Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Material
2.2. Experimental Installation
2.3. Empirical Method
2.4. Moisture Content
2.5. Drying Rate
2.6. Moisture Ratio
2.7. Effective Moisture Diffusivity
2.8. Color
2.9. Shrinkage
2.10. Rehydration Performance
2.11. Vitamin A, Total Phenol Content, and Carotenoid Content Determination
2.12. Infrared Spectroscopy
2.13. Scanning Electron Microscopy (SEM)
2.14. Low Field NMR
2.15. Statistical Analysis
3. Results and Discussion
3.1. Dry Characteristics
3.1.1. Drying Rate and Drying Time Analysis
3.1.2. Moisture Ratio Analysis
3.1.3. Analysis of Effective Moisture Diffusivity
3.2. Quality Characteristic
3.2.1. Color Analysis
3.2.2. Shrinkage Analysis
3.2.3. Rehydration Performance Analysis
3.3. Vitamin A, Total Phenol Content, and Carotenoid Content
3.4. Infrared Spectroscopic Analysis
3.5. Microstructure Analysis
3.6. Low-Field NMR Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits—Review Article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, X.; Deng, Y.; Matinfar, G.; Singh, A.; Mandal, R.; Pratap-Singh, A. Impact of three different dehydration methods on nutritional values and sensory quality of dried broccoli, oranges, and carrots. Foods 2020, 9, 1464. [Google Scholar] [CrossRef] [PubMed]
- Kocabiyik, H.; Tezer, D. Drying of carrot slices using infrared radiation. Int. J. Food Sci. Technol. 2009, 44, 953–959. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of rpe-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Amami, E.; Fersi, A.; Khezami, L.; Vorobiev, E.; Kechaou, N. Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field. LWT—Food Sci. Technol. 2007, 40, 1156–1166. [Google Scholar] [CrossRef]
- Iranshahi, K.; Psarianos, M.; Rubinetti, D.; Onwude, D.I.; Schlüter, O.K.; Defraeye, T. Impact of pre-treatment methods on the drying kinetics, product quality, and energy consumption of electrohydrodynamic drying of biological materials. Innov. Food Sci. Emerg. Technol. 2023, 85, 103338. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Vidyarthi, S.K.; Zhong, C.-S.; Zheng, Z.-A.; An, Y.; Wang, J.; Wei, Q.; Xiao, H.-W. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT 2020, 134, 110173. [Google Scholar] [CrossRef]
- Du, Y.; Yang, F.; Yu, H.; Xie, Y.; Yao, W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4402–4421. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, C. Electrohydrodynamic analysis of the principle of high-voltage electric field drying technology. J. Beijing Inst. Technol. 2005, S1, 16–19. Available online: http://www.cnki.net/ (accessed on 7 November 2023).
- Paul, A.; Martynenko, A. The effect of material thickness, load density, external airflow, and relative humidity on the drying efficiency and quality of EHD-dried apples. Foods 2022, 11, 2765. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Dalvand, M.J.; Mohtasebi, S.S.; Rafiee, S. Modeling of electrohydrodynamic drying process using response surface methodology. Food Sci. Nutr. 2014, 2, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Lu, J.; Song, Z. Electrohydrodynamic drying of carrot slices. PLoS ONE 2015, 10, e0124077. [Google Scholar] [CrossRef]
- Yang, M.; Ding, C.-J.; Zhu, J. The drying quality and energy consumption of Chinese wolfberry fruits under electrohydrodynamic system. Int. J. Appl. Electromagn. Mech. 2017, 55, 101–112. [Google Scholar] [CrossRef]
- Martynenko, A.; Kudra, T. Alternating versus direct current in electrohydrodynamic drying. Dry. Technol. 2022, 40, 2382–2395. [Google Scholar] [CrossRef]
- Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Hu, X.; Hao, T. Electrohydrodynamic drying of Chinese wolfberry in a multiple needle-to-plate electrode system. Foods 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ding, C. Electrohydrodynamic (EHD) drying of the Chinese wolfberry fruits. SpringerPlus 2016, 5, 909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.A.; Ni, J.B.; Martynenko, A.; Chen, C.; Fang, X.M.; Ding, C.J.; Chen, J.; Zhang, J.W.; Xiao, H.W. Electrohydrodynamic drying of citrus (Citrus sinensis L.) peel: Comparative evaluation on the physiochemical quality and volatile profiles. Food Chem. 2023, 429, 136832. [Google Scholar] [CrossRef]
- Xiao, A.; Ding, C. Effect of electrohydrodynamic (EHD) on drying kinetics and quality characteristics of shiitake mushroom. Foods 2022, 11, 1303. [Google Scholar] [CrossRef]
- Tian, Y.; Ding, C. Effect of high-voltage electric field on thawing kinetics and quality characteristics of frozen beef. Processes 2023, 11, 2567. [Google Scholar] [CrossRef]
- Sansiribhan, S.; Devahastin, S.; Soponronnarit, S. Quantitative evaluation of microstructural changes and their relations with some physical characteristics of food during drying. J. Food Sci. 2010, 75, 453–461. [Google Scholar] [CrossRef]
- Dehghannya, J.; Seyed-Tabatabaei, S.R.; Khakbaz Heshmati, M.; Ghanbarzadeh, B. Influence of three stage ultrasound—Intermittent microwave—Hot air drying of carrot on physical properties and energy consumption. Heat Mass Transfer 2021, 57, 1893–1907. [Google Scholar] [CrossRef]
- Markowski, M.; Zielińska, M. Kinetics of water absorption and soluble-solid loss of hot-air-dried carrots during rehydration. Int. J. Food Sci. Technol. 2011, 46, 1122–1128. [Google Scholar] [CrossRef]
- Zzaman, W.; Biswas, R.; Hossain, M.A. Application of immersion pre-treatments and drying temperatures to improve the comprehensive quality of pineapple (Ananas comosus) slices. Heliyon 2021, 7, e05882. [Google Scholar] [CrossRef]
- Zonta, F.; Stancher, B.; Marletta, G.P. Simultaneous high-performance liquid chromatographic analysis of free carotenoids and carotenoid esters. J. Chromatogr. 1987, 403, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Chen, H.; Zhang, Y.; Liu, Y.; Zheng, X.; Xu, J.; Ye, J.; Deng, X. Carotenoid extraction, detection, and analysis in citrus. Methods Enzymol. 2022, 670, 179–212. [Google Scholar]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (EHD) drying of tomato slices (Lycopersicon esculentum). J. Food Eng. 2011, 104, 628–631. [Google Scholar] [CrossRef]
- Defraeye, T.; Martynenko, A. Electrohydrodynamic drying of food: New insights from conjugate modeling. J. Clean. Prod. 2018, 198, 269–284. [Google Scholar] [CrossRef]
- Han, B.; Ding, C.; Jia, Y.; Wang, H.; Bao, Y.; Zhang, J.; Duan, S.; Song, Z.; Chen, H.; Lu, J. Influence of electrohydrodynamics on the drying characteristics and physicochemical properties of garlic. Food Chem. X 2023, 19, 100818. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Astatkie, E.; Martynenko, A. Electrohydrodynamic drying of fruit slices: Effect on drying kinetics, energy consumption, and product quality. J. Food Process. Preserv. 2022, 46, e16812. [Google Scholar] [CrossRef]
- Onwude, D.I.; Iranshahi, K.; Martynenko, A.; Defraeye, T. Electrohydrodynamic drying: Can we scale-up the technology to make dried fruits and vegetables more nutritious and appealing? Compr. Rev. Food Sci. Food Saf. 2021, 20, 5283–5313. [Google Scholar] [CrossRef]
- Alemrajabi, A.A.; Rezaee, F.; Mirhosseini, M.; Esehaghbeygi, A. Comparative Evaluation of the Effects of Electrohydrodynamic, Oven, and Ambient Air on Carrot Cylindrical Slices during Drying Process. Dry. Technol. 2012, 30, 88–96. [Google Scholar] [CrossRef]
- Bai, Y.; Li, J.; Mei, Y.; Kang, D. Experiment of drying kelp with high voltage electric fields. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–13 November 2008; pp. 732–734. [Google Scholar]
- Esehaghbeygi, A.; Pirnazari, K.; Sadeghi, M. Quality assessment of electrohydrodynamic and microwave dehydrated banana slices. LWT—Food Sci. Technol. 2014, 55, 565–571. [Google Scholar] [CrossRef]
- Jin, S.; Li, B.; Hong, S.; Yang, H.; Zheng, S.; Li, D. A pulsed electric field accelerates the mass transfer during the convective drying of carrots: Drying and rehydration kinetics, texture, and carotenoid content. Foods 2023, 12, 589. [Google Scholar]
- Wellner, A.; Huettl, C.; Henle, T. Formation of maillard reaction products during heat treatment of carrots. J. Agric. Food Chem. 2011, 59, 7992–7998. [Google Scholar] [CrossRef]
- Bai, Y.; Liang, Y.; Ding, C.; Li, J. Progress in the application of high voltage electric field in thermal sensitive material drying. High Volt. Technol. 2008, 43, 1225–1229. [Google Scholar]
- Zhou, Y.; Xie, F.; Zhou, X.; Wang, Y.; Tang, W.; Xiao, Y. Effects of maillard reaction on flavor and safety of Chinese traditional food: Roast duck. J. Sci. Food Agric. 2016, 96, 1915–1922. [Google Scholar] [CrossRef]
- Koca, N.; Burdurlu, H.S.; Karadeniz, F. Kinetics of colour changes in dehydrated carrots. J. Food Eng. 2007, 78, 449–455. [Google Scholar] [CrossRef]
- Baswan, S.M.; Klosner, A.E.; Weir, C.; Salter-Venzon, D.; Gellenbeck, K.W.; Leverett, J.; Krutmann, J. Role of ingestible carotenoids in skin protection: A review of clinical evidence. Photodermatol. Photoimmunol. Photomed. 2021, 37, 490–504. [Google Scholar] [CrossRef]
- Vimala, B.; Nambisan, B.; Hariprakash, B. Retention of carotenoids in orange-fleshed sweet potato during processing. J. Food Sci. Technol. 2011, 48, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Elmizadeh, A.; Shahedi, M.; Hamdami, N. Comparison of electrohydrodynamic and hot-air drying of the quince slices. Innov. Food Sci. Emerg. Technol. 2017, 43, 130–135. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.P.; Genta, S.; Oliveros, L.; Anzulovich, A.; Giménez, M.S.; Sánchez, S.S. Vitamin A deficiency injures liver parenchyma and alters the expression of hepatic extracellular matrix. J. Appl. Toxicol. 2009, 29, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares). Innov. Food Sci. Emerg. Technol. 2016, 36, 42–47. [Google Scholar] [CrossRef]
- McCann, M.C.; Stacey, N.J.; Wilson, R.; Roberts, K. Orientation of macromolecules in the walls of elongating carrot cells. J. Cell Sci. 1993, 106, 1347–1356. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys. 2013, 8, 29–42. [Google Scholar] [CrossRef]
- Sene, C.; McCann, M.C.; Wilson, R.H.; Grinter, R. Fourier-transform raman and fourier-transform infrared spectroscopy (An investigation of five higher plant cell walls and their components). Plant Physiol. 1994, 106, 1623–1631. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Nasirpour, A.; Harchegani, M.B.; Hamdami, N.; Keramat, J. Effect of electrohydrodynamic technique as a complementary process for cellulose extraction from bagasse: Crystalline to amorphous transition. Carbohydr. Polym. 2018, 188, 188–196. [Google Scholar] [CrossRef]
- Largo-Gosens, A.; Hernández-Altamirano, M.; García-Calvo, L.; Alonso-Simón, A.; Alvarez, J.; Acebes, J.L. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls. Front. Plant Sci. 2014, 5, 303. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.; dos Santos, T.B.; Vieira, L.G.E.; Ferrarese, M.D.L.L.; Ferrarese-Filho, O.; Donatti, L.; Boeger, M.R.T.; de Oliveira Petkowicz, C.L. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydr. Polym. 2013, 93, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Muhoza, B.; Huang, Y.; Munir, Z.; Zhang, Y.; Zhang, S.; Li, Y. Effects of emerging food pretreatment and drying techniques on protein structures, functional and nutritional properties: An updated review. Crit. Rev. Food Sci. Nutr. 2023, 28, 1–17. [Google Scholar] [CrossRef]
- Demirdöven, N.; Cheatum, C.M.; Chung, H.S.; Khalil, M.; Knoester, J.; Tokmakoff, A. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure. J. Am. Chem. Soc. 2004, 126, 7981–7990. [Google Scholar] [CrossRef] [PubMed]
- Soraiyay Zafar, H.; Asefi, N.; Siahpoush, V.; Roufegarinejad, L.; Alizadeh, A. Preparation of egg white powder using electrohydrodynamic drying method and its effect on quality characteristics and functional properties. Food Chem. 2023, 426, 136567. [Google Scholar] [CrossRef]
- Singh, A.; Vanga, S.K.; Nair, G.R.; Gariepy, Y.; Orsat, V.; Raghavan, V. Electrohydrodynamic drying (EHD) of wheat and its effect on wheat protein conformation. LWT—Food Sci. Technol. 2015, 64, 750–758. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason. Sonochem. 2018, 40, 619–628. [Google Scholar] [CrossRef]
- Wang, H.; Fang, X.M.; Sutar, P.P.; Meng, J.S.; Wang, J.; Yu, X.L.; Xiao, H.W. Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chem. 2021, 338, 127799. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ju, R.; Ma, F.; Qian, J.; Yan, J.; Li, S.; Li, Z. Moisture variation analysis of the green plum during the drying process based on low-field nuclear magnetic resonance. J. Food Sci. 2021, 86, 5137–5147. [Google Scholar] [CrossRef]
- Zhu, D.; Liang, J.; Liu, H.; Cao, X.; Ge, Y.; Li, J. Sweet cherry softening accompanied with moisture migration and loss during low-temperature storage. J. Sci. Food Agric. 2018, 98, 3651–3658. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, J.; Yi, J.; Njoroge, D.M.; Peng, J.; Hou, C. Comparison of dynamic water distribution and microstructure formation of shiitake mushrooms during hot air and far infrared radiation drying by low-field nuclear magnetic resonance and scanning electron microscopy. J. Sci. Food Agric. 2019, 99, 2826–2834. [Google Scholar] [CrossRef] [PubMed]
Voltage | Linear Model | R2 | SSE | RMSE |
---|---|---|---|---|
Control | ||||
20 kV | ||||
26 kV | ||||
32 kV | ||||
38 kV | ||||
44 kV |
Voltage | L1 | a1 | b1 | Δα° | ΔC | ΔE |
---|---|---|---|---|---|---|
Fresh | 40.330 ± 2.85 c | 26.30 ± 2.61 a | 32.09 ± 3.72 a | - | - | - |
Control | 45.230 ± 1.92 b | 23.57 ± 4.61 ab | 31.7 ± 2.57 a | −0.114 ± 0.30 ab | −2.30 ± 7.35 ab | 9.88 ± 3.18 b |
20 kV | 50.985 ± 3.73 a | 19.30 ± 3.42 c | 28.76 ± 4.489 ab | 0.175 ± 0.15 a | −7.10 ± 5.70 bc | 15.38 ± 5.57 a |
26 kV | 50.277 ± 2.26 a | 18.09 ± 2.04 c | 26.57 ± 1.54 c | −0.565 ± 0.21 c | −9.50 ± 6.93 bc | 15.04 ± 4.50 b |
32 kV | 50.542 ± 2.57 a | 19.80 ± 4.53 bc | 27.95 ± 6.84 ab | −0.284 ± 0.26 bc | −10.21 ± 8.04 c | 14.69 ± 5.42 b |
38 kV | 50.450 ± 4.03 a | 18.69 ± 1.93 c | 28.18 ± 2.16 ab | −0.443 ± 0.32 c | −11.48 ± 3.48 c | 14.80 ± 3.97 b |
44 kV | 50.128 ± 2.22 a | 20.51 ± 2.76 bc | 31.54 ± 2.68 a | −0.387 ± 0.32 bc | −8.90 ± 5.33 a | 13.24 ± 5.50 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ding, C. Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot. Foods 2023, 12, 4228. https://doi.org/10.3390/foods12234228
Wang Y, Ding C. Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot. Foods. 2023; 12(23):4228. https://doi.org/10.3390/foods12234228
Chicago/Turabian StyleWang, Yanghong, and Changjiang Ding. 2023. "Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot" Foods 12, no. 23: 4228. https://doi.org/10.3390/foods12234228
APA StyleWang, Y., & Ding, C. (2023). Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot. Foods, 12(23), 4228. https://doi.org/10.3390/foods12234228