The Study of an Adaptive Bread Maker Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Baking Method
2.2.2. Construction of the Baking Blackout Chamber (BBC)
2.2.3. Collect Device Data for ML
2.2.4. Data Preprocessing Methods
2.2.5. Baking Process Prediction Model (BPPM)
2.2.6. Measurement of the Volume and Specific Volume of Bread
2.2.7. Measurement of the Weight and Baking Loss Rate of Bread
2.2.8. Measurement of the Color of Bread
2.2.9. SPGV
- n is the image size, i is the row index, j is the column index, and G is the grayscale value.
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. BPPM
3.2. Volume and Specific Volume
3.3. Weight and Baking Loss Rate
3.4. Color Analysis
3.5. SPGV
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hathorn, C.S.; Biswas, M.A.; Gichuhi, P.N.; Bovell-Benjamin, A.C. Comparison of chemical, physical, micro-structural, and microbial properties of breads supplemented with sweetpotato flour and high-gluten dough enhancers. LWT Food Sci. Technol. 2008, 41, 803–815. [Google Scholar] [CrossRef]
- Rosell, C.M. The Science of Doughs and Bread Quality; Academic Press: Cambridge, MA, USA, 2011; Volume 14, pp. 3–14. [Google Scholar]
- Kourkouta, L.; Koukourikos, K.; Iliadis, C.; Ouzounakis, P.; Monios, A.; Tsaloglidou, A. Bread and health. J. Am. Coll. Clin. Pharm. 2017, 5, 821–826. [Google Scholar] [CrossRef]
- Jenson, I. Bread and Baker’s Yeast; Springer: Boston, MA, USA, 1998; pp. 172–198. [Google Scholar]
- Acosta-Estrada, B.A.; Lazo-Vélez, M.A.; Nava-Valdez, Y.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Korean Soc. Food Sci. Nutr. 2014, 60, 264–269. [Google Scholar] [CrossRef]
- Baek, C.W.; Lee, A.Y.; Lee, J.H. Quality evaluation of pan bread supplemented with immature Chalssalbori powder. J. Dairy. Sci. Biotechnol. 2021, 50, 1108–1116. [Google Scholar] [CrossRef]
- Lee, S.H. Preparation and Characterization of White Bread with added Cirsium setidens Nakai Powder. Journal of Agricultural, Life and Environmental Sciences. J. Agric. Life Environ. Sci. 2022, 34, 61–72. [Google Scholar]
- Olugbade, T.O.; Ojo, O.T. Development and performance evaluation of an improved electric baking oven. Leonardo El J. Pract. Technol. 2018, 33, 189–206. [Google Scholar]
- Miranda, J.; Ponce, P.; Molina, A.; Wright, P. Sensing, smart and sustainable technologies for Agri-Food 4.0. Comput. Ind. 2019, 108, 21–36. [Google Scholar] [CrossRef]
- Lee, G.W.; Huh, E.N. Reliable data transfer using overhearing for implicit ack. In Proceedings of the 2009 ICCAS-SICE, Fukuoka, Japan, 13 November 2009. [Google Scholar]
- Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; He, J.; Li, L.; Shen, M.; Tan, X.; Zheng, L. Wireless sensor network for real-time perishable food supply chain management. Comput. Electron. Agric. 2015, 110, 196–207. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Chen, M.; Kim, H.; Serikawa, S. Brain intelligence: Go beyond artificial intelligence. Mob. Netw. Appl. 2018, 23, 368–375. [Google Scholar] [CrossRef]
- How, M.L.; Cheah, S.M.; Chan, Y.J.; Khor, A.C.; Say, E.M.P. Artificial intelligence-enhanced decision support for informing global sustainable development: A human-centric AI-thinking approach. Information 2020, 11, 39. [Google Scholar] [CrossRef]
- Panch, T.; Szolovits, P.; Atun, R. Artificial intelligence, machine learning and health systems. J. Glob. Health 2018, 8, 020303. [Google Scholar] [CrossRef] [PubMed]
- Du, C.J.; Sun, D.W. Comparison of three methods for classification of pizza topping using different colour space transformations. J. Food Eng. 2005, 68, 277–287. [Google Scholar] [CrossRef]
- Perrot, N.; Trystram, G.; Le Guennec, D.; Guely, F. Sensor fusion for real time quality evaluation of biscuit during baking. Comparison between Bayesian and fuzzy approaches. J. Food Eng. 1996, 29, 301–315. [Google Scholar] [CrossRef]
- Kim, S. A Study on the Prediction of Electrical Energy in Food Storage Using Machine Learning. Appl. Sci. 2022, 13, 346. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Harris, N.M.; Fuentes, S. Quality Traits of Sourdough Bread Obtained by Novel Digital Technologies and Machine Learning Modelling. Fermentation 2022, 8, 516. [Google Scholar] [CrossRef]
- Golcuk, A.; Yasar, A. Classification of bread wheat genotypes by machine learning algorithms. J. Food Compos. Anal. 2023, 119, 105253. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). AACC International Approved Methods of Analysis, 11th ed.; AACC International Press: St. Paul, MN, USA, 2009. [Google Scholar]
- You, T.Y.; Jo, Y.J.; Shin, T.H.; Kwak, J.E.; Lee, Y.J.; Kang, T.S.; Jeong, H.S. Quality characteristics of bread made from domestic early maturity and high yield wheat cultivars. J. Korean Soc. Food Sci. Nutr. 2021, 50, 1358–1364. [Google Scholar] [CrossRef]
- Adusumalli, H.; Kalyani, D.; Sri, R.K.; Pratapteja, M.; Rao, P.P. Face mask detection using OpenCV. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021. [Google Scholar]
- Deepa, B.; Ramesh, K. Epileptic seizure detection using deep learning through min max scaler normalization. Int. J. Health Sci. 2022, 6, 10981–10996. [Google Scholar] [CrossRef]
- Sengupta, A.; Seal, A.; Panigrahy, C.; Krejcar, O.; Yazidi, A. Edge information based image fusion metrics using fractional order differentiation and sigmoidal functions. IEEE Access 2020, 8, 88385–88398. [Google Scholar] [CrossRef]
- Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.H.; Patton, R.M. Optimizing deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, New York, NY, USA, 15 November 2015. [Google Scholar]
- Gómez, M.; Oliete, B.; Pando, V.; Ronda, F.; Caballero, P.A. Effect of fermentation conditions on bread staling kinetics. Eur. Food Res. Technol. 2008, 226, 1379–1387. [Google Scholar] [CrossRef]
- Bosmans, G.M.; Lagrain, B.; Fierens, E.; Delcour, J.A. The impact of baking time and bread storage temperature on bread crumb properties. Food Chem. 2013, 141, 3301–3308. [Google Scholar] [CrossRef]
- Jeon, Y.S.; Kim, M.W. Quality characteristics of white pan bread added with sunsik powder. J. East. Asian Soc. Diet. Life 2010, 20, 299–306. [Google Scholar]
- Içöz, D.; Sumnu, G.; Sahin, S. Color and texture development during microwave and conventional baking of breads. Int. J. Food Prop. 2004, 7, 201–213. [Google Scholar] [CrossRef]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Ait-Ameur, L.; Fogliano, V. Characterization of the Maillard reaction in bread crisps. Eur. Food Res. Technol. 2008, 228, 311–319. [Google Scholar] [CrossRef]
Ingredient | Samples (%) | ||||
---|---|---|---|---|---|
CBR1 (1) | CBR2 | CBR3 | CBR4 | CBR5 | |
EBR1 (2) | EBR2 | EBR3 | EBR4 | EBR5 | |
Time (CBR1-5) | Kneading mode/Fermentation mode/Baking mode (min) | ||||
7.5/55/40 | 10.0/60/45 | 12.5/65/50 | 15.0/70/55 | 17.5/75/60 | |
Time (EBR1-5) | AI | AI | AI | AI | AI |
Strong flour | 100 | 133.33 | 166.67 | 200 | 233.33 |
Water | 60 | 60 | 60 | 60 | 60 |
Yeast | 2 | 2 | 2 | 2 | 2 |
Sugar | 10 | 10 | 10 | 10 | 10 |
Cooking oil | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 |
Sensor | Measurement | Sensitivity |
---|---|---|
MAX6675 | Temperature | 0–1024 °C |
MQ3 | Ethanol | 0.05–10 mg/L |
GP2Y0A02YK0F | Distance | 20–150 cm |
ELP-USBFHD08S-MFV | RGB, Radius, SPGV | 260 fps |
Samples | Volume (mL) | Specific Volume (mL/g) |
---|---|---|
CBR1 (1) | 112.44± 3.49 | 0.55 ± 0.03 |
EBR1 | 127.54 ± 2.54 | 0.64 ± 0.01 |
t-value | −6.05 ** | −4.64 ** |
CBR2 | 387.78 ± 2.31 | 1.45 ± 0.04 |
EBR2 | 413.49 ± 2.59 | 1.65 ± 0.02 |
t-value | −12.83 *** | −8.20 ** |
CBR3 | 636.57± 4.47 | 1.85 ± 0.00 |
EBR3 | 679.96 ± 1.90 | 2.06 ± 0.01 |
t-value | −15.46 *** | −32.00 *** |
CBR4 | 823.87 ± 3.57 | 2.04 ± 0.03 |
EBR4 | 875.79 ± 2.46 | 2.25 ± 0.01 |
t-value | −20.73 *** | −13.14 *** |
CBR5 | 1198.81 ± 5.45 | 2.50 ± 0.05 |
EBR5 | 1260.70 ± 3.13 | 2.69 ± 0.01 |
t-value | −17.07 *** | −6.11 ** |
Samples | Weight (g) | Baking Loss Rate (%) |
---|---|---|
CBR1 (1) | 205.68 ± 3.06 | 23.61 ± 1.14 |
EBR1 | 199.91 ± 1.58 | 25.75 ± 0.58 |
t-value | 2.91 * | −2.90 * |
CBR2 | 267.14 ± 5.92 | 25.59 ± 1.64 |
EBR2 | 264.46 ± 1.07 | 26.33 ± 0.30 |
t-value | 0.77 * | −0.77 * |
CBR3 | 343.60 ± 2.28 | 23.43 ± 0.51 |
EBR3 | 338.17 ± 1.62 | 24.64 ± 0.36 |
t-value | 3.36 * | −3.35 * |
CBR4 | 403.45 ± 5.44 | 25.08 ± 1.01 |
EBR4 | 396.66 ± 0.99 | 26.34 ± 0.19 |
t-value | 2.13 NS | −2.12 NS |
CBR5 | 479.32 ± 8.38 | 24.50 ± 0.46 |
EBR5 | 468.75 ± 1.50 | 25.39 ± 0.24 |
t-value | 2.94 * | −2.94 * |
Samples | L | a | b |
---|---|---|---|
CBR1 (1) | 40.50 ± 0.40 a | 13.72 ± 0.25 e | 26.66 ± 0.23 a |
CBR2 | 38.97 ± 0.20 b | 14.86 ± 0.23 c | 25.29 ± 0.18 b |
CBR3 | 38.74 ± 0.39 b | 14.51 ± 0.38 d | 23.47 ± 0.27 c |
CBR4 | 35.88 ± 0.40 c | 15.56 ± 0.31 b | 21.36 ± 0.36 d |
CBR5 | 34.75 ± 0.41 d | 16.30 ± 0.25 a | 19.37 ± 0.26 e |
F-value | 375.30 *** | 105.60 *** | 1066 *** |
EBR1 | 39.48 ± 0.13 a | 12.20 ± 0.14 d | 26.54 ± 0.16 a |
EBR2 | 38.44 ± 0.11 b | 13.38 ± 0.11 c | 24.40 ± 0.14 b |
EBR3 | 35.45 ± 0.09 c | 14.42 ± 0.12 b | 21.35 ± 0.08 c |
EBR4 | 33.47 ± 0.10 d | 15.29 ± 0.04 a | 20.43 ± 0.07 d |
EBR5 | 31.17 ± 0.10 e | 14.36 ± 0.17 b | 19.30 ± 0.15 e |
F-value | 9526 *** | 823.1 *** | 4879 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, Y.; Kim, S. The Study of an Adaptive Bread Maker Using Machine Learning. Foods 2023, 12, 4160. https://doi.org/10.3390/foods12224160
Lee J, Kim Y, Kim S. The Study of an Adaptive Bread Maker Using Machine Learning. Foods. 2023; 12(22):4160. https://doi.org/10.3390/foods12224160
Chicago/Turabian StyleLee, Jooho, Youngjin Kim, and Sangoh Kim. 2023. "The Study of an Adaptive Bread Maker Using Machine Learning" Foods 12, no. 22: 4160. https://doi.org/10.3390/foods12224160
APA StyleLee, J., Kim, Y., & Kim, S. (2023). The Study of an Adaptive Bread Maker Using Machine Learning. Foods, 12(22), 4160. https://doi.org/10.3390/foods12224160