Hypolipidemic, Hypoglycemic, and Ameliorative Effects of Boiled Parsley (Petroselinum crispum) and Mallow (Corchorus olitorius) Leaf Extracts in High-Fat Diet-Fed Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Preparation of Samples
2.3. Determination of Proximate Composition
2.4. Determination of Total Phenolic Content and Antioxidant Capacity
2.5. Determination of Vitamin C
2.6. Animals and Experimental Design
2.7. Biochemical Analysis
2.7.1. Determination of Fasting Blood Glucose and Serum Lipids
2.7.2. Determination of Liver Lipids
2.7.3. Determination of the Livers’ Reduced Glutathione
2.7.4. Determination of Kidney Functions
2.8. Histological Examination
2.9. Statistical Analyses
3. Results
3.1. Proximate Composition
3.2. Mineral Content
3.3. Vitamin C, Total Phenolics, and Antioxidant Capacity
3.4. Experimental Study
3.4.1. Body Weight and Food Intake
3.4.2. Relative Size of Liver, Kidneys, and Adipose Tissue
3.4.3. Blood Glucose and Serum Lipids
3.4.4. Liver Lipids
3.4.5. Oxidative Stress Markers
3.4.6. Kidney Functions
3.4.7. Histological Examination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Elhassaneen, Y.; Mekawy, S.; Khder, S.; Salman, M. Effect of Some Plant Parts Powder on Obesity Complications of Obese Rats. J. Home Econ. 2019, 29, 83–106. [Google Scholar]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int (accessed on 15 June 2023).
- Saudi’s Ministry of Health. Non-Communicable Diseases—Obesity. Available online: https://moh.gov.sa/en (accessed on 15 June 2023).
- Johnson, C.L.; Dohrmann, S.M.; Burt, V.L.; Mohadjer, L.K. National Health and Nutrition Examination Survey: Sample Design, 2011–2014; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014.
- FAO. Fruit and Vegetables—Your Dietary Essentials. In The International Year of Fruits and Vegetables, 2021, Background Paper; FAO: Rome, Italy, 2020. [Google Scholar]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Shekhar, C. Nutritional components in green leafy vegetables: A review. J. Pharmacogn. Phytochem. 2020, 9, 2498–2502. [Google Scholar]
- Dobričević, N.; Šic Žlabur, J.; Voća, S.; Pliestić, S.; Galić, A.; Delić, A.; Fabek Uher, S. Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill.). J. Cent. Eur. Agric. 2019, 20, 900–910. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyż, J. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
- Soliman, G.Z.; Mohamed, F. Nutritional; Fatty Acid and Microbiological Profile of Jew’s mallow (Corchorus olitorius; Family Tiliaceae) that grow in Egypt. Chem. J. 2020, 7, 1–8. [Google Scholar]
- Fabbri, A.D.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Azima, F.; Azben, A.; Refdi, C.; Aulia, H.; Syukri, D. Effect of different cooking methods on the content of vitamin C, phenolics and minerals in several green leafy vegetables. Pak. J. Nutr. 2020, 19, 160–165. [Google Scholar] [CrossRef]
- Helaly, A.; Alkharpotly, A.E.-B.A.; Mady, E.; Craker, L.E. Characterization of four molokhia (Corchorus olitorius) landraces by morphology and chemistry. J. Med. Act. Plants 2017, 5, 1–6. [Google Scholar]
- Agyare, C.; Appiah, T.; Boakye, Y.D.; Apenteng, J.A. Petroselinum crispum: A review. In Medicinal Spices and Vegetables from Africa; Academic Press: Cambridge, MA, USA, 2017; pp. 527–547. [Google Scholar]
- Abdalla, M.; Yousef, M. Effect of cooking on nutritive value of Jew’s mallow (Corchorus olitorius L.) and mallow (Malva parviflora L.) leaves. Alex. J. Food Sci. Technol. 2016, 13, 1–10. [Google Scholar] [CrossRef]
- Traoré, K.; Parkouda, C.; Savadogo, A.; Ba/Hama, F.; Kamga, R.; Traoré, Y. Effect of processing methods on the nutritional content of three traditional vegetables leaves: Amaranth, black nightshade and jute mallow. Food Sci. Nutr. 2017, 5, 1139–1144. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Association of Official Analytical Chemists. Official Method 991.43, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Nsimba, R.Y.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Helmenstine, A.M. Vitamin C determination by iodine titration. Chem. Artic. 2007. Available online: https://www.thoughtco.com/vitamin-c-determination-by-iodine-titration-606322 (accessed on 10 April 2023).
- El-Sahar, G.E.E.-S. A comparative study of the effectiveness of some herbs and medicinal plants in therapy obesity in experimental rats. J. Home Econ. 2018, 34, 17–41. [Google Scholar] [CrossRef]
- Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Izawa, S.; Okada, M.; Matsui, H.; Horita, Y. Quantitative determination of HDL cholesterol IVD. Med. Pharm. Sci. 1997, 37, 1385–1388. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1979, 582, 67–78. [Google Scholar] [CrossRef]
- Bartels, H.; Bohmer, M. Microestimation of creatinine. Clin. Chim. Acta 1971, 32, 81–85. [Google Scholar]
- Francis, P.S.; Lewis, S.W.; Lim, K.F. Analytical methodology for the determination of urea: Current practice and future trends. TrAC Trends Anal. Chem. 2002, 21, 389–400. [Google Scholar] [CrossRef]
- Humason, G.L. Animal Tissue Techniques; W. H. Freeman and Company: San Francisco, CA, USA, 1962. [Google Scholar]
- Ranga, A.D.; Muntean, M. The Effect of Cold Storage on Some Quality Characteristics of Minimally Processed Parsley (Petroselinum crispum), Dill (Anethum graveolens) and Lovage (Levisticum officinale) Giorgiana Mihaela CĂTUNESCU, Maria TOFANĂ, Crina MUREŞAN, Floricuţa. Bull. UASVM Agric. 2012, 69, 2. [Google Scholar]
- Ahmed, F. Nutraceutical potential of molokhia (Corchorus olitorius L.): A versatile green leafy vegetable. Pharmacogn. Res. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Biswas, A.; Dey, S.; Huang, S.; Deng, Y.; Birhanie, Z.M.; Zhang, J.; Akhter, D.; Liu, L.; Li, D. A comprehensive review of C. capsularis and C. olitorius: A source of nutrition, essential phytoconstituents and pharmacological activities. Antioxidants 2022, 11, 1358. [Google Scholar] [CrossRef]
- El-Hadidy, E.M.; Mostafa, O.F. Effect of conventional and microwave drying techniques on flat and curly parsley quality cultivated in egypt. Egypt. J. Agric. Res. 2019, 97, 345–362. [Google Scholar]
- Zia-ur-Rehman, Z.; Islam, M.; Shah, W. Effect of microwave and conventional cooking on insoluble dietary fibre components of vegetables. Food Chem. 2003, 80, 237–240. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Căpriţă, A.; Căpriţă, R.; Simulescu, V.O.; Drehe, R.M. The effect of temperature on soluble dietary fiber fraction in cereals. J. Agroaliment. Process. Technol. 2011, 17, 214–217. [Google Scholar]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef]
- Mabrouki, L.; Rjeibi, I.; Taleb, J.; Zourgui, L. Cardiac ameliorative effect of Moringa oleifera leaf extract in high-fat diet-induced obesity in rat model. BioMed Res. Int. 2020, 2020, 658360. [Google Scholar] [CrossRef] [PubMed]
- Jesch, E.D.; Carr, T.P. Food ingredients that inhibit cholesterol absorption. Prev. Nutr. Food Sci. 2017, 22, 67. [Google Scholar] [PubMed]
- U.S. Department of Agriculture. USDA National Nutrient Database for Standard Reference, Legacy Release. Available online: https://data.nal.usda.gov (accessed on 16 June 2023).
- Islam, M.M. Biochemistry, medicinal and food values of jute (Corchorus capsularis L. and C. olitorius L.) leaf: A review. Int. J. Enhanc. Res. Sci. Technol. Eng. 2013, 2, 135–144. [Google Scholar]
- Kimura, M.; Itokawa, Y. Cooking losses of minerals in foods and its nutritional significance. J. Nutr. Sci. Vitaminol. 1990, 36, S25–S33. [Google Scholar] [CrossRef]
- Reddy, M.B.; Love, M. The impact of food processing on the nutritional quality of vitamins and minerals. In Impact of Processing on Food Safety. Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; Volume 459, pp. 99–106. [Google Scholar]
- Pereira, E.J.; Carvalho, L.M.; Dellamora-Ortiz, G.M.; Cardoso, F.S.; Carvalho, J.L.; Viana, D.S.; Freitas, S.C.; Rocha, M.M. Effects of cooking methods on the iron and zinc contents in cowpea (Vigna unguiculata) to combat nutritional deficiencies in Brazil. Food Nutr. Res. 2014, 58, 20694. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Barrett, D.M. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. J. Food Sci. 2010, 75, R121–R130. [Google Scholar] [CrossRef]
- Sila, D.N.; Duvetter, T.; De Roeck, A.; Verlent, I.; Smout, C.; Moates, G.K.; Hills, B.P.; Waldron, K.K.; Hendrickx, M.; Van Loey, A. Texture changes of processed fruits and vegetables: Potential use of high-pressure processing. Trends Food Sci. Technol. 2008, 19, 309–319. [Google Scholar] [CrossRef]
- Adamczyk, J.; Smołka-Danielowska, D.; Krzątała, A.; Krzykawski, T. Chemical and mineral composition of bottom ash from agri-food biomass produced under low combustion conditions. Int. J. Environ. Sci. Technol. 2023, 1–12. [Google Scholar] [CrossRef]
- Kamalaja, T.; Prashanthi, M.; Rajeswari, K. Effect of cooking methods on bioactive compounds in vegetables. Int. J. Chem. Stud. 2018, 6, 3310–3315. [Google Scholar]
- Bediar, K. Effect of Solvents on the Chemical Composition of Celery (Apium graveolens L.) and parsley (Petroselinum crispum) Extracts. Master’s Thesis, University of Eloued, El Oued, Algeria, 2018. [Google Scholar]
- Loumerem, M.; Alercia, A. Descriptors for jute (Corchorus olitorius L.). Genet. Resour. Crop Evol. 2016, 63, 1103–1111. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Woumbo, C.Y.; Kuate, D.; Womeni, H.M. Cooking methods affect phytochemical composition and anti-obesity potential of soybean (Glycine max) seeds in Wistar rats. Heliyon 2017, 3, e00382. [Google Scholar] [CrossRef] [PubMed]
- Salawu, S.O.; Innocenti, M.; Giaccherini, C.; Akindahunsi, A.A.; Mulinacci, N. Phenolic profiles of four processed tropical green leafy vegetables commonly used as food. Nat. Prod. Commun. 2008, 3, 1934578X0800301220. [Google Scholar] [CrossRef]
- El-Sayed, M.M.; Metwally, N.H.; Ibrahim, I.A.; Abdel-Hady, H.; Abdel-Wahab, B.S.A. Antioxidant Activity, Total Phenolic and Flavonoid Contents of Petroselinum crispum Mill. J. Appl. Life Sci. Int. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Ngadze, R.T.; Verkerk, R.; Nyanga, L.K.; Fogliano, V.; Ferracane, R.; Troise, A.D.; Linnemann, A.R. Effect of heat and pectinase maceration on phenolic compounds and physicochemical quality of Strychnos cocculoides juice. PLoS ONE 2018, 13, e0202415. [Google Scholar] [CrossRef] [PubMed]
- Yazdankhah, S.; Hojjati, M.; Azizi, M.H. Extraction of phenolic compounds from Black Mulberry using aqueous, ethanol and aqueous-ethanol solvents: Effects of heat treatments on chemical properties of the extracts. Nutr. Food Sci. Res. 2019, 6, 39–47. [Google Scholar] [CrossRef]
- Ferracane, R.; Pellegrini, N.; Visconti, A.; Graziani, G.; Chiavaro, E.; Miglio, C.; Fogliano, V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008, 56, 8601–8608. [Google Scholar] [CrossRef]
- Barbosa, R.B.; Santiago, W.D.; Alvarenga, G.F.; da Silva Oliveira, R.E.; Ferreira, V.R.F.; Nelson, D.L.; das Graças Cardoso, M. Physical–chemical profile and quantification of phenolic compounds and polycyclic aromatic hydrocarbons in cachaça samples aged in Oak (Quercus sp.) barrels with different heat treatments. Food Bioprocess. Technol. 2022, 15, 1977–1987. [Google Scholar] [CrossRef]
- Obeng, E.; Kpodo, F.; Tettey, C.; Essuman, E.; Adzinyo, O. Antioxidant, total phenols and proximate constituents of four tropical leafy vegetables. Sci. Afr. 2020, 7, e00227. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Ghafoor, K. Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia. Pak. J. Bot. 2011, 43, 2235–2237. [Google Scholar]
- Merecz-Sadowska, A.; Sitarek, P.; Kucharska, E.; Kowalczyk, T.; Zajdel, K.; Cegliński, T.; Zajdel, R. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 2021, 10, 726. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants 2019, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.P.P.; Ranaweera, K.S.; Rupasinghe, H.V. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, Y.; Wakasugi, Y.; Yoneda, M.; Narukawa, T.; Sugino, K.; Yamashita, T.; Yamada, N.; Ohtsuki, M. Effect of Corchorus olitorius on glucose metabolism, lipid metabo-lism, and bone strength in a rat model of obesity with hyperphagia. Int. J. Anal. Bio.-Sci. 2020, 8, 93–101. [Google Scholar]
- Ajmera, P.; Kalani, S.; Sharma, L. Parsley-benefits & side effects on health. Int. J. Physiol. Nutr. Phys. Educ. 2019, 4, 1236–1242. [Google Scholar]
- Vora, S.R.; Patil, R.B.; Pillai, M.M. Oxidative stress associated alterations in lysosomal enzymes and modulatory effect of Petroselinum crispum [Mill] Nyman Ex AW Hill leaf extract on mouse brain. Int. J. Biol. Med. Res. 2012, 3, 1764–1767. [Google Scholar]
- El Rabey, H.A.; Al-Seeni, M.N.; Al-Ghamdi, H.B. Comparison between the hypolipidemic activity of parsley and carob in hypercholesterolemic male rats. BioMed Res. Int. 2017, 2017, 3098745. [Google Scholar] [CrossRef]
- Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar] [CrossRef]
- Punoševac, M.; Radović, J.; Leković, A.; Kundaković-Vasović, T. A review of botanical characteristics, chemical composition, pharmacological activity and use of parsley. Arch. Pharm. 2021, 71, 177–196. [Google Scholar] [CrossRef]
- Patil, D.; Jain, A.P. In-vivo antidiabetic activity of methanolic extract of Corchorus olitorius for the management of type 2 diabetes. J. Pharmacogn. Phytochem. 2019, 8, 3213–3218. [Google Scholar]
- Anyasor, G.; Adekanye, O.; Adeyemi, O.; Osilesi, O. Hypoglycemic and hypolipidemic effects of Corchorus olitorius leaves as a food supplement on rats with alloxan-induced diabet. Ukr. Biochem. J. 2020, 92, 63–69. [Google Scholar] [CrossRef]
- Adon, A.M.; Ackah, B.; Yayé, G.Y.; Okou, C.O.; Brahima, R.; Djaman, J.A. Evaluation of the effects of Corchorus olitorius L. and Carapa procera in the treatment of obesity. Int. J. Res. Med. Sci. 2018, 6, 1078. [Google Scholar] [CrossRef]
- Nguyen, L.; Farcas, A.; Socaci, S.A.; Tofana, M.; Diaconeasa, Z.M.; Pop, O.L.; Salanta, L. An overview of Saponins—A bioactive group. Bull. UASVM Food Sci. Technol. 2020, 77, 25–36. [Google Scholar] [CrossRef]
- Wang, L.; Yamasaki, M.; Katsube, T.; Sun, X.; Yamasaki, Y.; Shiwaku, K. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. Eur. J. Nutr. 2011, 50, 127–133. [Google Scholar] [CrossRef]
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef]
- Rashwan, N.M. Biological study on the effect of arginine and parsley on renal toxicity in rats. World J. Med. Sci. 2012, 7, 264–269. [Google Scholar]
- Alkhalaf, A.; Alrusayni, S.A.; Khalid, A.; Aloraifi, A.; AL-Shammari, O.; Dhanarasu, S. Efficacy of parsley (Petroselinum crispum) leaves extract and decoction on status of lipid profile and osmotic fragility in gentamicin-induced nephrotoxicity in rats. J. Chem. Pharm. Res. 2016, 8, 948–957. [Google Scholar]
Parameter | Parsley | Mallow | ||||||
---|---|---|---|---|---|---|---|---|
Fresh | Blanched | Boiled | Microwaved | Fresh | Blanched | Boiled | Microwaved | |
Moisture (%) | 86.97 ± 0.49 b | 90.54 ± 0.67 a | 90.24 ± 0.02 a | 91.14 ± 0.31 a | 86.95 ± 0.06 c | 92.95 ± 0.06 a | 90.95 ± 0.02 b | 92.68 ± 0.01 a |
TDS (%) | 13.03 ± 0.4 a | 9.46 ± 0.67 b | 9.76 ± 0.02 b | 8.86 ± 0.31 b | 13.05 ± 0.06 a | 7.04 ± 0.06 c | 9.05 ± 0.02 b | 7.32 ± 0.01 c |
Ash (%) | 12.94 ± 0.9 a | 8.95 ± 1.86 c | 11.83 ± 0.41 b | 9.8 ± 0.52 bc | 16.15 ± 0.04 a | 16.38 ± 0.08 a | 15.48 ± 0.67 a | 15.91 ± 0.12 a |
Dietary Fiber (g/100 g) * | 24.27 ± 0.00 a | 23.79 ± 0.00 b | 23.51 ± 0.00 d | 23.66 ± 0.00 c | 32.77 ± 0.00 c | 32.87 ± 0.00 b | 32.89 ± 0.00 a | 32.65 ± 0.00 d |
Element | Parsley | Mallow | ||||||
---|---|---|---|---|---|---|---|---|
Fresh | Blanched | Boiled | Microwaved | Fresh | Blanched | Boiled | Microwaved | |
Fe | 13.92 ± 0.38 a | 8.28 ± 0.21 b | 12.18 ± 0.86 a | 7.36 ± 0.52 b | 8.61 ± 0.15 b | 11.75 ± 0.59 a | 7.15 ± 0.62 b | 8.11 ± 1.64 b |
Zn | 1.64 ± 0.03 a | 1.07 ± 0.04 b | 1.57 ± 0.07 a | 0.93 ± 0.07 c | 0.84 ± 0.01a | 0.53 ± 0.04 b | 0.36 ± 0.05 c | 0.39 ± 0.07 bc |
Mg | 181.52 ± 1.36 a | 182.8 ± 0.47 a | 182.62 ± 0.29 a | 179.63 ± 1.43 b | 185.49 ± 0.65 a | 184.89 ± 0.28 a | 184.52 ± 2.89 a | 180.35 ± 0.69 b |
Ca | 325.35 ± 1.20 a | 227.58 ± 2.18 d | 287.83 ± 1.39 b | 259.61 ± 3.41 c | 594.68 ± 4.45 b | 694.1 ± 4.92 a | 558.51 ± 2.32 c | 548.74 ± 0.14 d |
Parameter | Parsley | Mallow | ||||||
---|---|---|---|---|---|---|---|---|
Fresh | Blanched | Boiled | Microwaved | Fresh | Blanched | Boiled | Microwaved | |
Vitamin C (mg/100 g) | 100 ± 0.00 a | 97.44 ± 0.00 b | 92.31 ± 0.00 c | 51.28 ± 0.00 d | 76.92 ± 0.00 a | 71.79 ± 0.00 b | 66.67 ± 0.00 c | 61.54 ± 0.00 d |
TPC (mg GAE/g) | 143.35 ± 1.80 c | 178.3 ± 3.96 b | 184.87 ± 3.67 a | 176.73 ± 5.11 b | 36.26 ± 3.88 d | 117.85 ± 1.29 c | 162.38 ± 2.64 a | 135.64 ± 1.65 b |
AOC (%) | 25.18 ± 1.88 b | 29.79 ± 1.03 b | 47.83 ± 2.52 a | 45.87 ± 0.29 a | 12.34 ± 2.77 c | 43.06 ± 3.68 b | 88.41 ± 0.45 a | 87.33 ± 0.49 a |
Groups | Initial Weight (g) | Final Weight (g) | Weight Gain (g) | Weight Gain (%) | Food Intake (g/Day) |
---|---|---|---|---|---|
NC | 269.15 ± 10.73 b | 303.8 ± 12.51 c | 34.1 ± 1.17 b | 12.68 ± 0.82 b | 19.43 ± 2.75 a |
HFD | 308.5 ± 7.8 a | 373.8 ± 8.03 a | 65.3 ± 4.8 a | 21.2 ± 1.8 a | 17.87 ± 3.41 ab |
HFD + ME | 307.7 ± 28.0 a | 345.4 ± 15.01 b | 37.7 ± 17.8 b | 12.7 ± 6.5 b | 15.39 ± 3.29 b |
HFD + PE | 307.8 ± 26.49 a | 319.3 ± 15.8 c | 11.4 ± 5.8 c | 4.12 ± 2.4 c | 14.85 ± 2.96 b |
Groups | Liver (g) | Kidneys (g) | Adipose Tissue (g) |
---|---|---|---|
NC | 7.88 ± 0.82 ab | 1.67 ± 0.10 a | 2.22 ± 1.23 ab |
HFD | 9.07 ± 0.30 a | 2.07 ± 0.11 a | 4.92 ± 0.69 a |
HFD + ME | 7.05 ± 0.70 b | 1.89 ± 0.15 a | 3.02 ± 1.52 ab |
HFD + PE | 7.75 ± 0.34 ab | 1.76 ± 0.21 a | 2.07 ± 1.09 b |
Groups | FBG | TC | Triglycerides | HDL | LDL | VLDL |
---|---|---|---|---|---|---|
NC | 78.4 ± 0.9 d | 60.45 ± 1.2 c | 47.18 ± 1.3 c | 28.49 ± 2.7 a | 22.53 ± 1.6 c | 9.44 ± 0.3 c |
HFD | 116.73 ± 2.2 a | 99.01 ± 2.8 a | 89.18 ± 4.6 a | 19.23 ± 3.4 b | 61.95 ± 6.5 a | 17.84 ± 0.9 a |
HFD + ME | 94.49 ± 3.7 b | 74.61 ± 3.8 b | 68.36 ± 2.2 b | 24.12 ± 0.9 ab | 36.82 ± 4.1 b | 13.67 ± 0.4 b |
HFD + PE | 83.78 ± 0.0 c | 60.18 ± 4.7 c | 46.63 ± 2.9 c | 26.15 ± 2.9 a | 24.7 ± 4.4 c | 9.33 ± 0.6 c |
Groups | Cholesterol (mg/g WW) | Triglycerides (mg/g WW) | Liver Fat (%) | GSH (µmol/g WW) |
---|---|---|---|---|
NC | 4.73 ± 2.47 b | 4.21 ± 3.82 b | 7.85 ± 1.20 ab | 11.87 ± 1.26 a |
HFD | 12.13 ± 1.85 a | 13.06 ± 4.92 a | 9.98 ± 3.99 a | 6.43 ± 1.42 b |
HFD + ME | 7.80 ± 3.85 ab | 6.14 ± 0.32 ab | 4.07 ± 0.93 b | 11.42 ± 1.84 a |
HFD + PE | 3.37 ± 1.26 b | 4.31 ± 2.45 b | 3.91 ± 1.23 b | 12.12 ± 0.62 a |
Groups | Creatinine | Urea |
---|---|---|
NC | 0.26 ± 0.0 b | 55.01 ± 2.90 b |
HFD | 0.41 ± 0.1 a | 65.76 ± 3.85 a |
HFD + ME | 0.26 ± 0.0 b | 58.61 ± 1.72 b |
HFD + PE | 0.29 ± 0.1 ab | 58.61 ± 2.16 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.A.; Ahmed, W.E.; Algonaiman, R.; Alhomaid, R.M.; Almujaydil, M.S.; Althwab, S.A.; Elhassan, A.E.M.; Mousa, H.M. Hypolipidemic, Hypoglycemic, and Ameliorative Effects of Boiled Parsley (Petroselinum crispum) and Mallow (Corchorus olitorius) Leaf Extracts in High-Fat Diet-Fed Rats. Foods 2023, 12, 4303. https://doi.org/10.3390/foods12234303
Almutairi AA, Ahmed WE, Algonaiman R, Alhomaid RM, Almujaydil MS, Althwab SA, Elhassan AEM, Mousa HM. Hypolipidemic, Hypoglycemic, and Ameliorative Effects of Boiled Parsley (Petroselinum crispum) and Mallow (Corchorus olitorius) Leaf Extracts in High-Fat Diet-Fed Rats. Foods. 2023; 12(23):4303. https://doi.org/10.3390/foods12234303
Chicago/Turabian StyleAlmutairi, Albandari A., Waheeba E. Ahmed, Raya Algonaiman, Raghad M. Alhomaid, Mona S. Almujaydil, Sami A. Althwab, Ard ElShifa M. Elhassan, and Hassan Mirghani Mousa. 2023. "Hypolipidemic, Hypoglycemic, and Ameliorative Effects of Boiled Parsley (Petroselinum crispum) and Mallow (Corchorus olitorius) Leaf Extracts in High-Fat Diet-Fed Rats" Foods 12, no. 23: 4303. https://doi.org/10.3390/foods12234303
APA StyleAlmutairi, A. A., Ahmed, W. E., Algonaiman, R., Alhomaid, R. M., Almujaydil, M. S., Althwab, S. A., Elhassan, A. E. M., & Mousa, H. M. (2023). Hypolipidemic, Hypoglycemic, and Ameliorative Effects of Boiled Parsley (Petroselinum crispum) and Mallow (Corchorus olitorius) Leaf Extracts in High-Fat Diet-Fed Rats. Foods, 12(23), 4303. https://doi.org/10.3390/foods12234303