Application of Coating Chitosan Derivatives (N,O–Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Solution Preparation
2.3. Film Preparation
2.4. Coating Processing and Storing Application of NL Ginseng
2.5. Characterizations
2.5.1. Viscosity
2.5.2. pH
2.5.3. Fourier-Transform Infrared Spectroscopy
2.5.4. Tensile Strength
2.5.5. Morphology
2.5.6. Weight Loss
2.5.7. Skin Lightness
2.5.8. Sensory Evaluation
2.5.9. The Total Phytochemical Components
2.5.10. Statistical Analysis
3. Results
3.1. Analysis of Coating Solutions
3.1.1. Chemical Functional Groups
3.1.2. pH
3.1.3. Viscosity and Film-Forming Capability
3.2. Analysis of Film’s Characteristics
3.2.1. Morphology Property
3.2.2. Mechanical Property
3.3. Preservation Results of NL Ginseng
3.3.1. Appearance of NL Ginseng after Preservation
3.3.2. Skin Lightness and Weight Loss of NL Ginseng during Preservation
3.3.3. Sensory Evaluation of NL Ginseng during Preservation
3.3.4. Phytochemical Components of NL Ginseng during Preservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Le, T.H.; Lee, G.J.; Vu, H.K.L.; Kwon, S.W.; Nguyen, N.K.; Park, J.H.; Nguyen, M.D. Ginseng saponins in different parts of Panax vietnamensis. Chem. Pharm. Bull. 2015, 63, 950–954. [Google Scholar] [CrossRef]
- Chu, V.M.; Vu, T.A. Effects of elicitors on the growth and active compounds of Panax vietnamensis cells in the bioreactor. Vietnam J. Sci. Technol. Eng. 2017, 59, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Lieu, M.D.; Nguyen, T.T.L.; Nguyen, T.H.; Dang, T.K.T.; Do, D.G. Influence of extraction methods on bioactive compounds from ngoc linh ginseng callus. Food Res. 2021, 5, 334–341. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Phuong, T.T. Vietnamese ginseng (Panax vietnamensis Ha and Grushv.): Phylogenetic, Phytochemical, and Pharmacological Profiles. Pharmacogn. Rev. 2019, 13, 59–62. [Google Scholar] [CrossRef]
- Dela Peña, I.J.I.; Kim, H.J.; Botanas, C.J.; De La Peña, J.B.; Van Le, T.H.; Nguyen, M.D.; Park, J.H.; Cheong, J.H. The psychopharmacological activities of Vietnamese ginseng in mice: Characterization of its psychomotor, sedativeehypnotic, antistress, anxiolytic, and cognitive effects. J. Ginseng Res. 2017, 41, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Le Tran, Q.; Adnyana, I.K.; Tezuka, Y.; Nagaoka, T.; Tran, Q.K.; Kadota, S. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity. J. Nat. Prod. 2001, 64, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Nguyen, H.T.; Win, N.; Wong, C.P.; Huynh, K.L.V.; Hoang, N.N.; Do, K.M.; Nguyen, H.T.; Ho, D.V.; Nguyen, M.D. Antimelanogenic activity of ocotillol-type saponins from Panax vietnamensis. Chem. Biodivers. 2020, 17, e2000037. [Google Scholar]
- Konoshima, T.; Takasaki, M.; Tokuda, H.; Nishino, H.; Duc, N.M.; Kasai, R.; Yamasaki, K. Anti-tumor-promoting Activity of Majonoside-R2 from Vietnamese ginseng, Panax vietnamensis HA et GRUSHV. (I). Biol. Pharm. Bull. 1998, 21, 834–838. [Google Scholar] [CrossRef]
- Konoshima, T.; Takasaki, M.; Ichiishi, E.; Murakami, T.; Tokuda, H.; Nishino, H.; Duc, N.M.; Kasai, R.; Yamasaki, K. Cancer chemopreventive activity of majonoside-R2 from Vietnamese ginseng, Panax vietnamensis. Cancer Lett. 1999, 147, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Villard, P.H.; Barlatier, A.; Elsisi, A.E.; Jouve, E.; Duc, N.M.; Sauze, C.; Durand, A.; Lacarelle, B. Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med. 2000, 66, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Le Tran, Q.; Adnyana, I.K.; Tezuka, Y.; Harimaya, Y.; Saiki, I.; Kurashige, Y.; Tran, Q.K.; Kadota, S. Hepatoprotective effect of majonoside R2, the major saponin from Vietnamese ginseng (Panax vietnamensis). Planta Med. 2002, 68, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Huong, N.T.T.; Matsumoto, K.; Yamasaki, K.; Duc, N.M.; Nham, N.T.; Watanabe, H. Crude saponin extracted from Vietnamese ginseng and its major constituent majonoside-R2 attenuate the psychological stress-and foot-shock stress-induced antinociception in mice. Pharmacol. Biochem. Behav. 1995, 52, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.Z.; Huang, M.; Niemira, B.A.; Cheng, L. Microbial Reduction and Sensory Quality Preservation of Fresh Ginseng Roots Using Nonthermal Processing and Antimicrobial Packaging. J. Food Process. Preserv. 2017, 41, e12871. [Google Scholar] [CrossRef]
- Hu, W.Z.; Jiang, A.L.; Qi, H.P. Physiological behavior and quality of fresh ginseng stored in modified atmospheres generated by several package films. J. Food Sci. Technol. 2014, 51, 3862–3869. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Le, L.; Nguyen, P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Jiang, W. Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. [Google Scholar] [CrossRef]
- Sucharitha, K.V.; Beulah, A.M.; Ravikiran, K. Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill). Int. Food Res. J. 2018, 25, 93–99. [Google Scholar]
- Petriccione, M.; De Sanctis, F.; Pasquariello, M.S.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Mencarelli, F. The Effect of Chitosan Coating on the Quality and Nutraceutical Traits of Sweet Cherry during Postharvest Life. Food Bioprocess Technol. 2015, 8, 394–408. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, T.T.; Ly, K.L.; Tran, A.H.; Nguyen, T.T.N.; Vo, M.T.; Ho, H.M.; Dang, N.T.N.; Vo, V.T.; Nguyen, D.H. In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications. Int. J. Polym. Sci. 2019, 2019, 7382717. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, Y.-H.; Kwack, Y.-B.; Kim, J.; Kim, J.G. Application of chitosan as edible coating to enhance storability and fruit quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012, 29, 48–56. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Tang, Q.; Qiu, P.; Gou, D.; Zhao, J. Chitosan-Based Materials: An Overview of Potential. J. Foods 2022, 11, 1490. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Doan, V.K.; Ly, K.L.; Tran, N.M.P.; Ho, T.P.T.; Ho, M.H.; Dang, N.T.N.; Chang, C.C.; Nguyen, H.T.T.; Ha, P.T.; Tran, Q.N.; et al. Characterizations and antibacterial efficacy of chitosan oligomers synthesized by microwave-assisted hydrogen peroxide oxidative depolymerization method for infectious wound applications. Materials 2021, 14, 4475. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Al-sa’bani, A.F.; Darmokoesoemo, H. N,O-Carboxymethyl Chitosan: An Innovation in New Natural Preservative from Shrimp Shell Waste with a Nutritional Value and Health Orientation. Procedia Food Sci. 2015, 3, 35–51. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, R.; Mahmudul Hassan, S.M.; Karim, M.R.; Rahman, M.M.; Rahman, S.; Nur Hossain, M.; Islam, D.; Aftab Ali Shaikh, M.; Georghiou, P.E. Carboxymethyl chitin and chitosan derivatives: Synthesis, characterization and antibacterial activity. Carbohydr. Polym. Technol. Appl. 2023, 5, 100283. [Google Scholar] [CrossRef]
- Mohamed, A.; Ramaswamy, H.S. Characterization of Caseinate–Carboxymethyl Chitosan-Based Edible Films Formulated with and without Transglutaminase Enzyme. J. Compos. Sci. 2022, 6, 216. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Phan, T.T.T.; Nguyen, T.H. The effect of silver nanoparticle concentration on the antibacterial properties of tri-layer PCL-Ag/PT/PVP wound dressing. Vietnam J. Sci. Technol. Eng. 2023, 65, 79–87. [Google Scholar] [CrossRef]
- Ho, T.T.-P.; Doan, V.K.; Tran, N.M.-P.; Nguyen, L.K.-K.; Le, A.N.-M.; Ho, M.H.; Trinh, N.-T.; Van Vo, T.; Dai Tran, L.; Nguyen, T.-H. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. Mater. Sci. Eng. C 2021, 120, 111724. [Google Scholar] [CrossRef]
- He, Y.; Bose, S.K.; Wang, M.; Liu, T.; Wang, W.; Lu, H.; Yin, H. Effects of chitosan oligosaccharides postharvest treatment on the quality and ripening related gene expression of cultivated strawberry fruits. J. Berry Res. 2019, 9, 11–25. [Google Scholar] [CrossRef]
- Kouchak, M.; Ameri, A.; Naseri, B.; Kargar Boldaji, S. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: Preparation and evaluation. Iran. J. Basic Med. Sci. 2014, 17, 14–20. [Google Scholar] [PubMed]
- Chaléat, C.M.; Halley, P.J.; Truss, R.W. Study on the phase separation of plasticised starch/poly(vinyl alcohol) blends. Polym. Degrad. Stab. 2012, 97, 1930–1939. [Google Scholar] [CrossRef]
- Ngoc, L.S.; Van, P.T.H.; Nhi, T.T.Y.; Dung, N.A.; Manh, T.D. Effects of dipping time in chitosan (CS) and polyvinyl alcohol (PVA) mixture to quality of orange fruits during storage. Food Sci. Technol. 2022, 42, e114221. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Tran, N.M.; Nguyen, T.-H. Effect of Polyvinyl Alcohol Concentration on Properties of Polyvinyl Alcohol-Chitosan Hydrogel Loading Silver Nanoparticles. In Proceedings of the 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7) Translational Health Science and Technology for Developing Countries 7, Ho Chi Minh, Vietnam, 27–29 June 2018; Springer: Berlin/Heidelberg, Germany, 2020; pp. 307–311. [Google Scholar]
- Jain, N.; Singh, V.K.; Chauhan, S. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 2017, 26, 213–222. [Google Scholar] [CrossRef]
- Elbarbary, A.M.; Khozemy, E.E.; El-Dein, A.E.; El-Sawy, N.M. Radiation Synthesis of Edible Coating Films of Nanocurcumin Based on Carboxymethyl Chitosan/Polyvinyl Alcohol to Extend the Shelf Life of Sweet Orange “Valencia”. J. Polym. Environ. 2023, 31, 3783–3802. [Google Scholar] [CrossRef]
- Kamarul, T.; Krishnamurithy, G.; Salih, N.D.; Ibrahim, N.S.; Raghavendran, H.R.B.; Suhaeb, A.R.; Choon, D.S.K. Biocompatibility and Toxicity of Poly (vinyl alcohol)/N,O-Carboxymethyl Chitosan Scaffold. Sci. World J. 2014, 2014, 905103. [Google Scholar] [CrossRef]
- Qureshi, D.; Sahoo, A.; Mohanty, B.; Anis, A.; Kulikouskaya, V.; Hileuskaya, K.; Agabekov, V.; Sarkar, P.; Ray, S.S.; Maji, S.; et al. Fabrication and characterization of poly (Vinyl alcohol) and chitosan oligosaccharide-based blend films. Gels 2021, 7, 55. [Google Scholar] [CrossRef]
- Le, A.N.M.; Nguyen, T.T.; Ly, K.L.; Dai Luong, T.; Ho, M.H.; Tran, N.M.P.; Dang, N.N.T.; Vo, T.V.; Tran, Q.T.; Nguyen, T.H. Modulating biodegradation and biocompatibility of in situ crosslinked hydrogel by the integration of alginate into N, O-carboxylmethyl chitosan–aldehyde hyaluronic acid network. Polym. Degrad. Stab. 2020, 180, 109270. [Google Scholar]
- Nguyen, N.T.P.; Nguyen, L.V.H.; Tran, N.M.P.; Nguyen, D.T.; Nguyen, T.N.T.; Tran, H.A.; Dang, N.N.T.; Van Vo, T.; Nguyen, T.H. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C 2019, 103, 109670. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.; Krochta, J.M. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. J. Food Sci. 2003, 68, 503–510. [Google Scholar] [CrossRef]
- Jin, T.Z.; Huang, M.; Niemira, B.A.; Cheng, L. Shelf life extension of fresh ginseng roots using sanitiser washing, edible antimicrobial coating and modified atmosphere packaging. Int. J. Food Sci. Technol. 2016, 51, 2132–2139. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cui, Q.L.; Wang, Y.; Shi, F.; Fan, H.; Zhang, Y.Q.; Lai, S.T.; Li, Z.H.; Li, L.; Sun, Y.K. Effect of edible carboxymethyl chitosan-gelatin based coating on the quality and nutritional properties of different sweet cherry cultivars during postharvest storage. Coatings 2021, 11, 396. [Google Scholar] [CrossRef]
- Zekrehiwot, A.; Yetenayet, B.T.; Ali, M. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar] [CrossRef]
- Jesmin, S.; Al-Jubayer, A.; bin Eusuf, S.; Kamal, A.H.M.; Islam, J.M.M.; Ferdoush, F.; Kabir, S.E.; Khan, M.A. Gamma Radiation Treated Chitosan Solution for Strawberry Preservation: Physico-Chemical Properties and Sensory Evaluation. Int. Lett. Nat. Sci. 2016, 60, 30–37. [Google Scholar] [CrossRef]
- Lu, C.; Yin, Y. Comparison of Antioxidant Activity Ginseng (Panax Ginseng CA Meyer) Root Extraction between Ultrasound and Microwave Processing. In Proceedings of the 2018 International Workshop on Bioinformatics, Biochemistry, Biomedical Sciences, Hangzhou, China, 14–15 April 2018; Atlantis Press: Paris, France, 2018; Volume 5, pp. 107–112. [Google Scholar] [CrossRef]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Improving the Vanillin-Sulphuric Acid Method for Quantifying Total Saponins. Technologies 2018, 6, 84. [Google Scholar] [CrossRef]
- Punja, Z.K.; Rahman, M. Morphological and Biochemical Changes in Ginseng Seedling Roots Affected with Stripe Symptoms. Am. J. Plant Sci. 2015, 6, 2550–2560. [Google Scholar] [CrossRef]
- Kasai, D.; Chougale, R.; Masti, S.; Chalannavar, R.; Malabadi, R.B.; Gani, R. Influence of Syzygium cumini leaves extract on morphological, thermal, mechanical, and antimicrobial properties of PVA and PVA/chitosan blend films. J. Appl. Polym. Sci. 2018, 135, 46188. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Ly, K.L.; Tran, N.M.P.; Ho, M.H.; Tran, T.T.P.; Nguyen, T.H.; Nhi, D.N.T.; Vo, V.T. Effect of Microwave Irradiation on Polyvinyl Alcohol as a Carrier of Silver Nanoparticles in Short Exposure Time. Int. J. Polym. Sci. 2019, 2019, 3623907. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 2018, 107, 848–854. [Google Scholar] [CrossRef]
- Farag, R.K.; Mohamed, R.R. Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules 2013, 18, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Id, R.S.; Auras, R.A. Biodegradable Rice Starch/Carboxymethyl Chitosan Films with Added Propolis Extract for Potential Use as Active Food Packaging. Polymers 2018, 10, 954. [Google Scholar] [CrossRef]
- Serbezeanu, D.; Hamciuc, C.; Vlad-Bubulac, T.; Ipate, A.M.; Lisa, G.; Turcan, I.; Olariu, M.A.; Anghel, I.; Preda, D.M. Flame-Resistant Poly(vinyl alcohol) Composites with Improved Ionic Conductivity. Membranes 2023, 13, 636. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Tennenhouse, D. Semicrystalline poly (vinyl alcohol) films and their blends with poly (acrylic acid) and poly (ethylene glycol) for drug delivery applications. J. Drug Deliv. Sci. Technol. 2004, 14, 291–297. [Google Scholar] [CrossRef]
- Jiao, X.; Lu, X.; Chen, A.J.; Luo, Y.; Hao, J.J.; Gao, W. Effects of fusarium solani and F. oxysporum infection on the metabolism of ginsenosides in American ginseng roots. Molecules 2015, 20, 10535–10552. [Google Scholar] [CrossRef] [PubMed]
- Benhabiles, M.S.; Tazdait, D.; Abdi, N.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Assessment of coating tomato fruit with shrimp shell chitosan and N,O-carboxymethyl chitosan on postharvest preservation. J. Food Meas. Charact. 2013, 7, 66–74. [Google Scholar] [CrossRef]
- Chen, W.; Jin, T.Z.; Gurtler, J.B.; Geveke, D.J.; Fan, X. Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. Int. J. Food Microbiol. 2012, 155, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ardean, C.; Davidescu, C.M.; Neme, N.S. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Bose, S.K.; Howlader, P.; Wang, W.; Yin, H. Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: A review. Food Chem. 2020, 341, 128178. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, H.; Wang, T.; Mustafa, G.; Liu, L.; Wang, Q.; Shao, Z. Quality Improvement of Tomato Fruits by Preharvest Application of Chitosan Oligosaccharide. Horticulturae 2023, 9, 300. [Google Scholar] [CrossRef]
- Martynenko, A.I. Porosity Evaluation of Ginseng Roots from Real-Time Imaging and Mass Measurements. Food Bioprocess Technol. 2011, 4, 417–428. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication and Testing of PVA/Chitosan Bilayer Films for Strawberry Packaging. Coatings 2017, 7, 109. [Google Scholar] [CrossRef]
- Musa, B.H.; Hameed, N.J. Study of the mechanical properties of polyvinyl alcohol/starch blends. Mater. Today Proc. 2020, 20, 439–442. [Google Scholar] [CrossRef]
- Bonilla, J.; Fortunati, E.; Atarés, L.; Chiralt, A.; Kenny, J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll. 2014, 35, 463–470. [Google Scholar] [CrossRef]
- Chen, Y.; Etxabide, A.; Seyfoddin, A.; Ramezani, M. Fabrication and characterisation of poly (vinyl alcohol)/chitosan scaffolds for tissue engineering applications. Mater. Today Proc. 2023, 8, 2214–7853. [Google Scholar] [CrossRef]
- Kenneth, C.G.; Wang, C.Y.; Saltveit, M. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; Handbook 66; United States Department of Agriculture: Washington, DC, USA, 2016; pp. 68–70. [Google Scholar]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Kang, S.H.; Cha, H.J.; Jung, S.W.; Lee, S.J. Application of chitosan-ZnO nanoparticle edible coating to wild-simulated Korean ginseng root. Food Sci. Biotechnol. 2022, 31, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xu, P.; Uchino, T. Extending storage life of fresh ginseng by modified atmosphere packaging. J. Sci. Food Agric. 2005, 85, 2475–2481. [Google Scholar] [CrossRef]
- Priya, K.; Thirunavookarasu, N.; Chidanand, D.V. Recent advances in edible coating of food products and its legislations: A review. J. Agric. Food Res. 2023, 12, 100623. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, Y.J.; Kim, W.; Kim, D.O.; Kim, B.Y.; Lee, H.; Baik, M.Y. Change of ginsenoside profiles in processed ginseng by drying, steaming, and puffing. J. Microbiol. Biotechnol. 2019, 29, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Kitts, D.D. Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American Ginseng extracts. JAOCS J. Am. Oil Chem. Soc. 2001, 78, 249–255. [Google Scholar] [CrossRef]
- Hwang, C.R.; Lee, S.H.; Jang, G.Y.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J. Ginseng Res. 2014, 38, 180–186. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentration | pH | Viscosity (cP) | Remarks | |||
---|---|---|---|---|---|---|---|
NOCC (w/v) | COS (v/v) | Chitosan (w/v) | PVA (w/v) | ||||
NOCC4 | 4% | - | - | - | 7.4 | 1700 | Good film |
NOCC1 | 1% | - | - | - | 7.4 | None | Phase separation |
NOCC1–PVA6 | 1% | - | - | 6% | 7.4 | 240 | Good film |
COS1 | - | 1% | - | - | 4.2 | None | Non film |
COS1–PVA6 | 1% | - | - | 6% | 4.6 | 185 | Peeling problem |
CS2 | - | - | 2% | - | 5.6 | None | Phase separation |
PVA6 | - | - | - | 6% | 6.5 | 25 | Good film |
Sample | Stress at Break (MPa) | Elongation at Break (%) |
---|---|---|
NOCC4 | 4.46 ± 0.137 | 0.87 ± 0.0347 |
NOCC1–PVA6 | 4.68 ± 0.2433 | 6.84 ± 0.378 |
COS1–PVA6 | 4.38 ± 0.1755 | 11.72 ± 0.574 |
PVA6 | 2.11 ± 0.046 | 20.51 ± 0.563 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.; Nguyen, T.; Le Hong, P.; Ta, T.K.H.; Phan, B.T.; Ngoc, H.N.T.; Bich, H.P.T.; Yen, N.D.; Van, T.V.; Nguyen, H.T.; et al. Application of Coating Chitosan Derivatives (N,O–Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality. Foods 2023, 12, 4012. https://doi.org/10.3390/foods12214012
Nguyen N, Nguyen T, Le Hong P, Ta TKH, Phan BT, Ngoc HNT, Bich HPT, Yen ND, Van TV, Nguyen HT, et al. Application of Coating Chitosan Derivatives (N,O–Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality. Foods. 2023; 12(21):4012. https://doi.org/10.3390/foods12214012
Chicago/Turabian StyleNguyen, Ngoc, Trieu Nguyen, Phu Le Hong, Thi Kieu Hanh Ta, Bach Thang Phan, Hanh Nguyen Thi Ngoc, Hang Phung Thi Bich, Nhi Dinh Yen, Toi Vo Van, Hiep Thi Nguyen, and et al. 2023. "Application of Coating Chitosan Derivatives (N,O–Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality" Foods 12, no. 21: 4012. https://doi.org/10.3390/foods12214012
APA StyleNguyen, N., Nguyen, T., Le Hong, P., Ta, T. K. H., Phan, B. T., Ngoc, H. N. T., Bich, H. P. T., Yen, N. D., Van, T. V., Nguyen, H. T., & Ngoc, D. T. T. (2023). Application of Coating Chitosan Derivatives (N,O–Carboxymethyl Chitosan/Chitosan Oligomer Saccharide) in Combination with Polyvinyl Alcohol Solutions to Preserve Fresh Ngoc Linh Ginseng Quality. Foods, 12(21), 4012. https://doi.org/10.3390/foods12214012