Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protease-Induced Hydrolysis of Milk Protein Systems
2.3. Determination of the %DH of Milk Proteins by Papain and Bromelain
2.4. Kinetic and Thermodynamic Parameters Describing Milk Protein Hydrolysis by All Three Proteases
2.5. Protease-Induced Hydrolysis of Milk Proteins
2.6. Statistical Analysis
3. Results
3.1. Impact of Processing Conditions on pH and DH
3.2. Proteolysis Patterns for Enzymatic-Induced Hydrolysis of MPC and WPC
3.3. Thermodynamic Characterisation of Actinidin, Bromelain and Papain
3.4. Estimation of Kinetic Parameters for Milk Protein Hydrolysis by Actinidin, Bromelain and Papain at 60 °C
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, E.N.; Boland, M.J.; Calder, P.C.; Hardman, M.J. The specificity of actinidin and its relationship to the structure of the enzyme. Biochim. Biophys. Acta 1980, 616, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Whitehurst, R.J.; Oort, M.V. Enzymes in Food Technology, 2nd ed.; Wiley: Blackwell, LA, USA, 2010. [Google Scholar]
- Aspmo, S.I.; Horn, S.J.; Eijsink, V.G.H. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem. 2005, 40, 1957–1966. [Google Scholar] [CrossRef]
- Zhu, X.; Kaur, L.; Boland, M. Thermal inactivation of actinidin as affected by meat matrix. Meat Sci. 2018, 145, 238–244. [Google Scholar] [CrossRef]
- Elias, M.J.; Arcuri, I.F.; Tambourgi, E.B. Temperature and pH conditions for maximum activity of bromelain extracted from pineapple (Ananas comosus L. Merril). Acta Sci.-Technol. 2011, 33, 191–196. [Google Scholar] [CrossRef]
- Montoya, C.A.; Hindmarsh, J.P.; Gonzalez, L.; Boland, M.J.; Moughan, P.J.; Rutherfurd, S.M. Dietary actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases gastric digestion and the gastric emptying rate of several dietary proteins in growing rats. J. Nutr. 2014, 144, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.G.; Henry, G.W.; Heinicke, R.M. The action of papain and bromelain on the uterus. Am. J. Obstet. Gynecol. 1957, 73, 867–874. [Google Scholar] [CrossRef]
- Lovedeep, K.; Rutherfurd, S.M.; Moughan, P.J.; Drummond, L.; Boland, M.J. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model. J. Agric. Food Chem. 2010, 58, 5074–5080. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous Proteases for Meat Tenderization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1012–1031. [Google Scholar] [CrossRef]
- Christensen, M.; Torngren, M.A.; Gunvig, A.; Rozlosnik, N.; Lametsch, R.; Karlsson, A.H.; Ertbjerg, P. Injection of marinade with actinidin increases tenderness of porcine M. bicepsfemoris and affects myofibrils and connective tissue. J. Sci. Food Agric. 2009, 89, 1607–1614. [Google Scholar] [CrossRef]
- Xiaojie, Z.; Lovedeep, K.; Staincliffe, M.; Boland, M. Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility. Meat Sci. 2018, 145, 256–265. [Google Scholar] [CrossRef]
- Fernández-Lucas, J.; Castañeda, D.; Hormigo, D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci. Technol. 2017, 68, 91–101. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, Q.; Liu, H.-J.; Li, S.-Z.; Jiang, Z.-Q. Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT -Food Sci. Technol. 2017, 78, 1–7. [Google Scholar] [CrossRef]
- Kaur, S.; Huppertz, T.; Vasiljevic, T. Actinidin-induced hydrolysis of milk proteins: Effect on antigenicity. LWT–Food Sci. Technol. 2022, 161, 113294. [Google Scholar] [CrossRef]
- Kaur, S.; Vasiljevic, T.; Huppertz, T. Influence of Actinidin-Induced Hydrolysis on the Functional Properties of Milk Protein and Whey Protein Concentrates. Foods 2023, 12, 3806. [Google Scholar] [CrossRef]
- Puglisi, I.; Petrone, G.; Piero, A.R.L. Role of actinidin in the hydrolysis of the cream milk proteins. Food Bioprod. Process. 2012, 90, 449–452. [Google Scholar] [CrossRef]
- Halken, S.; Jacobsen, H.P.; Høst, A.; Holmenlund, D. The effect of hypo-allergenic formulae in infants at risk of allergic disease. Eur. J. Clin. Nutr. 1995, 49, 77. [Google Scholar]
- Havea, P. Protein interactions in milk protein concentrate powders. Int. Dairy J. 2006, 16, 415–422. [Google Scholar] [CrossRef]
- Singh, H. Milk Protein Products|Functional Properties of Milk Proteins. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 887–893. [Google Scholar]
- Krem, M.; Rose, T.; Di Cera, E. Sequence Determinants of Function and Evolution in Serine Proteases. Trends Cardiovasc. Med. 2000, 10, 171–176. [Google Scholar] [CrossRef]
- Kaur, S.; Huppertz, T.; Vasiljevic, T. Milk protein hydrolysis by actinidin: Influence of protein source and hydrolysis conditions. Int. Dairy J. 2021, 118, 105029. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- Bisswanger, H. Enzyme reaction. In Practical Enzymology; Wiley-VCH: Weinheim, Germany, 2004; pp. 7–164. [Google Scholar]
- Homaei, A.; Stevanato, R.; Etemadipour, R.; Hemmati, R. Purification, catalytic, kinetic and thermodynamic characteristics of a novel ficin from Ficus johannis. Biocatal. Agric. Biotechnol. 2017, 10, 360–366. [Google Scholar] [CrossRef]
- Wei, W.; Zhonglei, L.I.; Junzhong, L.I.U.; Yuejun, W.; Shanhong, L.I.U.; Mi, S.U.N. Comparison between thermal hydrolysis and enzymatic proteolysis processes for the preparation of tilapia skin collagen hydrolysates. Czech J. Food Sci. 2013, 31, 1–4. [Google Scholar] [CrossRef]
- Chalabi, M.; Khademi, F.; Yarani, R.; Mostafaie, A. Proteolytic activities of kiwifruit actinidin (Actinidia deliciosa cv. Hayward) on different fibrous and globular proteins: A comparative study of actinidin with papain. Appl. Biochem. Biotechnol. 2014, 172, 4025–4037. [Google Scholar] [CrossRef] [PubMed]
- Le Maux, S.; Nongonierma, A.B.; Barre, C.; FitzGerald, R.J. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chem. 2016, 199, 246–251. [Google Scholar] [CrossRef]
- Al-Shamsi, K.A.; Mudgil, P.; Hassan, H.M.; Maqsood, S. Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems. J. Dairy Sci. 2018, 101, 47–60. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Grozdanović, M.M.; Gavrović-Jankulović, M.; Drakulić, B.J. Conformational mobility of active and E-64-inhibited actinidin. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 4790–4799. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Woessner, J.F., Jr.; Salvesen, G. Handbook of Proteolytic Enzymes; Academic Press [Imprint]: Cambridge, MA, USA; Elsevier Science & Technology: San Diego, UK, 2012. [Google Scholar]
- Huppertz, T. Chapter 4—The Chemistry of Caseins. In Advanced Dairy Chemistry: Proteins, 3rd ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: New York, NY, USA, 2013; pp. 135–160. [Google Scholar]
- Swaisgood, H.E. Chemistry of the caseins. In Advanced Dairy Chemistry-Proteins Part A, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Kluwer Academic, Plenum Publishers: New York, NY, USA, 2003; pp. 139–187. [Google Scholar]
- Considine, T.; Patel, H.A.; Anema, S.G.; Singh, H.; Creamer, L.K. Interaction of milk proteins during heat and high hydrostatic pressure treatments. Innov. Food Sci. Emerg. Technol. 2007, 8, 1–23. [Google Scholar] [CrossRef]
- Morr, C.; Ha, E. Whey protein concentrates and isolates: Processing and functional properties. Crit. Rev. Food Sci. Nutr. 1993, 33, 431–476. [Google Scholar] [CrossRef]
- Bannon, G.A. What makes a food protein an allergen? Curr. Allergy Asthma Rep. 2004, 4, 43–46. [Google Scholar] [CrossRef]
- Broersen, K. Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Foods 2020, 9, 874. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Davis, J.P.; Doucet, D.; McGuffey, M.K. Advances in modifying and understanding whey protein functionality. Trends Food Sci. Technol. 2002, 13, 151. [Google Scholar] [CrossRef]
- Christiansen, K.F.; Vagarud, G.; Langsrud, T.; Ellekjaer, M.R.; Egleudsdal, B. Hydrolyzed whey proteins as emulsifiers and stabilizers in high pressure processed dressings. Food Hydrocoll. 2004, 18, 757–767. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Voragen, A.G.J.; Whitaker, J.R. Handbook of Food Enzymology, 1st ed.; Taylor & Francis Group: Baton Rouge, LA, USA, 2002; Volume 122. [Google Scholar]
- Barros, R.M.; Malcata, F.X. Modeling the kinetics of whey protein hydrolysis brought about by enzymes from Cynara cadunculus. J. Agric. Food Chem. 2002, 50, 4347–4356. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.M.; Malcata, F.X. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem. 2004, 88, 351–359. [Google Scholar] [CrossRef]
- Salami, M.; Yousefi, R.; Ehsani, M.R.; Dalgalarrondo, M.; Chobert, J.-M.; Haertlé, T.; Razavi, S.H.; Saboury, A.A.; Niasari-Naslaji, A.; Moosavi-Movahedi, A.A. Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int. Dairy J. 2008, 18, 1097–1102. [Google Scholar] [CrossRef]
- Pickersgill, R.W.; Sumner, I.G.; Collins, M.E.; Goodenough, P.W. Structural and electrostatic differences between actinidin and papain account for differences in activity. Biochem. J. 1989, 257, 310–312. [Google Scholar] [CrossRef]
Temp (°C) | Papain | Bromelain | ||||
---|---|---|---|---|---|---|
MPC | WPC | WPI | MPC | WPC | WPI | |
15 | 0.02 aA | 0.02 aA | 0.08 aB | 0.12 aC | 0.12 aC | 0.13 aC |
40 | 0.19 bBC | 0.17 bB | 0.18 bB | 0.14 abA | 0.15 abA | 0.23 bD |
60 | 0.35 cE | 0.26 cC | 0.30 cD | 0.17 bcA | 0.21 cB | 0.44 cF |
SEM | 0.01 |
Degree of Hydrolysis (%) | ||||
---|---|---|---|---|
Enzyme | Temperature (°C) | Substrate | ||
MPC | WPC | WPI | ||
Bromelain | 15 | 1.67 fC | 2.89 fB | 3.45 fA |
40 | 3.82 dC | 6.42 eB | 7.12 eA | |
60 | 6.45 bC | 8.96 cB | 9.23 cA | |
Papain | 15 | 3.23 eC | 6.9 dB | 8.0 dA |
40 | 5.38 cC | 11.53 bB | 12.57 bA | |
60 | 8.12 aC | 16.77 aB | 17.69 aA | |
SEM | 0.03 |
Protein | Proportion of Proteins Remaining Relative to Control (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | |||||||||
15 | 40 | 60 | 15 | 40 | 60 | 15 | 40 | 60 | |
MPC | Proteases | ||||||||
Actinidin | Bromelain | Papain | |||||||
αs-CN | 86.0 bB | 31.0 fD | 16.6 hE | 88.7 aB | 85.7 cA | 72.5 dA | 65.3 eC | 17.7 gD | 9.3 iC |
β-CN | 87.4 aA | 28.4 fE | 22.1 gB | 70.5 bG | 66.2 cE | 64.3 dC | 49.0 eF | 15.5 hF | 10.2 iB |
κ-CN | 75.9 bE | 25.3 fG | 17.8 gC | 78.5 aD | 72.0 cD | 66.5 dB | 62.7 eD | 10.5 hG | 10.2 iB |
β-LG | 83.5 aC | 40.4 fB | 25.1 hA | 81.8 bC | 75.5 dC | 72.4 eA | 78.0 cA | 26.7 gB | 19.6 iA |
α-LA | 80.6 aD | 45.5 fA | 17.0 hD | 77.3 bE | 76.8 cB | 57.0 eD | 68.5 dB | 32.7 gA | 10.2 iB |
WPC | Actinidin | Bromelain | Papain | ||||||
β-LG | 48.2 bF | 34.2 eC | 16.2hF | 76.8 aF | 42.0 cF | 37.7 dE | 28.4 fG | 19.3 gC | 8.9 iD |
α-LA | 47.8 cG | 26.3 fF | 6.1hG | 94.1 aA | 37.6 dG | 35.5 eF | 54.0 bE | 17.2 gE | 5.3 iE |
Enzyme | Substrate | Temp °C | K | r² (1) | Ea | A | r² (2) |
---|---|---|---|---|---|---|---|
(×10−6, s−1) | (kJ mol−1) | ||||||
Actinidin (5.21 Units g−1 of protein) | MPC | 15 | 3.46 | 0.97 | 18.09 | 0.0079 | 0.81 |
35 | 8.66 | 0.97 | |||||
40 | 9.14 | 0.94 | |||||
55 | 9.71 | 0.97 | |||||
60 | 9.99 | 0.93 | |||||
WPC | 15 | 6.98 | 0.94 | 15.02 | 0.0037 | 0.99 | |
35 | 10.07 | 0.9 | |||||
40 | 11.62 | 0.91 | |||||
55 | 15.37 | 0.89 | |||||
60 | 15.77 | 0.9 | |||||
WPI | 15 | 6.78 | 0.89 | 14.38 | 0.0028 | 0.98 | |
35 | 10.54 | 0.9 | |||||
40 | 11.84 | 0.9 | |||||
55 | 14.49 | 0.89 | |||||
60 | 15.15 | 0.89 | |||||
Bromelain (5.21 Units g−1 of protein) | MPC | 15 | 0.4 | 0.96 | 25.39 | 0.0158 | 0.99 |
40 | 0.93 | 0.97 | |||||
60 | 1.65 | 0.92 | |||||
WPC | 15 | 0.49 | 0.81 | 23.91 | 0.0112 | 0.96 | |
40 | 1.33 | 0.99 | |||||
60 | 1.86 | 0.94 | |||||
WPI | 15 | 0.75 | 0.78 | 24.52 | 0.0009 | 0.98 | |
40 | 1.47 | 0.98 | |||||
60 | 1.92 | 0.96 | |||||
Papain (5.21 Units g−1 of protein) | MPC | 15 | 0.63 | 0.99 | 13.68 | 0.0002 | 0.97 |
40 | 0.9 | 0.96 | |||||
60 | 1.38 | 0.99 | |||||
WPC | 15 | 1.43 | 0.95 | 12.07 | 0.0002 | 0.99 | |
40 | 2.04 | 0.98 | |||||
60 | 2.83 | 0.98 | |||||
WPI | 15 | 1.65 | 0.99 | 11.05 | 0.0002 | 0.96 | |
40 | 2.16 | 0.95 | |||||
60 | 3.11 | 0.97 |
Enzyme | Substrate | Vmax | 1/2 Vmax | KM | Kcat | Kcat/KM |
---|---|---|---|---|---|---|
(μg mL −1 min−1) | (μg mL−1 min−1) | (×10−4, μg mL−1) | (min−1) | (mL min−1 μg−1) | ||
Actinidin | WPC | 3.96 | 1.98 | 2.13 | 0.99 | 46 |
MPC | 1.56 | 0.78 | 3.18 | 0.39 | 12 | |
Bromelain | WPC | 1.29 | 0.65 | 10.71 | 0.32 | 3 |
MPC | 1.01 | 0.50 | 17.71 | 0.25 | 1 | |
Papain | WPC | 1.12 | 0.56 | 1.87 | 0.28 | 15 |
MPC | 1.28 | 0.64 | 3.05 | 0.32 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, S.; Vasiljevic, T.; Huppertz, T. Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain. Foods 2023, 12, 4248. https://doi.org/10.3390/foods12234248
Kaur S, Vasiljevic T, Huppertz T. Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain. Foods. 2023; 12(23):4248. https://doi.org/10.3390/foods12234248
Chicago/Turabian StyleKaur, Surjit, Todor Vasiljevic, and Thom Huppertz. 2023. "Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain" Foods 12, no. 23: 4248. https://doi.org/10.3390/foods12234248
APA StyleKaur, S., Vasiljevic, T., & Huppertz, T. (2023). Milk Protein Hydrolysis by Actinidin—Kinetic and Thermodynamic Characterisation and Comparison to Bromelain and Papain. Foods, 12(23), 4248. https://doi.org/10.3390/foods12234248