Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WRS−PEC Complexes
2.3. Thermal Properties
2.4. Textural Properties
2.5. X-ray Diffraction (XRD) Analysis
2.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.7. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.8. In Vitro Digestibility
2.9. Statistical Analysis
3. Results
3.1. Thermal Properties
3.2. Texture Profile Analysis (TPA)
3.3. XRD Pattern Analysis
3.4. FTIR Analysis
3.5. Water Mobility and Distribution of WRS−PEC during Cold Storage
3.6. In Vitro Digestibility
3.7. Kinetics of Starch Hydrolysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, W.P.; Wang, Y.H.; Zhang, W.; Shi, Y.C.; Wang, D.H. Effect of ozone treatment on physicochemical properties of waxy rice flour and waxy rice starch. Int. J. Food Sci. Technol. 2015, 50, 744–749. [Google Scholar] [CrossRef]
- Li, J.H.; Yuan, Y.H.; Zhang, H.X.; Zou, F.X.; Tao, H.T.; Wang, N.; Guo, L.; Cui, B. Structural, physicochemical and long-term retrogradation properties of wheat starch treated using transglucosidase. Food Chem. 2022, 380, 132226. [Google Scholar] [CrossRef]
- Raigond, P.; Ezekiel, R.; Raigond, B. Resistant starch in food: A review. J. Sci. Food Agric. 2015, 95, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Palavecino, P.M.; Penci, M.C.; Ribotta, P.D. Impact of chemical modifications in pilot-scale isolated sorghum starch and commercial cassava starch. Int. J. Biol. Macromol. 2019, 135, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Mu, S.; Ji, X.; Zeng, C.; Yang, D.; Dai, L.; Duan, C.; Li, D. Structure, retrogradation and digestibility of waxy corn starch modified by a GtfC enzyme from Geobacillus sp. 12AMOR1. Food Biosci. 2022, 46, 101527. [Google Scholar] [CrossRef]
- BeMiller, J.N. Pasting, paste, and gel properties of starch-hydrocolloid combinations. Carbohydr. Polym. 2011, 86, 386–423. [Google Scholar] [CrossRef]
- Chen, S.; Qin, L.; Chen, T.; Yu, Q.; Chen, Y.; Xiao, W.H.; Ji, X.Y.; Xie, J.H. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int. J. Biol. Macromol. 2022, 207, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Liu, X.N.; Cao, Y.; Liu, S.C.; Deng, D.W.; Zhang, J.S.; Huang, G.H. Effects of xanthan and konjac gums on pasting, rheology, microstructure, crystallinity and in vitro digestibility of mung bean resistant starch. Food Chem. 2021, 339, 7. [Google Scholar] [CrossRef]
- Dobosz, A.; Sikora, M.; Krystyjan, M.; Lach, R.; Borczak, B. Influence of xanthan gum on the short- and long-term retrogradation of potato starches of various amylose content. Food Hydrocoll. 2020, 102, 105618. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhang, X.P.; Peng, S.W.; Liu, X.L.; Zhang, H.; Zhang, Y.Y. Controlling the digestibility and multi-level structure of waxy rice starch by complexation with Artemisia sphaerocephala Kracsh Gum. Food Hydrocoll. 2023, 145, 8. [Google Scholar] [CrossRef]
- Lin, D.; Ma, Y.; Qin, W.; Loy, D.A.; Chen, H.; Zhang, Q. The structure, properties and potential probiotic properties of starch-pectin blend: A review. Food Hydrocoll. 2022, 129, 107644. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Z.W.; Liu, J.H. Effects of Pectins with Different Structural and Conformational Characteristics on Gelatinization and Retrogradation of Corn Starch. Starch-Starke 2021, 73, 2100094. [Google Scholar] [CrossRef]
- Zhang, B.; Bai, B.; Pan, Y.; Li, X.M.; Cheng, J.S.; Chen, H.Q. Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chem. 2018, 264, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.H.; Xing, J.L.; Luo, X.H.; Zhang, H.; Yang, K.; Shao, X.F.; Chen, K.H.; Li, Y.A. Effects of Pectin on the Physicochemical Properties and Freeze-Thaw Stability of Waxy Rice Starch. Foods 2021, 10, 2419. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ren, F.; Zhang, Z.P.; Tong, Q.Y.; Rashed, M.M.A. Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 2015, 115, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.H.; Xing, J.L.; Zhang, H.; Luo, X.H.; Chen, Z.X. Electron beamirradiation as a tool for rice grain storage and its effects on the physicochemical properties of rice starch. Int. J. Biol. Macromol. 2020, 164, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.M.; Wang, R.R.; Li, J.W.; Xiao, W.H.; Rong, L.Y.; Yang, J.; Wen, H.L.; Xie, J.H. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocoll. 2021, 120, 8. [Google Scholar] [CrossRef]
- Zhai, Y.H.; Pan, L.H.; Luo, X.H.; Zhang, Y.W.; Wang, R.; Chen, Z.X. Effect of electron beam irradiation on storage, moisture and eating properties of high-moisture rice during storage. J. Cereal Sci. 2022, 103, 1–6. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Pan, L.H.; Xing, J.L.; Luo, X.H.; Li, Y.N.; Sun, D.L.; Zhai, Y.H.; Yang, K.; Chen, Z.X. Influence of Electron Beam Irradiation on the Moisture and Properties of Freshly Harvested and Sun-Dried Rice. Foods 2020, 9, 1139. [Google Scholar] [CrossRef]
- Goni, I.; GarciaAlonso, A.; SauraCalixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Maibam, B.D.; Chakraborty, S.; Nickhil, C.; Deka, S.C. Effect of Euryale ferox seed shell extract addition on the in vitro starch digestibility and predicted glycemic index of wheat-based bread. Int. J. Biol. Macromol. 2023, 226, 1066–1078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.H.; Zhong, Q.X. Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate. Food Hydrocoll. 2017, 72, 338–345. [Google Scholar] [CrossRef]
- Yang, H.; Tang, M.Q.; Wu, W.D.; Ding, W.P.; Ding, B.B.; Wang, X.D. Study on inhibition effects and mechanism of wheat starch retrogradation by polyols. Food Hydrocoll. 2021, 121, 9. [Google Scholar] [CrossRef]
- von Borries-Medrano, E.; Jaime-Fonseca, M.R.; Aguilar-Mendez, M.A. Starch-guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion. Food Chem. 2016, 194, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.K.; Wu, Z.W.; Hu, B.; Wang, W.; Ye, H.; Sun, Y.; Wang, X.Q.; Zeng, X.X. A new method for determining the relative crystallinity of chickpea starch by Fourier-transform infrared spectroscopy. Carbohydr. Polym. 2014, 108, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.Y.; Zhu, L.; Huang, J.; Li, L.Y.; Yang, Y.; Xu, Y.Q.; Wang, Y.B.; Wang, L.B. Effect of dandelion root polysaccharide on the pasting, gelatinization, rheology, structural properties and in vitro digestibility of corn starch. Food Funct. 2021, 12, 7029–7039. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Gong, S.; Gu, X.; Yu, Y.; Wu, J.; Wang, Z. Low and high methoxyl pectin lowers on structural change and digestibility of fried potato starch. LWT 2020, 132, 109853. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.Q.; Tong, Q.Y.; Zhang, Z.P.; Jin, Z.Y. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chem. 2017, 214, 702–709. [Google Scholar] [CrossRef]
- Matignon, A.; Tecante, A. Starch retrogradation: From starch components to cereal products. Food Hydrocoll. 2017, 68, 43–52. [Google Scholar] [CrossRef]
- Ge, Z.Z.; Wang, W.J.; Gao, S.S.; Xu, M.Y.; Liu, M.P.; Wang, X.Y.; Zhang, L.H.; Zong, W. Effects of konjac glucomannan on the long-term retrogradation and shelf life of boiled wheat noodles. J. Sci. Food Agric. 2021, 102, 644–652. [Google Scholar] [CrossRef]
- Ma, Y.; Pan, Y.; Xie, Q.; Li, X.; Zhang, B.; Chen, H. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019, 274, 319–323. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.; Zhang, Z.; Tong, Q.; Sun, B.; Rashed, M.M.A.; Jin, Z. Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocoll. 2017, 63, 383–390. [Google Scholar] [CrossRef]
- Bai, Y.M.; Wu, P.; Wang, K.; Li, C.; Li, E.P.; Gilbert, R.G. Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocoll. 2017, 69, 10–18. [Google Scholar] [CrossRef]
PEC Concentration | ΔHr(J/g) | ||
---|---|---|---|
(%) | 7 d | 14 d | 21 d |
0 | 3.31 ± 0.01 a | 6.05 ± 0.03 a | 6.37 ± 0.02 a |
2 | 2.56 ± 0.01 b | 5.76 ± 0.02 b | 5.98 ± 0.06 b |
4 | 2.23 ± 0.13 c | 5.27 ± 0.01 c | 5.56 ± 0.07 c |
6 | 2.10 ± 0.01 d | 5.07 ± 0.02 d | 5.21 ± 0.08 d |
8 | 1.88 ± 0.01 e | 4.88 ± 0.02 e | 5.03 ± 0.04 e |
10 | 1.71 ± 0.01 f | 4.18 ± 0.02 f | 4.29 ± 0.03 f |
PEC Concentration (%) | (1047/1022) cm−1 | (1022/995) cm−1 |
---|---|---|
0 | 0.54 ± 0.01 a | 0.77 ± 0.01 e |
2 | 0.52 ± 0.00 b | 0.82 ± 0.01 d |
4 | 0.50 ± 0.01 c | 0.84 ± 0.01 d |
6 | 0.48 ± 0.00 c | 0.87 ± 0.01 c |
8 | 0.46 ± 0.01 d | 0.92 ± 0.02 b |
10 | 0.44 ± 0.01 e | 0.97 ± 0.01 a |
Storage Time (d) | PEC Concentration (%) | T(ms) | A(%) | ||||
---|---|---|---|---|---|---|---|
T21 | T22 | T23 | A21 | A22 | A23 | ||
0 | 0 | 11.79 ± 0.93 a | 811.13 ± 0.00 a | N.D. | 1.9 ± 0.02 d | 98.1 ± 0.05 b | N.D. |
2 | 10.26 ± 0.81 c | 740.69 ± 23.22 c | N.D. | 2.1 ± 0.01 c | 97.9 ± 0.24 | N.D. | |
6 | 8.92 ± 0.70 de | 644.22 ± 5.23 e | N.D. | 2.2 ± 0.01 b | 97.8 ± 0.21 | N.D. | |
10 | 8.11 ± 0.00 e | 613.59 ± 0.00 fg | N.D. | 2.4 ± 0.03 a | 97.6 ± 0.17 | N.D. | |
7 | 0 | 10.73 ± 0.00 b | 775.91 ± 31.00 b | N.D. | 1.7 ± 0.01 e | 98.3 ± 0.13 a | N.D. |
2 | 9.80 ± 0.81 c | 674.85 ± 53.05 e | N.D. | 2.0 ± 0.11 c | 98.0 ± 0.05 bc | N.D. | |
6 | 8.52 ± 0.70 de | 613.59 ± 0.00 fg | N.D. | 2.1 ± 0.05 c | 97.9 ± 0.03 c | N.D. | |
10 | 7.76 ± 0.11 f | 586.95 ± 46.12 g | N.D. | 2.2 ± 0.02 b | 97.8 ± 0.12 cd | N.D. | |
14 | 0 | 9.33 ± 0.00 cd | 705.48 ± 0.00 d | 2154.43 ± 92.51 a | 1.4 ± 0.05 h | 98.1 ± 0.04 b | 0.4 ± 0.01 b |
2 | 8.11 ± 0.00 e | 644.22 ± 43.06 e | N.D. | 1.8 ± 0.09 d | 98.3 ± 0.18 a | N.D. | |
6 | 7.06 ± 0.00 g | 560.31 ± 34.22 g | N.D. | 1.9 ± 0.03 d | 98.1 ± 0.22 ab | N.D. | |
10 | 6.14 ± 0.00 i | 533.67 ± 0.00 hi | N.D. | 2.2 ± 0.04 b | 98.0 ± 0.14 bc | N.D. | |
21 | 0 | 6.75 ± 0.53 h | 613.59 ± 0.00 fg | 1873.82 ± 93.35 b | 1.1 ± 0.03 i | 98.0 ± 0.12 bc | 0.9 ± 0.03 a |
2 | 6.44 ± 0.46 h | 510.50 ± 36.21 i | 1629.75 ± 98.96 c | 1.5 ± 0.02 g | 98.2 ± 0.02 b | 0.3 ± 0.04 c | |
6 | 5.34 ± 0.00 j | 464.16 ± 0.00 j | N.D. | 1.6 ± 0.11 f | 98.4 ± 0.12 a | N.D. | |
10 | 4.64 ± 0.00 k | 423.85 ± 30.36 k | N.D. | 1.8 ± 0.08 d | 98.2 ± 0.17 b | N.D. |
PEC Concentration (%) | RDS | SDS | RS |
---|---|---|---|
0 | 64.31 ± 0.26 a | 20.11 ± 0.35 b | 15.75 ± 0.09 e |
2 | 63.53 ± 0.14 a | 20.25 ± 0.05 b | 16.03 ± 0.1 e |
4 | 59.29 ± 0.35 b | 20.9 ± 0.26 ab | 19.81 ± 0.62 d |
6 | 57.04 ± 0.49 c | 21.65 ± 0.31 a | 21.31 ± 0.18 c |
8 | 54.81 ± 0.43 d | 21.78 ± 0.24 a | 23.4 ± 0.19 b |
10 | 51.61 ± 0.18 e | 21.87 ± 0.44 a | 26.52 ± 0.62 a |
PEC Concentration (%) | C∞ | k | R2 | eGI |
---|---|---|---|---|
0 | 82.31 ± 1.82 a | 0.073 ± 0.006 a | 0.9776 | 85.25 ± 1.75 a |
2 | 80.88 ± 2.06 ab | 0.069 ± 0.007 ab | 0.9718 | 84.25 ± 1.96 ab |
4 | 78.54 ± 2.25 b | 0.065 ± 0.007 ab | 0.9694 | 82.73 ± 2.14 b |
6 | 77.51 ± 2.11 bc | 0.061 ± 0.006 ab | 0.9736 | 81.90 ± 1.98 bc |
8 | 74.75 ± 1.83 c | 0.060 ± 0.006 b | 0.9788 | 80.33 ± 1.69 c |
10 | 71.84 ± 1.52 c | 0.056 ± 0.004 b | 0.9850 | 78.47 ± 1.38 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Zhang, H.; Xing, J.; Sang, S.; Zhan, X.; Liu, Y.; Jia, L.; Li, J.; Luo, X. Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods 2023, 12, 3981. https://doi.org/10.3390/foods12213981
Zhai Y, Zhang H, Xing J, Sang S, Zhan X, Liu Y, Jia L, Li J, Luo X. Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods. 2023; 12(21):3981. https://doi.org/10.3390/foods12213981
Chicago/Turabian StyleZhai, Yuheng, Hao Zhang, Jiali Xing, Shangyuan Sang, Xinyan Zhan, Yanan Liu, Lingling Jia, Jian Li, and Xiaohu Luo. 2023. "Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin" Foods 12, no. 21: 3981. https://doi.org/10.3390/foods12213981
APA StyleZhai, Y., Zhang, H., Xing, J., Sang, S., Zhan, X., Liu, Y., Jia, L., Li, J., & Luo, X. (2023). Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods, 12(21), 3981. https://doi.org/10.3390/foods12213981