n-3 PUFA Enriched Eggs as a Source of Valuable Bioactive Substances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Housing and Feeding of Laying Hens
2.2. Analysis of the Fatty Acid Profile in Feeding Mixtures and in Egg Yolks
2.3. Calculation of Atherogenic, Thrombogenic and Hypo/Hypercholesterolemic Indexes
- atherogenic index (AI);
- thrombogenic index (TI);
- hypo/hypercholesterolemic index (HHI).
2.4. Selection of Examinees, Analysis of Blood Indicators
2.5. Statistical Data Analysis
3. Results and Discussion
3.1. Content of Fatty Acids in Laying Hens’ Feeding Mixtures
3.2. Content of Fatty Acids in Egg Yolk Lipids
3.3. Egg Lipid Indexes
3.4. Fatty Acid Profile in Examinees’ Blood Serum
3.5. Arterial Pressure and Biochemical Indicators in Examinees’ Blood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nimalaratne, C.; Wu, J. Hen Egg as an Antioxidant Food Commodity: A Review. Nutrients 2015, 7, 8274–8293. [Google Scholar] [CrossRef]
- Amjad Khan, W.; Chun-Mei, H.; Khan, N.; Iqbal, A.; Lyu, S.-W.; Shah, F. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids. BioMed Res. Int. 2017, 2017, e7348919. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, J.; Li, F.; Zheng, J.; Xu, G. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens. Animals 2021, 11, 3482. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef]
- Yalcin, H.; Unal, M.K. The Enrichment of Hen Eggs with ω-3 Fatty Acids. J. Med. Food 2010, 13, 610–614. [Google Scholar] [CrossRef]
- Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative Omega-3 Fatty Acid Enrichment of Egg Yolks from First-Cycle Laying Hens Fed Flaxseed Oil or Ground Flaxseed. Poult. Sci. 2017, 96, 1791. [Google Scholar] [CrossRef] [PubMed]
- Promila, N.K.; Sihag, S.; Shunthwal, J.; Verma, R.; Baloda, S. Effect of Linseed Oil Supplementation on Hen Day Egg Production, Body Weight, Egg Shape Index, Economics and Egg Quality in Layers. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2005–2016. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Galović, O.; Hanžek, D.; Biazik, E. Fatty Acid Profile of Eggs Produced by Laying Hens Fed Diets Containing Different Shares of Fish Oil. Poult. Sci. 2021, 100, 101379. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Andrighetto, I.; Giaccone, V.; Marchesini, G. Dietary Enrichment of N-3 PUFA for Laying Hens: Effect of Different Sources on Production, Composition and Quality of Eggs. Anim. Sci. Pap. Rep. 2015, 33, 411–424. [Google Scholar]
- Lawlor, J.B.; Gaudette, N.; Dickson, T.; House, J.D. Fatty Acid Profile and Sensory Characteristics of Table Eggs from Laying Hens Fed Diets Containing Microencapsulated Fish Oil. Anim. Feed Sci. Technol. 2010, 156, 97–103. [Google Scholar] [CrossRef]
- Grobas, S.; Méndez, J.; Lázaro, R.; de Blas, C.; Mateo, G.G. Influence of Source and Percentage of Fat Added to Diet on Performance and Fatty Acid Composition of Egg Yolks of Two Strains of Laying Hens. Poult. Sci. 2001, 80, 1171–1179. [Google Scholar] [CrossRef]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary Intakes and Food Sources of Omega-6 and Omega-3 Polyunsaturated Fatty Acids. Lipids 2003, 38, 391–398. [Google Scholar] [CrossRef]
- Bang, H.O.; Dyerberg, J.; Hjørne, N. The Composition of Food Consumed by Greenland Eskimos. Acta Med. Scand. 1976, 200, 69–73. [Google Scholar] [CrossRef]
- Berlin, E.; Bhathena, S.J.; Judd, J.T.; Nair, P.P.; Peters, R.C.; Bhagavan, H.N.; Ballard-Barbash, R.; Taylor, P.R. Effects of Omega-3 Fatty Acid and Vitamin E Supplementation on Erythrocyte Membrane Fluidity, Tocopherols, Insulin Binding, and Lipid Composition in Adult Men. J. Nutr. Biochem. 1992, 3, 392–400. [Google Scholar] [CrossRef]
- Vranešić Bender, D. Omega-3 Masne Kiseline—Svojstva i Djelovanje. Medix 2011, 92/93, 234–240. [Google Scholar]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Mokos, Z.B. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef]
- Csapo, J.; Sugar, L.; Horn, A.; Csapo-Kiss, Z. Chemical Composition of Milk from Red Deer, Roe and Fallow Deer Kept in Captivity. Acta Agron. Hung. 1986, 36, 359–372. [Google Scholar]
- Kralik, G.; Kralik, Z.; Grčević, M.; Kralik, I.; Gantner, V. Enrichment of Table Eggs with Functional Ingredients. J. Cent. Eur. Agric. 2018, 19, 72–82. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L. de la Fatty Acid Compositions of Selected Varieties of Spanish Dry Ham Related to Their Nutritional Implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Pravilnik o Tržišnim Standardima Za Jaja. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2021_08_90_1649.html (accessed on 9 November 2023).
- TIBCO Statistica® Document Management System 13.5.0. Available online: https://docs.tibco.com/products/tibco-statistica-document-management-system-13-5-0 (accessed on 12 September 2023).
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Iqbal Yatoo, M.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals 2019, 9, 573. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, A.; Khan, S.A.; Beg, M.A.; Ali, A.; Damanhouri, G. Comparative Study of Fatty-Acid Composition of Table Eggs from the Jeddah Food Market and Effect of Value Addition in Omega-3 Bio-Fortified Eggs. Saudi J. Biol. Sci. 2017, 24, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Kralik, G.; Kralik, Z.; Košević, M.; Gvozdanović, K.; Kralik, I. Modulacija hranidbenih tretmana pri obogaćivanju konzumnih jaja s n-3 polinezasićenim masnim kiselinama. Krmiva Časopis Hranidbi Zivotinj. Proizv. Tehnol. Krme 2022, 64, 41–51. [Google Scholar] [CrossRef]
- Untea, A.E.; Varzaru, I.; Panaite, T.D.; Gavris, T.; Lupu, A.; Ropota, M. The Effects of Dietary Inclusion of Bilberry and Walnut Leaves in Laying Hens’ Diets on the Antioxidant Properties of Eggs. Animals 2020, 10, 191. [Google Scholar] [CrossRef]
- Higgs, J.; Mulvihill, B. 4—The Nutritional Quality of Meat. In Meat Processing; Kerry, J., Kerry, J., Ledward, D., Eds.; Woodhead Publishing: Shaston, UK, 2002; pp. 64–104. ISBN 978-1-85573-583-5. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Panaite, T.D.; Turcu, R.P.; Soica, C.; Visinescu, P. Nutritional Parameters of Eggs from Laying Hens Fed with Flaxseed Meal or Mixture with Rapeseed Meal or Rice Bran. J. Appl. Anim. Res. 2020, 48, 566–574. [Google Scholar] [CrossRef]
- El Wakf, A.M.; Ebraheem, H.A.; Serag, H.A.; Hassan, H.A.; Gumaih, H.S. Association between Inflammation and the Risk of Cardiovascular Disorders in Atherogenic Male Rats: Role of Virgin and Refined Olive Oil. J. Am. Sci. 2010, 6, 807–817. [Google Scholar]
- Hosseini-Vashan, S.J.; Sarir, H.; Afzali, N.; Mallekaneh, M.; Allahressani, A.; Esmaeilinasab, P. Influence of Different Layer Rations on Atherogenesis and Thrombogenesis Indices in Egg Yolks. J. Birjand Univ. Med. Sci. 2010, 17, 265–273. [Google Scholar]
- Watson, T.; Shantsila, E.; Lip, G.Y. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Influence of Substituting Dietary Soybean Meal for Dehulled-Micronized Lupin (Lupinus albus Cv. Multitalia) on Early Phase Laying Hens Production and Egg Quality. Livest. Sci. 2011, 140, 184–188. [Google Scholar] [CrossRef]
- Popa, C.D.; Arts, E.; Fransen, J.; van Riel, P.L.C.M. Atherogenic Index and High-Density Lipoprotein Cholesterol as Cardiovascular Risk Determinants in Rheumatoid Arthritis: The Impact of Therapy with Biologicals. Mediators Inflamm. 2012, 2012, e785946. [Google Scholar] [CrossRef] [PubMed]
- Stupin, A.; Mihalj, M.; Kolobarić, N.; Šušnjara, P.; Kolar, L.; Mihaljević, Z.; Matić, A.; Stupin, M.; Jukić, I.; Kralik, Z.; et al. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals—Clinical Trial. Int. J. Mol. Sci. 2020, 21, 4149. [Google Scholar] [CrossRef]
- Amano, T.; Matsubara, T.; Uetani, T.; Kato, M.; Kato, B.; Yoshida, T.; Harada, K.; Kumagai, S.; Kunimura, A.; Shinbo, Y.; et al. Impact of Omega-3 Polyunsaturated Fatty Acids on Coronary Plaque Instability: An Integrated Backscatter Intravascular Ultrasound Study. Atherosclerosis 2011, 218, 110–116. [Google Scholar] [CrossRef]
- Hayakawa, S.; Yoshikawa, D.; Ishii, H.; Tanaka, M.; Kumagai, S.; Matsumoto, M.; Hayashi, M.; Sugiura, T.; Hayashi, K.; Ando, H.; et al. Association of Plasma Omega-3 to Omega-6 Polyunsaturated Fatty Acid Ratio with Complexity of Coronary Artery Lesion. Intern. Med. 2012, 51, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Sakata, Y.; Nakatani, D.; Suna, S.; Usami, M.; Matsumoto, S.; Hamasaki, T.; Doi, Y.; Nishino, M.; Sato, H.; et al. Low Levels of Serum N-3 Polyunsaturated Fatty Acids Are Associated With Worse Heart Failure-Free Survival in Patients After Acute Myocardial Infarction. Circ. J. 2013, 77, 153–162. [Google Scholar] [CrossRef]
- Keten, M. Review on the Beneficial Effects of Omega-3 Enriched Eggs by Dietary Flaxseed Oil Supplementation. J. Istanb. Vet. Sci. 2019, 3, 89–94. [Google Scholar]
- Mihalj, M.; Stupin, A.; Kolobarić, N.; Tartaro Bujak, I.; Matić, A.; Kralik, Z.; Jukić, I.; Stupin, M.; Drenjančević, I. Leukocyte Activation and Antioxidative Defense Are Interrelated and Moderately Modified by N-3 Polyunsaturated Fatty Acid-Enriched Eggs Consumption—Double-Blind Controlled Randomized Clinical Study. Nutrients 2020, 12, 3122. [Google Scholar] [CrossRef]
- Breškić Ćurić, Ž.; Masle, A.M.; Kibel, A.; Selthofer-Relatić, K.; Stupin, A.; Mihaljević, Z.; Jukić, I.; Stupin, M.; Matić, A.; Kozina, N.; et al. Effects of N-3 Polyunsaturated Fatty Acid-Enriched Hen Egg Consumption on the Inflammatory Biomarkers and Microvascular Function in Patients with Acute and Chronic Coronary Syndrome—A Randomized Study. Biology 2021, 10, 774. [Google Scholar] [CrossRef]
- Kapourchali, F.R.; Surendiran, G.; Goulet, A.; Moghadasian, M.H. The Role of Dietary Cholesterol in Lipoprotein Metabolism and Related Metabolic Abnormalities: A Mini-Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2408–2415. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty Acid and Cholesterol Profiles and Hypocholesterolemic, Atherogenic, and Thrombogenic Indices of Table Eggs in the Retail Market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A Review of the Effect of Omega-3 Polyunsaturated Fatty Acids on Blood Triacylglycerol Levels in Normolipidemic and Borderline Hyperlipidemic Individuals. Lipids Health Dis. 2015, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Bovet, P.; Faeh, D.; Madeleine, G.; Viswanathan, B.; Paccaud, F. Decrease in Blood Triglycerides Associated with the Consumption of Eggs of Hens Fed with Food Supplemented with Fish Oil. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Ryue, J.; Hsieh, C.; Bell, D. Eggs Enriched Inω-3 Fatty Acids and Alterations in Lipid Concentrations in Plasma and Lipoproteins and in Blood Pressure. Am. J. Clin. Nutr. 1991, 54, 689–695. [Google Scholar] [CrossRef]
- Burns-Whitmore, B.; Haddad, E.; Sabaté, J.; Rajaram, S. Effects of Supplementing N-3 Fatty Acid Enriched Eggs and Walnuts on Cardiovascular Disease Risk Markers in Healthy Free-Living Lacto-Ovo-Vegetarians: A Randomized, Crossover, Free-Living Intervention Study. Nutr. J. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 1—Full Report. J. Clin. Lipidol. 2015, 9, 129–169. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J.; American Heart Association. Nutrition Committee Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Zehr, K.R.; Walker, M.K. Omega-3 Polyunsaturated Fatty Acids Improve Endothelial Function in Humans at Risk for Atherosclerosis: A Review. Prostaglandins Other Lipid Mediat. 2018, 134, 131–140. [Google Scholar] [CrossRef]
Ingredient | Control K | Group P1 | Group P2 |
---|---|---|---|
Corn | 48.86 | 48.86 | 48.86 |
Soybean cake | 20.67 | 20.67 | 20.67 |
Roasted soybean | 4.00 | 4.00 | 4.00 |
Sunflower cake | 5.00 | 5.00 | 5.00 |
Alfalfa | 1.50 | 1.50 | 1.50 |
Calcium granules | 10.67 | 10.67 | 10.67 |
Monocalcium phosphate | 1.33 | 1.33 | 1.33 |
Yeast | 0.50 | 0.50 | 0.50 |
Salt | 0.33 | 0.33 | 0.33 |
Acidifier | 0.33 | 0.33 | 0.33 |
Nanofeed | 0.33 | 0.33 | 0.33 |
Methionine | 0.15 | 0.15 | 0.15 |
Premix * | 1.33 | 1.33 | 1.33 |
Soybean oil | 5.00 | - | - |
Fish oil | - | 1.50 | 2.00 |
Linseed oil | - | 3.50 | 3.00 |
Total | 100.00 | 100.00 | 100.00 |
Fatty Acid | K | P1 | P2 | p Value |
---|---|---|---|---|
Myristic C14:0 | n.d. | 1.26 ± 0.05 b | 1.51 ± 0.01 a | 0.001 |
Pentadecanoic C15:0 | n.d. | 0.17 ± 0.00 b | 0.20 ± 0.00 a | 0.001 |
Palmitic C16:0 | 11.27 ± 0.21 a | 10.82 ± 0.18 b | 11.09 ± 0.02 ab | 0.038 |
Heptadecanoic C17:0 | n.d. | 0.21 ± 0.1 b | 0.23 ± 0.01 a | 0.001 |
Stearic C18:0 | 4.71 ± 0.02 a | 4.11 ± 0.03 b | 4.03 ± 0.01 c | 0.001 |
Arachidonic C20:0 | 0.41 ± 0.00 a | 0.27 ± 0.00 b | 0.27 ± 0.00 b | 0.001 |
Behenic C22:0 | 0.33 ± 0.16 | n.d. | n.d. | - |
∑ SFA | 16.72 ± 0.22 b | 16.84 ± 0.21 b | 17.33 ± 0.01 a | 0.006 |
Palmitoleic C16:1 | n.d. | 1.52 ± 0.03 b | 1.80 ± 0.01 a | 0.001 |
Octadecanoic C18:1 | 26.24 ± 0.02 a | 21.55 ± 0.07 b | 21.01 ± 0.13 c | 0.001 |
Eicosenoic C20:1 | 0.23 ± 0.05 c | 1.31 ± 0.03 b | 1.59 ± 0.01 a | 0.001 |
Erucic C22:1 | n.d. | 1.51 ± 0.05 b | 1.88 ± 0.02 a | 0.001 |
∑MUFA | 26.47 ± 0.07 a | 25.89 ± 0.13 b | 26.28 ± 0.09 a | 0.001 |
Linoleic C18:2 n-6 | 51.84 ± 0.11 a | 23.23 ± 0.22 b | 22.54 ± 0.19 c | 0.001 |
Eicosadienoic C20:4 n-6 | n.d. | 0.17 ± 0.01 b | 0.25 ± 0.01 a | 0.001 |
∑n-6 PUFA | 51.84 ± 0.11 a | 23.40 ± 0.21 b | 22.79 ± 0.19 c | 0.001 |
α-linolenic C18:3 n-3 | 5.04 ± 0.03 c | 28.47 ± 0.02 a | 26.33 ± 0.21 b | 0.001 |
Eicosapentaenoic C20:5 n-3 | n.d. | 1.86 ± 0.02 b | 2.42 ± 0.02 a | 0.001 |
Docosahexaenoic C22:6 n-3 | n.d. | 3.53 ± 0.06 b | 4.84 ± 0.04 a | 0.001 |
∑n-3 PUFA | 5.04 ± 0.03 b | 33.86 ± 0.28 a | 33.59 ± 0.28 a | 0.001 |
n-6/n-3 PUFA | 10.28 ± 0.05 a | 0.69 ± 0.02 b | 0.68 ± 0.01 b | 0.001 |
Fatty Acid | K | P1 | P2 | p Value |
---|---|---|---|---|
Myristic C14:0 | 16.55 ± 1.64 b | 25.18 ± 1.16 a | 25.44 ± 2.10 a | 0.001 |
Pentadecanoic C15:0 | 3.39 ± 0.88 b | 5.74 ± 0.96 a | 6.13 ± 1.07 a | 0.002 |
Palmitic C16:0 | 1455.86 ± 52.70 b | 1572.55 ± 46.11 a | 1551.85 ± 44.88 a | 0.005 |
Heptadecanoic C17:0 | 13.52 ± 2.76 | 15.57 ± 1.51 | 16.77 ± 1.72 | 0.081 |
Stearic C18:0 | 575.15 ± 41.73 | 562.58 ± 16.57 | 552.03 ± 24.16 | 0.482 |
Heneicosanoic C21:0 | 15.67 ± 5.05 a | 7.18 ± 1.10 b | 6.42 ± 0.49 b | 0.001 |
SFA | 2080.14 ± 79.76 b | 2188.80 ± 40.88 a | 2158.64 ± 51.65 ab | 0.036 |
Myristoleic C14:1 | 1.46 ± 0.42 b | 3.89 ± 0.89 a | 3.32 ± 0.21 a | 0.001 |
Palmitoleic C16:1 | 106.86 ± 19.47 b | 194.86 ± 13.58 a | 187.07 ± 9.91 a | 0.001 |
cis-10-heptadecenoic C17:1 | 10.71 ± 1.29 b | 16.86 ± 1.53 a | 18.35 ± 2.09 a | 0.001 |
Oleic C18:1 cis + trans | 2502.17 ± 72.02 b | 2700.72 ± 113.39 a | 2734.25 ± 102.08 a | 0.005 |
cis-11-eicosenoic C20:1 | 13.29 ± 2.07 | 16.02 ± 1.71 | 15.29 ± 1.89 | 0.102 |
MUFA | 2634.49 ± 72.23 b | 2932.35 ± 103.27 a | 2958.31 ± 95.32 a | 0.001 |
Linoleic C18:2 n-6 | 1408.22 ± 216.61 a | 1057.95 ± 48.28 b | 1079.92 ± 60.96 b | 0.002 |
γ-linolenic C18:3 n-6 | 7.32 ± 1.08 | n.d. | n.d. | - |
Eicosadienoic C20:2 n-6 | 10.46 ± 2.03 | 8.17 ± 1.34 | 8.32 ± 1.07 | 0.064 |
Arachidonic C20:4 n-6 | 127.51 ± 10.25 a | 61.59 ± 5.91 b | 61.58 ± 5.88 b | 0.001 |
∑n-6 PUFA | 1553.51 ± 225.91 a | 1127.71 ± 52.27 b | 1149.82 ± 66.57 b | 0.002 |
α-linolenic C18:3 n-3 | 65.48 ± 17.54 b | 370.27 ± 42.25 a | 358.21 ± 41.41 a | 0.001 |
EPA | n.d. | 29.14 ± 3.72 | 31.06 ± 1.86 | 0.462 |
DHA | 84.40 ± 8.96 b | 199.18 ± 18.17 a | 191.44 ± 24.74 a | 0.001 |
∑n-3 PUFA | 149.88 ± 26.34 b | 598.59 ± 46.60 a | 580.71 ± 57.44 a | 0.001 |
∑n6/∑n3 PUFA | 10.36 a | 1.88 b | 1.98 b | 0.001 |
Indicator | K | P1 | P2 |
---|---|---|---|
Atherogenic index (AI) | 0.498 | 0.471 | 0.470 |
Thrombogenic index (TI) | 0.833 | 0.555 | 0.556 |
Hypo/hypercholesterolemic index (HHI) | 2.755 | 2.843 | 2.824 |
Fatty Acid | K | P1 | p Value |
---|---|---|---|
Myristic, C14:0 | 29.72 ± 8.75 | 38.63 ± 10.25 | 0.136 |
Palmitic, C16:0 | 796.23 ± 145.7 a | 533.93 ± 210.8 b | 0.031 |
Stearic, C:18:0 | 219.34 ± 33.89 | 157.10 ± 69.39 | 0.076 |
∑SFA | 1045.31 ± 181.4 a | 729.68 ± 275.9 b | 0.041 |
Palmitoleic, C16:1 | 57.81 ± 23.4 | 46.67 ± 18.1 | 0.379 |
Octadecanoic, C18:1 | 534.54 ± 121.2 | 377.98 ± 190.5 | 0.120 |
∑MUFA | 592.26 ± 139.8 | 424.65 ± 206.1 | 0.130 |
Linoleic, C18:2 n-6 | 1013.21 ± 101.3 | 869.22 ± 322.3 | 0.321 |
γ-linolenic, C18:3 n-6 | 18.91 ± 4.0 | 16.96 ± 4.8 | 0.487 |
Eicosadienoic, C20:2 | 7.21 ± 0.5 | 7.93 ± 0.4 | 0.324 |
Dichomo-gamma-linolenic, C20:3n-6 | 50.44 ± 12.3 a | 30.94 ± 9.67 b | 0.012 |
Arachidonic, C20:4 n-6 | 359.49 ± 79.1 a | 234.32 ± 94.2 b | 0.031 |
∑n-6 PUFA | 1449.26 ± 155.1 | 1159.37 ± 427.7 | 0.142 |
α-linolenic, C18:3 n-3 | 10.39 ± 2.3 b | 16.18 ± 3.1 a | 0.010 |
Eicosapentaenoic, C20:5 n-3 | 10.11 ± 2.0 | 12.49 ± 3.4 | 0.264 |
Docosahexaenoic, C22:6 n-3 | 44.94 ± 10.7 | 43.28 ± 19.45 | 0.858 |
∑n-3 PUFA | 65.44 ± 14.3 | 71.95 ± 29.4 | 0.861 |
Group/ Indicators | K | p Value | P1 | p Value | ||
---|---|---|---|---|---|---|
Before | After | Before | After | |||
n | 10 | 10 | ||||
SBP, mmHg | 104.2 ± 16.7 | 104.8 ± 13.4 | 0.927 | 108.1 ± 11.2 | 106.6 ± 12.1 | 0.785 |
DBP, mmHg | 68.2 ± 11.4 | 67.6 ± 4.3 | 0.873 | 73.4 ± 6.6 | 73.7 ± 6.7 | 0.917 |
MAP, mmHg | 80.2 ± 11.7 | 80.0 ± 6.5 | 0.961 | 85.0 ± 5.8 | 85.1 ± 6.2 | 0.965 |
Indicator | K | P1 | ||
---|---|---|---|---|
Before | After | Before | After | |
Leukocytes (109/L) | 7.02 ± 1.32 | 7.40 ± 2.71 | 7.34 ± 2.32 | 7.23 ± 0.99 |
Erythrocytes (1012/L) | 4.77 ± 0.34 | 4.85 ± 0.39 | 4.85 ± 0.48 | 4.81 ± 0.50 |
Hemoglobin g/L | 142.56 ± 14.21 | 143.78 ± 15.42 | 144.90 ± 14.12 | 143.70 ± 14.82 |
Hematocrit (L/L) | 0.40 ± 0.03 | 0.41 ± 0.04 | 0.42 ± 0.04 | 0.40 ± 0.04 |
MCV (fl) | 83.32 ± 2.61 | 83.57 ± 3.60 | 85.46 ± 1.80 | 83.87 ± 2.51 * |
MCH (pg) | 29.89 ± 1.67 | 29.59 ± 1.45 | 29.96 ± 0.69 | 29.92 ± 0.78 |
MCHC (g/L) | 358.56 ± 14.16 | 354.44 ± 6.97 | 349.60 ± 5.70 | 356.70 ± 2.79 * |
RDW-CV (%) | 12.93 ± 0.91 | 12.78 ± 0.68 | 12.67 ± 0.45 | 12.72 ± 0.42 |
Platelets (109/L) | 269.11 ± 62.30 | 268.70 ± 57.90 | 251.62 ± 62.69 | 245.70 ± 54.29 |
MPV (fl) | 8.32 ± 1.46 | 8.68 ± 1.73 | 10.45 ± 1.03 | 8.30 ± 1.11 * |
Erythrocytes sedimentation (mm/3.6 KS) | 8.67 ± 8.63 | 9.67 ± 10.14 | 7.20 ± 4.44 | 5.80 ± 4.10 |
Fibrinogen (g/L) | 3.01 ± 0.75 | 3.01 ± 0.62 | 2.98 ± 0.74 | 2.65 ± 0.59 |
Glucose (mmol/L) | 4.99 ± 0.37 | 4.86 ± 0.28 | 4.96 ± 0.69 | 4.93 ± 0.69 |
Urea (mmol/L) | 4.74 ± 1.78 | 5.10 ± 1.60 | 5.68 ± 1.33 | 5.25 ± 1.23 |
Creatinine (μmol/L) | 79.22 ± 17.29 | 77.11 ± 16.10 | 80.10 ± 19.34 | 76.80 ± 17.31 |
Urates (μmol/L) | 305.56 ± 85.16 | 278.67 ± 59.17 | 329.6 ± 75.98 | 302.20 ± 76.10 * |
hsCRP (mg/L) | 3.28 ± 3.33 | 3.40 ± 4.29 | 2.15 ± 2.24 | 1.34 ± 1.02 |
Iron (μmol/L) | 15.02 ± 5.42 | 13.00 ± 6.78 | 17.14 ± 8.45 | 20.55 ± 7.07 |
Transferrin (g/l) | 2.59 ± 0.43 | 2.68 ± 0.10 | 2.59 ± 0.44 | 2.66 ± 0.48 |
Cholesterol (mmol/L) | 4.80 ± 0.87 | 4.63 ± 0.68 | 5.10 ± 0.69 | 5.24 ± 0.86 |
Triglycerides (mmol/L) | 0.96 ± 0.35 | 0.97 ± 0.39 | 0.91 ± 0.30 | 0.88 ± 0.25 |
HDL-cholesterol (mmol/L) | 1.53 ± 0.38 | 1.48 ± 0.43 | 1.43 ± 0.31 | 1.45 ± 0.36 |
LDL-cholesterol (μmol/L) | 2.80 ± 0.60 | 2.69 ± 0.59 | 3.14 ± 0.54 | 3.13 ± 0.62 |
HDL-C/cholesterol (%) | 32.56 ± 9.49 | 32.11 ± 9.66 | 28.30 ± 5.77 | 28.10 ± 7.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radanović, A.; Kralik, G.; Drenjančević, I.; Galović, O.; Košević, M.; Kralik, Z. n-3 PUFA Enriched Eggs as a Source of Valuable Bioactive Substances. Foods 2023, 12, 4202. https://doi.org/10.3390/foods12234202
Radanović A, Kralik G, Drenjančević I, Galović O, Košević M, Kralik Z. n-3 PUFA Enriched Eggs as a Source of Valuable Bioactive Substances. Foods. 2023; 12(23):4202. https://doi.org/10.3390/foods12234202
Chicago/Turabian StyleRadanović, Ana, Gordana Kralik, Ines Drenjančević, Olivera Galović, Manuela Košević, and Zlata Kralik. 2023. "n-3 PUFA Enriched Eggs as a Source of Valuable Bioactive Substances" Foods 12, no. 23: 4202. https://doi.org/10.3390/foods12234202