
Ligstroside aglycone, oxidised aldehyde and hydroxylic form | 3 ± 0.65 | 3 ± 0.26 | 0 | 4 ± 0.06 | 4 ± 0.15 | 0 |
Apigenin | 25 ± 2 b | 10 ± 1 c | −60 | 37 ± 0.97 a | 37 ± 2.0 a | 0 |
Methyl-luteolin | <1 | <1 | 0 | 3 ± 0.77 | 3 ± 0.86 | 0 |
Ligstroside aglycone, aldehyde and hydroxylic form | <1 | <1 | 0 | <1 | <1 | 0 |
Pulp olive total polar phenols (mg CAE g−1) | 2.28 ± 0.06 ab | 1.71 ± 0.02 b | −25 | 2.64 ± 0.01 a | 1.78 ± 0.02 b | −33 |
Gustatory and Olfactory Attributes | NaCl 6% (w v−1) | NaCl 11% (w v−1) | ||
---|---|---|---|---|
Original 1 | Packaged | Original | Packaged | |
Acid | 3 | 3 | 3 | 3 |
Salty | 3 | 4 | 1 | 2 |
Bitter | 4 | 4 | 3 | 3 |
Abnormal fermentation | 4 | 4 | 4 | 4 |
Musty | 4 | 4 | 4 | 4 |
Other defects | 4 | 4 | 4 | 4 |
Overall quality | 3 | 4 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciafardini, G.; Zullo, B.A. A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content. Foods 2023, 12, 3950. https://doi.org/10.3390/foods12213950
Ciafardini G, Zullo BA. A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content. Foods. 2023; 12(21):3950. https://doi.org/10.3390/foods12213950
Chicago/Turabian StyleCiafardini, Gino, and Biagi Angelo Zullo. 2023. "A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content" Foods 12, no. 21: 3950. https://doi.org/10.3390/foods12213950
APA StyleCiafardini, G., & Zullo, B. A. (2023). A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content. Foods, 12(21), 3950. https://doi.org/10.3390/foods12213950