Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Groups of Propolis and Sample Collection
2.3. Preparation of Propolis Extracts
2.4. Characterization of Propolis Samples
2.4.1. Wax Determination
2.4.2. Mechanical Impurities Content
2.4.3. Resin Content
2.4.4. Ash Content Determination
2.4.5. Total Mineral and High Metal Determination
2.4.6. Palynological Composition
2.5. Determination of Total Polyphenol Content
2.6. Determination of Total Flavonoids, Flavone, and Flavonol Content
2.7. HPLC Determination
2.8. Antioxidant Properties
2.9. Data Analysis
3. Results
3.1. Physicochemical Characterization
3.2. Mineral Content
3.3. Palynological Composition
3.4. Bioactive Compounds
3.4.1. Quantitative Determination of Total Polyphenols and Flavonoid, Flavone, and Flavonol Content
3.4.2. Identification of Chemical Constituents
3.5. Antioxidant Activity
3.6. Correlation and Multiple Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velikova, M.; Bankova, V.; Sorkun, K.; Houcine, S.; Tsvetkova, I.; Kujumgiev, A. Propolis from the Mediterranean Region: Chemical Composition and Antimicrobial Activity. Z. Für Naturforschung C 2000, 55, 790–793. [Google Scholar] [CrossRef]
- Bankova, V.; Marcucci, M. Standardization of Propolis: Present Status and Perspectives. Bee World 2000, 81, 182–188. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.K.S.; Denadai, M.; de Oliveira, C.S.; Nunes, M.L.; Narain, N. Evaluation of Bioactive Compounds Potential and Antioxidant Activity of Brown, Green and Red Propolis from Brazilian Northeast Region. Food Res. Int. 2017, 101, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Afata, T.N.; Nemo, R.; Ishete, N.; Tucho, G.T.; Dekebo, A. Phytochemical Investigation, Physicochemical Characterization, and Antimicrobial Activities of Ethiopian Propolis. Arab. J. Chem. 2022, 15, 103931. [Google Scholar] [CrossRef]
- Kuropatnicki, A.K.; Szliszka, E.; Kłósek, M.; Król, W. The Beginnings of Modern Research on Propolis in Poland. Evid. Based Complement. Altern. Med. 2013, 2013, 983974. [Google Scholar] [CrossRef]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Tlak Gajger, I.; Vlainić, J. Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef]
- Osés, S.M.; Pascual-Maté, A.; Fernández-Muiño, M.A.; López-Díaz, T.M.; Sancho, M.T. Bioactive Properties of Honey with Propolis. Food Chem. 2016, 196, 1215–1223. [Google Scholar] [CrossRef]
- Bankova, V.; Christoy, R.; Stoev, G.; Popov, S. Determination of Phenolics from Propolis by Capillary Gas Chromatography. J. Chromatogr. A 1992, 607, 150–153. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Borba, R.S.; Wilson, M.; Spivak, M. Propolis Counteracts Some Threats to Honey Bee Health. Insects 2017, 8, 46. [Google Scholar] [CrossRef]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin. Evid. Based Complement. Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- El Menyiy, N.; Bakour, M.; El Ghouizi, A.; El Guendouz, S.; Lyoussi, B. Influence of Geographic Origin and Plant Source on Physicochemical Properties, Mineral Content, and Antioxidant and Antibacterial Activities of Moroccan Propolis. Int. J. Food Sci. 2021, 2021, 5570224. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; I Falcão, S.; Isla, M.I.; Moreno, M.I.N.; et al. Standard Methods for Apis Mellifera Propolis Research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Orsi, R.O.; Bankova, V. Effect of Propolis, Some Isolated Compounds and Its Source Plant on Antibody Production. J. Ethnopharmacol. 2005, 98, 301–305. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef]
- Bobiş, O. Plants: Sources of Diversity in Propolis Properties. Plants 2022, 11, 2298. [Google Scholar] [CrossRef]
- Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L.F. Propolis Research and the Chemistry of Plant Products. Nat. Prod. Rep. 2011, 28, 925. [Google Scholar] [CrossRef]
- Teixeira, É.W.; Message, D.; Negri, G.; Salatino, A.; Stringheta, P.C. Seasonal Variation, Chemical Composition and Antioxidant Activity of Brazilian Propolis Samples. Evid. Based Complement. Altern. Med. 2010, 7, 307–315. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V. Contemporary Methods for the Extraction and Isolation of Natural Products. BMC Chem. 2023, 17, 68. [Google Scholar] [CrossRef]
- Chimshirova, R.; Popova, M.; Chakir, A.; Valcheva, V.; Dimitrov, S.; Trusheva, B.; Romane, A.; Bankova, V. Antimicrobial Triterpenoids and Ingol Diterpenes from Propolis of Semi-Arid Region of Morocco. Molecules 2022, 27, 2206. [Google Scholar] [CrossRef]
- Tosic, S.; Stojanovic, G.; Mitic, S.; Pavlovic, A.; Alagic, S. Mineral Composition of Selected Serbian Propolis Samples. J. Apic. Sci. 2017, 61, 5–15. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission Procedural Manual; FAO: Italy, Rome; WHO: Geneva, Switzerland, 2023; ISBN 978-92-5-137755-0.
- Carpes, S.T.; De Alencar, S.M.; Cabral, I.S.R.; Oldoni, T.L.C.; Mourão, G.B.; Haminiuk, C.W.I.; Da Luz, C.F.P.; Masson, M.L. Polyphenols and Palynological Origin of Bee Pollen of Apis Mellifera L. from Brazil. Characterization of Polyphenols of Bee Pollen. CyTA—J. Food 2013, 11, 150–161. [Google Scholar] [CrossRef]
- Pyrgioti, E.; Graikou, K.; Aligiannis, N.; Karabournioti, S.; Chinou, I. Qualitative Analysis Related to Palynological Characterization and Biological Evaluation of Propolis from Prespa National Park (Greece). Molecules 2022, 27, 7018. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical Composition, Antioxidant Activity and Antimicrobial Properties of Propolis Extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Belmehdi, O.; El Menyiy, N.; Bouyahya, A.; El Baaboua, A.; El Omari, N.; Gallo, M.; Montesano, D.; Naviglio, D.; Zengin, G.; Skali Senhaji, N.; et al. Recent Advances in the Chemical Composition and Biological Activities of Propolis. Food Rev. Int. 2022, 39, 6078–6128. [Google Scholar] [CrossRef]
- Belmehdi, O.; Douhri, B.; Bouyahya, A.; Laghmouchi, Y.; Senhaji, N.S.; Abrini, J. Phenolic Content, Antibacterial and Antioxidant Activities of Moroccan Propolis. CBC 2020, 15, 696–705. [Google Scholar] [CrossRef]
- Ciappini, M.C. Polyhenolic Profile of Floral Honeys in Correlation with Their Pollen Spectrum. J. Apic. Res. 2019, 58, 772–779. [Google Scholar] [CrossRef]
- Rojczyk, E.; Klama-Baryła, A.; Łabuś, W.; Wilemska-Kucharzewska, K.; Kucharzewski, M. Historical and Modern Research on Propolis and Its Application in Wound Healing and Other Fields of Medicine and Contributions by Polish Studies. J. Ethnopharmacol. 2020, 262, 113159. [Google Scholar] [CrossRef]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; Fernández-Muiño, M.A.; Sancho, M.T. Design of a Food Product Composed of Honey and Propolis. J. Apic. Res. 2015, 54, 461–467. [Google Scholar] [CrossRef]
- EFSA. European Food Safety Authority 2010 Annual Report; EFSA: Parma, Italy, 2010.
- Abdallah, S.; El Moghazy, G.; Elshemy, A.; Abd Allah, A.; Nader, H. Studying the Quality of Local Propolis and Evaluation of Its Effect as Antimicrobial Food Additive. Egypt J. Chem. 2022, 66, 381–389. [Google Scholar] [CrossRef]
- Lim, J.R.; Chua, L.S.; Dawood, D.A.S. Evaluating Biological Properties of Stingless Bee Propolis. Foods 2023, 12, 2290. [Google Scholar] [CrossRef] [PubMed]
- El-Sakhawy, M.; Salama, A.; Mohamed, S.A.A. Propolis Applications in Food Industries and Packaging. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S.H. Valorization of Bioactive Compounds in Fruit Pomace from Agro-Fruit Industries: Present Insights and Future Challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Baldi Coronel, B.M. Uso Del Propóleo En El Desarrollo de Alimentos Funcionales de Alto Poder Antioxidante. Cienc. Docencia Y Tecnol.—Supl. 2019, 9, 255–274. [Google Scholar]
- Bonvehí, J.S.; Gutiérrez, A.L. Antioxidant Activity and Total Phenolics of Propolis from the Basque Country (Northeastern Spain). J. Am. Oil Chem. Soc. 2011, 88, 1387–1395. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef]
- Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; Adanero-Jorge, F.; García-Fernandez, C. Antimicrobial Activity of Spanish Propolis against Listeria Monocytogenes and Other Listeria Strains. Microorganisms 2023, 11, 1429. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated Methods for the Quantification of Biologically Active Constituents of Poplar-Type Propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. New Emerging Fields of Application of Propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 22nd ed.; AOAC International: Rockville, MD, USA, 2023; Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 2 November 2023).
- Warakomska, Z.; Maciejewicz, W. Microscopic Analysis of Propolis from Polish Regions. Apidologie 1992, 23, 277–283. [Google Scholar] [CrossRef]
- Palomino G., L.R.; García P., C.M.; Gil G., J.H.; Rojano, B.A.; Durango R., D.L. Determination of Phenolic Content and Evaluation of Antioxidant Activity of Propolis from Antioquia (Colombia). Vitae 2009, 16, 388–395. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T.; Ratajczak, I. Phenolic Profile and Antioxidant Activity of Propolis Extracts From Poland. Nat. Prod. Commun. 2019, 14, 1934578X1984977. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESI-MS/MS Methods for Metabolite Profiling of Propolis Extracts. J. Pharm. Biomed. Anal. 2011, 55, 934–948. [Google Scholar] [CrossRef] [PubMed]
- Riego, M.; Rey, S.; Hevia, D.; Muñoz, H. Solvents’ Influence in the Measurement of Phenolic Compounds and Antioxidant Capacity in Blueberries Extracts. In Proceedings of the BQC—Bioquochem; International Society of Antioxidants: Valetta, Malta, 2019. [Google Scholar]
- Káňová, K.; Petrásková, L.; Pelantová, H.; Rybková, Z.; Malachová, K.; Cvačka, J.; Křen, V.; Valentová, K. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. J. Agric. Food Chem. 2020, 68, 11197–11206. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.D.G.; Doughmi, O.; Aazza, S.; Antunes, D.; Lyoussi, B. Antioxidant, Anti-Inflammatory and Acetylcholinesterase Inhibitory Activities of Propolis from Different Regions of Morocco. Food Sci. Biotechnol. 2014, 23, 313–322. [Google Scholar] [CrossRef]
- Finger, D.; Filho, I.K.; Torres, Y.R.; Quináia, S.P. Propolis as an Indicator of Environmental Contamination by Metals. Bull. Env. Contam. Toxicol. 2014, 92, 259–264. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Bermejo, F.J.O. Element Content of Propolis Collected from Different Areas of South Spain. Environ. Monit. Assess. 2013, 185, 6035–6047. [Google Scholar] [CrossRef]
- EFSA. Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on Lead in Food. EFS2 2010, 8, 1570. [Google Scholar] [CrossRef]
- Okińczyc, P.; Widelski, J.; Ciochoń, M.; Paluch, E.; Bozhadze, A.; Jokhadze, M.; Mtvarelishvili, G.; Korona-Głowniak, I.; Krzyżanowska, B.; Kuś, P.M. Phytochemical Profile, Plant Precursors and Some Properties of Georgian Propolis. Molecules 2022, 27, 7714. [Google Scholar] [CrossRef] [PubMed]
- Fathi Hafshejani, S.; Lotfi, S.; Rezvannejad, E.; Mortazavi, M.; Riahi-Madvar, A. Correlation between Total Phenolic and Flavonoid Contents and Biological Activities of 12 Ethanolic Extracts of Iranian Propolis. Food Sci. Nutr. 2023, 11, 4308–4325. [Google Scholar] [CrossRef] [PubMed]
- Vică, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedűş-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungău, S. The Antimicrobial Activity of Honey and Propolis Extracts from the Central Region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Pyrgioti, E.; Graikou, K.; Cheilari, A.; Chinou, I. Assessment of Antioxidant and Antimicrobial Properties of Selected Greek Propolis Samples (North East Aegean Region Islands). Molecules 2022, 27, 8198. [Google Scholar] [CrossRef] [PubMed]
- Falcão, S.I.; Tomás, A.; Vale, N.; Gomes, P.; Freire, C.; Vilas-Boas, M. Phenolic Quantification and Botanical Origin of Portuguese Propolis. Ind. Crops Prod. 2013, 49, 805–812. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, M.; Heghedűş-Mîndru, R.C.; Glevitzky, I.; Matei, H.V.; Balici, S.; Popa, M.; Teodoru, C.A. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. Int. J. Environ. Res. Public Health 2022, 19, 2640. [Google Scholar] [CrossRef]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Analysis of Polyphenols in Honey: Extraction, Separation and Quantification Procedures. Sep. Purif. Rev. 2018, 47, 142–158. [Google Scholar] [CrossRef]
- El Ghouizi, A.; El Menyiy, N.; Falcão, S.I.; Vilas-Boas, M.; Lyoussi, B. Chemical Composition, Antioxidant Activity, and Diuretic Effect of Moroccan Fresh Bee Pollen in Rats. Vet. World 2020, 13, 1251–1261. [Google Scholar] [CrossRef]
Wax (%) | Resin (%) | Ash (%) | Impurities (%) | Moisture (%) | |
---|---|---|---|---|---|
P1 | 19.80 ± 0.57 | 60.52 ± 2.66 | 0.81 ± 0.04 | 0.06 ± 0.00 | 12.87 ± 0.01 |
P2 | 11.02 ± 4.41 | 56.04 ± 16.00 | 0.58 ± 0.03 | 0.04 ± 0.01 | 19.20 ± 0.01 |
P3 | 18.74 ± 1.91 | 55.05 ± 1.89 | 2.92 ± 0.21 | 0.01 ± 0.01 | 22.29 ± 0.01 |
P4 | 8.68 ± 1.20 | 83.52 ± 0.85 | 0.58 ± 0.02 | 0.06 ± 0.04 | 1.23 ± 0.01 |
P5 | 18.87 ± 0.63 | 67.46 ± 3.05 | 0.71 ± 0.02 | 0.06 ± 0.01 | 6.96 ± 0.01 |
P6 | 31.43 ± 1.15 | 50.73 ± 6.20 | 0.92 ± 0.03 | 0.09 ± 0.00 | 7.92 ± 0.01 |
P7 | 7.64 ± 0.46 | 71.56 ± 4.41 | 0.76 ± 0.02 | 0.07 ± 0.00 | 12.94 ± 0.01 |
P8 | 21.24 ± 0.76 | 62.20 ± 3.22 | 0.60 ± 0.02 | 0.04 ± 0.01 | 11.97 ± 0.01 |
P9 | 9.90 ± 1.22 | 70.22 ± 1.54 | 0.75 ± 0.04 | 0.09 ± 0.00 | 10.13 ± 0.01 |
P10 | 11.91 ± 0.73 | 71.63 ± 9.17 | 0.076 ± 0.00 | 0.04 ± 0.01 | 11.70 ± 0.01 |
P11 | 13.74 ± 0.88 | 73.79 ± 3.72 | 0.44 ± 0.00 | 0.03 ± 0.00 | 9.04 ± 0.01 |
P12 | 21.13 ± 1.61 | 65.73 ± 1.60 | 0.92 ± 0.06 | 0.05 ± 0.01 | 7.21 ± 0.01 |
P13 | 17.23 ± 0.24 | 66.91 ± 5.25 | 0.92 ± 0.00 | 0.05 ± 0.00 | 9.94 ± 0.01 |
P14 | 22.98 ± 1.63 | 61.08 ± 3.78 | 0.86 ± 0.01 | 0.06 ± 0.02 | 9.08 ± 0.01 |
P15 | 27.82 ± 0.70 | 56.90 ± 1.33 | 1.47 ± 0.04 | 0.07 ± 0.00 | 6.80 ± 0.01 |
P16 | 25.19 ± 1.92 | 48.20 ± 0.99 | 0.79 ± 0.03 | 0.15 ± 0.00 | 10.82 ± 0.01 |
P17 | 27.90 ± 4.08 | 48.50 ± 4.51 | 0.79 ± 0.02 | 0.15 ± 0.02 | 7.81 ± 0.01 |
P18 | 15.64 ± 0.88 | 66.82 ± 1.69 | 1.77 ± 0.16 | 0.08 ± 0.00 | 7.76 ± 0.01 |
P19 | 39.04 ± 0.67 | 47.66 ± 1.46 | 0.65 ± 0.02 | 0.05 ± 0.01 | 7.64 ± 0.01 |
P20 | 14.83 ± 1.06 | 66.86 ± 2.63 | 1.32 ± 0.57 | 0.11 ± 0.01 | 5.99 ± 0.01 |
P21 | 11.37 ± 0.81 | 76.26 ± 1.80 | 0.67 ± 0.03 | 0.04 ± 0.00 | 7.70 ± 0.01 |
P22 | 10.64 ± 0.16 | 74.70 ± 0.86 | 0.83 ± 0.11 | 0.04 ± 0.00 | 9.83 ± 0.01 |
P23 | 14.08 ± 0.53 | 73.88 ± 1.05 | 0.86 ± 0.02 | 0.03 ± 0.01 | 8.18 ± 0.01 |
P24 | 11.16 ± 0.61 | 72.62 ± 1.73 | 1.01 ± 0.57 | 0.05 ± 0.01 | 10.21 ± 0.01 |
P25 | 14.05 ± 1.06 | 72.61 ± 5.08 | 0.65 ± 0.01 | 0.05 ± 0.00 | 7.69 ± 0.01 |
P26 | 14.38 ± 1.45 | 72.51 ± 1.56 | 0.69 ± 0.03 | 0.06 ± 0.00 | 6.42 ± 0.01 |
P27 | 13.86 ± 1.10 | 68.73 ± 1.22 | 0.45 ± 0.00 | 0.05 ± 0.00 | 11.96 ± 0.01 |
P28 | 17.66 ± 0.77 | 67.99 ± 2.44 | 0.48 ± 0.11 | 0.03 ± 0.01 | 13.87 ± 0.01 |
P29 | 15.06 ± 0.97 | 65.19 ± 5.10 | 0.47 ± 0.03 | 0.04 ± 0.01 | 15.27 ± 0.01 |
P30 | 16.43 ± 0.42 | 72.19 ± 5.55 | 0.33 ± 0.12 | 0.04 ± 0.00 | 7.15 ± 0.01 |
P31 | 22.17 ± 1.19 | 67.87 ± 1.70 | 0.53 ± 0.07 | 0.04 ± 0.00 | 5.43 ± 0.01 |
Mean values | 17.58 ± 7.12 | 65.25 ± 8.50 | 0.85 ± 0.49 | 0.06 ± 0.03 | 16.26 ± 4.87 |
Ca | Cu | Fe | Zn | K | Mg | Mn | Pb | Hg | Cd | |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 739.72 ± 8.51 | 0.94 ± 0.09 | 60.63 ± 1.19 | 27.58 ± 0.78 | 2198.95 ± 6.93 | 221.55 ± 3.86 | 9.93 ± 0.31 | 4193.15 ± 1099.45 | 20.72 ± 2.00 | 30.17 ± 0.07 |
P2 | 514.38 ± 9.64 | 0.52 ± 0.01 | 50.35 ± 1.87 | 13.49 ± 0.15 | 1368.48 ± 9.17 | 119.50 ± 1.73 | 14.26 ± 0.13 | 173.42 ± 17.89 | 9.86 ± 1.92 | 24.98 ± 0.16 |
P3 | 2966.01 ± 353.69 | 3.68 ± 0.15 | 521.95 ± 47.26 | 319.01 ± 4.90 | 1840.33 ± 12.81 | 322.25 ± 14.48 | 27.62 ± 0.31 | 42,020.36 ± 146.79 | 10.35 ± 0.13 | 39.10 ± 0.11 |
P4 | 735.80 ± 45.83 | 0.80 ± 0.04 | 61.77 ± 5.54 | 24.21 ± 0.53 | 776.89 ± 8.44 | 104.05 ± 1.47 | 3.06 ± 0.37 | 187.44 ± 12.39 | 7.20 ± 0.23 | 17.28 ± 0.51 |
P5 | 656.94 ± 30.17 | 0.75 ± 0.01 | 48.50 ± 1.68 | 20.99 ± 1.02 | 1502.15 ± 4.17 | 256.29 ± 15.73 | 13.94 ± 0.58 | 205.18 ± 110.13 | 6.33 ± 0.56 | 20.78 ± 0.26 |
P6 | 851.16 ± 27.32 | 2.18 ± 0.05 | 87.06 ± 2.91 | 106.41 ± 1.44 | 2532.08 ± 39.46 | 321.20 ± 4.38 | 30.31 ± 0.40 | 1114.07 ± 106.31 | 6.45 ± 0.79 | 22.95 ± 1.28 |
P7 | 675.95 ± 12.39 | 1.05 ± 0.04 | 43.88 ± 10.60 | 31.68 ± 2.09 | 2561.94 ± 79.92 | 348.38 ± 14.16 | 13.67 ± 0.81 | 178.47 ± 4.93 | 2.98 ± 1.17 | 18.56 ± 0.48 |
P8 | 638.64 ± 53.02 | 0.93 ± 0.01 | 78.41 ± 17.53 | 33.42 ± 0.37 | 1519.16 ± 25.79 | 199.88 ± 0.59 | 13.83 ± 1.64 | 2258.74 ± 1948.59 | 2.48 ± 0.30 | 14.05 ± 0.11 |
P9 | 731.23 ± 7.16 | 1.54 ± 0.11 | 43.78 ± 2.42 | 19.57 ± 0.04 | 2234.26 ± 20.51 | 362.68 ± 9.20 | 18.09 ± 0.82 | 91.52 ± 4.69 | 4.52 ± 0.69 | 18.54 ± 1.14 |
P10 | 632.82 ± 22.58 | 0.99 ± 0.08 | 48.15 ± 2.25 | 25.49 ± 1.70 | 2359.82 ± 47.19 | 299.92 ± 4.87 | 12.52 ± 0.73 | 577.40 ± 216.03 | 2.63 ± 0.07 | 36.35 ± 0.40 |
P11 | 412.43 ± 11.28 | 3.70 ± 0.14 | 44.25 ± 1.04 | 15.81 ± 0.59 | 1006.92 ± 7.68 | 87.59 ± 1.24 | 2.75 ± 0.13 | 222.22 ± 58.96 | 1.90 ± 0.08 | 17.51 ± 1.77 |
P12 | 1320.72 ± 118.02 | 1.64 ± 0.11 | 213.46 ± 49.78 | 204.66 ± 36.90 | 996.58 ± 83.92 | 155.14 ± 10.47 | 4.99 ± 0.06 | 3161.28 ± 1149.33 | 4.87 ± 0.92 | 32.25 ± 0.35 |
P13 | 1144.17 ± 32.88 | 0.70 ± 0.01 | 26.59 ± 2.69 | 34.39 ± 0.42 | 3587.01 ± 93.95 | 268.38 ± 5.29 | 6.09 ± 0.43 | 290.24 ± 0.41 | 1.71 ± 0.32 | 44.15 ± 1.61 |
P14 | 1069.32 ± 115.58 | 1.18 ± 0.08 | 167.86 ± 92.12 | 78.40 ± 6.68 | 1636.67 ± 78.91 | 207.37 ± 31.69 | 7.62 ± 0.60 | 2653.20 ± 595.31 | 4.18 ± 0.26 | 35.32 ± 2.46 |
P15 | 919.58 ± 70.29 | 1.22 ± 0.01 | 200.27 ± 9.26 | 27.43 ± 2.17 | 2247.08 ± 216.69 | 280.18 ± 19.05 | 24.01 ± 1.17 | 450.50 ± 55.20 | 12.85 ± 1.48 | 57.04 ± 1.90 |
P16 | 683.50 ± 36.96 | 5.82 ± 3.36 | 71.44 ± 0.06 | 65.17 ± 1.85 | 1592.88 ± 12.32 | 345.66 ± 8.59 | 63.27 ± 0.14 | 746.17 ± 345.72 | 3.38 ± 0.69 | 17.10 ± 0.31 |
P17 | 750.36 ± 56.90 | 3.59 ± 0.07 | 66.57 ± 1.97 | 68.36 ± 0.47 | 1755.00 ± 17.45 | 370.40 ± 27.27 | 52.29 ± 0.19 | 455.72 ± 148.48 | 2.43 ± 0.98 | 23.23 ± 0.44 |
P18 | 2454.39 ± 18.76 | 3.04 ± 0.36 | 473.1 ± 13.68 | 442.85 ± 12.38 | 1640.94 ± 11.64 | 304.51 ± 4.93 | 9.39 ± 0.13 | 35,252.02 ± 7936.88 | 39.14 ± 2.05 | 34.26 ± 2.12 |
P19 | 784.14 ± 76.46 | 0.83 ± 0.05 | 72.08 ± 5.69 | 4.20 ± 0.28 | 1071.86 ± 75.31 | 195.76 ± 17.76 | 3.38 ± 0.27 | 168.12 ± 28.67 | 5.73 ± 0.81 | 4.59 ± 0.29 |
P20 | 1653.01 ± 10.99 | 3.37 ± 0.35 | 302.88 ± 6.80 | 204.36 ± 34.49 | 1629.66 ± 92.48 | 309.14 ± 7.55 | 13.47 ± 0.41 | 1531.35 ± 85.34 | 5.33 ± 0.12 | 48.24 ± 1.13 |
P21 | 676.05 ± 2.85 | 0.75 ± 0.05 | 69.01 ± 1.67 | 115.87 ± 4.07 | 1656.02 ± 67.55 | 170.18 ± 2.58 | 10.46 ± 2.62 | 4349.00 ± 1067.64 | 2.21 ± 0.51 | 19.29 ± 1.19 |
P22 | 647.01 ± 52.38 | 0.73 ± 0.04 | 61.57 ± 0.03 | 43.71 ± 6.72 | 1515.78 ± 21.16 | 152.98 ± 5.58 | 8.42 ± 0.99 | 1799.98 ± 204.40 | 2.02 ± 0.46 | 19.32 ± 0.68 |
P23 | 646.43 ± 14.55 | 1.20 ± 0.29 | 85.02 ± 16.11 | 79.72 ± 18.87 | 1589.56 ± 15.02 | 166.38 ± 1.46 | 9.47 ± 0.01 | 3325.59 ± 482.50 | 2.91 ± 0.01 | 20.64 ± 0.45 |
P24 | 921.90 ± 5.43 | 0.80 ± 0.23 | 59.33 ± 5.60 | 46.47 ± 4.84 | 2331.06 ± 24.51 | 230.69 ± 3.26 | 8.02 ± 0.22 | 1003.17 ± 103.88 | 2.35 ± 0.10 | 19.79 ± 0.15 |
P25 | 602.45 ± 8.24 | 0.97 ± 0.28 | 74.07 ± 10.97 | 43.60 ± 5.44 | 1457.66 ± 1.66 | 150.97 ± 0.85 | 10.45 ± 3.19 | 2729.06 ± 1876.26 | 2.12 ± 0.64 | 19.76 ± 0.48 |
P26 | 602.04 ± 13.17 | 0.80 ± 0.01 | 77.61 ± 2.72 | 58.59 ± 28.16 | 1481.58 ± 104.93 | 146.11 ± 2.16 | 8.62 ± 0.42 | 9286.69 ± 9473.28 | 1.49 ± 1.29 | 19.47 ± 0.97 |
P27 | 598.45 ± 4.23 | 0.80 ± 0.05 | 74.07 ± 0.47 | 49.52 ± 3.59 | 1483.01 ± 47.77 | 148.30 ± 2.80 | 12.07 ± 4.27 | 2816.14 ± 1547.44 | 1.96 ± 1.06 | 20.88 ± 0.30 |
P28 | 356.12 ± 11.74 | 0.47 ± 0.03 | 40.05 ± 0.00 | 15.42 ± 1.07 | 1242.67 ± 20.34 | 116.27 ± 1.38 | 6.95 ± 0.23 | 1004.73 ± 93.24 | 0.19 ± 1.15 | 17.57 ± 1.19 |
P29 | 345.86 ± 14.15 | 0.52 ± 0.06 | 42.17 ± 0.29 | 17.10 ± 1.05 | 1214.72 ± 16.40 | 113.63 ± 6.50 | 6.85 ± 0.28 | 1192.38 ± 176.53 | 1.00 ± 0.40 | 16.78 ± 1.14 |
P30 | 357.14 ± 22.93 | 0.51 ± 0.06 | 43.69 ± 1.11 | 16.50 ± 0.74 | 1131.38 ± 0.72 | 111.21 ± 0.07 | 6.98 ± 0.06 | 1149.05 ± 43.23 | 1.64 ± 0.45 | 17.22 ± 0.53 |
P31 | 472.11 ± 22.86 | 0.82 ± 0.09 | 32.95 ± 0.81 | 31.35 ± 0.11 | 1232.53 ± 33.04 | 165.02 ± 2.09 | 8.16 ± 0.02 | 1180.15 ± 122.82 | 0.21 ± 1.10 | 35.63 ± 3.04 |
Mean | 856.56 ± 571.22 | 1.51 ± 1.29 | 107.82 ± 120.25 | 73.72 ± 96.64 | 1690.15 ± 585.91 | 217.79 ± 88.18 | 14.22 ± 13.38 | 4056.98 ± 9458.83 | 5.59 ± 7.53 | 26.58 ± 11.23 |
Peak | RT (min.) | λ (nm) | [M − H] (m/z) | MS2 (m/z) | Component |
---|---|---|---|---|---|
1 | 6.4 | 330 | 179 | 135 | Caffeic Acid |
2 | 9.5 | 330 | 163 | 119 | P-Coumaric Acid |
3 | 10.5 | 330 | 193 | 178, 149, 134 | Ferulic Acid |
4 | 11.1 | 330 | 193 | 178, 134 | Isoferulic Acid |
5 | 15.0 | 280 | 433 | 271, 165 | Pinobanksin Glucoside |
6 | 17.4 | 330 | 431 | 268, 239 | Genistein Glucoside |
7 | 18.3 | 360 | 207 | 163, 133 | 3,4-Dimethyl-Caffeic Acid (DMCA) |
8 | 19.4 | 360 | 299 | 284, 255, 227 | Methylluteolin |
9 | 21.3 | 360 | 329 | 315, 299, 285 | Dimethylquercetin |
10 | 22.4 | 280 | 301 | 179, 151 | Quercetin |
11 | 23.7 | 280 | 285 | 267, 253 | Methylpinobanksin |
12 | 23.8 | 360 | 285 | 267, 251 | Sakuranetin |
13 | 24.4 | 280 | 315 | 301, 271, 255 | Methylquercetin |
14 | 27.8 | 280 | 299 | 270, 255 | Methylapigenin (Ej. Hispidulin) |
15 | 28.2 | 280 | 267 | 252, 224, 180 | Methylchrysin |
16 | 29.1 | 330 | 271 | 177, 151, 119 | Pinobanksin Derivative |
17 | 29.5 | 280 | 269 | 225, 180, 149, 117 | Apigenin |
18 | 30.8 | 360 | 271 | 253, 197 | Pinobanksin |
19 | 32.2 | 360 | 285 | 257, 229, 151 | Kaempferol |
20 | 32.8 | 360 | 315 | 301, 151 | Methylquercetin |
21 | 34.1 | 360 | 299 | 284, 255, 227 | Methylluteolin (Luteolin-Methyl-Ether) |
22 | 35.6 | 360 | 329 | 314, 299, 285 | Methoxykaempferol 3-Methyl Ether |
23 | 38.1 | 360 | 283 | 268, 239, 211 | Methoxy-Chrysin |
24 | 38.8 | 330 | 301 | 165, 135 | Coumaric Acid Derivative |
25 | 41.5 | 360 | 315 | 301, 193, 165, 121 | Quercetin-7-Methyl-Ether |
26 | 45.5 | 360 | 329 | 315, 299, 271 | Quercetin-Dimethyl-Ether |
27 | 47.0 | 280 | 287 | 193, 181, 166 | Pinobanksin-5-Methyl-Ether |
28 | 48.2 | 330 | 247 | 179, 135 | Caffeic Acid Prenyl Ester |
29 | 49.7 | 330 | 269 | 168, 161, 134 | Caffeic Acid Benzyl Ester |
30 | 50.5 | 280 | 253 | 209, 167 | Chrysin |
31 | 51.7 | 280 | 257 | 255, 213, 151 | Pinocembrin |
32 | 52.8 | 360 | 269 | 227, 197 | Galangin |
33a | 53.8 | 330 | 283 | 179, 161, 135 | Caffeic Acid Phenylethyl Ester (CAPE) |
33b | 53.8 | 280 | 313 | 271, 253 | Pinobanksin-3-O-Acetate |
34 | 55.6 | 280 | 283 | 268, 239 | Methoxy-Chrysin |
35 | 58.5 | 330 | 295 | 178, 134 | Caffeic Acid Cinnamyl Ester |
36 | 59.0 | 330 | 297 | 179, 161, 135 | Caffeic Acid Methyl Phenetyl Ester |
37 | 59.5 | 360 | 283 | 268, 177, 133 | Galangin-5-Methyl-Ether |
38 | 59.8 | 330 | 551 | 429, 283, 267, 255 | CAPE Derviative |
39 | 60.9 | 280 | 327 | 271, 253 | Pinobanksin-5-Methyl-Ether-3-O-Acetate |
40 | 61.0 | 330 | 267 | 163, 145, 119 | Coumaric Acid Derivative |
41 | 62.4 | 330 | 301 | 283, 269, 253, 152 | Methoxychrysin Derivative |
42 | 63.2 | 360 | 421 | 313, 299 | Luteolin 6-C-Pentoside (Arabinoside) |
43 | 63.5 | 280 | 271 | 253, 165, 152 | Pinobanksin |
44 | 64.8 | 330 | 279 | 235, 195, 118 | P-Coumaric Cinnamyl Ester |
45 | 65.8 | 280 | 341 | 271, 253 | Pinobanksin-O-Butyrate |
280 | 413 | 251, 179, 161, 135 | Caffeic Acid Derivative | ||
46 | 66.7 | 280 | 363 | 269, 257 | Pinocembrin Derivative |
47 | 67.5 | 280 | 285 | 267, 239,192 | Pinobanksin-5-Methyl-Ether |
48 | 68.1 | 360 | 283 | 268, 239 | Galangin-5-Methyl-Ether |
49 | 68.3 | 280 | 521, 271 | 283, 269 | Galangin Methyl Ether Derivative, Naringenin |
50 | 69.8 | 280 | 355 | 271, 255 | Pinobanksin-3-O-Pentanoate or 2-Methylbutyrate |
53 | 71.0 | 330 | 315 | 179, 131 | Caffeic Acid Derivative |
54 | 73.6 | 280 | 293 | 197, 185 | P-Methoxy Cinnamic Acid Cinnamyl Ester |
Dependent Variable: Resins | Unstandardized | Coefficients | Standardized Coefficients Beta | ||
---|---|---|---|---|---|
B | Standard Error | Statistic t | Significance | ||
Constant | 250.849 | 110.643 | −2.267 | 0.031 | |
Flavonoids | 7.468 | 1.218 | 0.717 | 6.131 | 0.000 |
TEAC DPPH | 0.258 | 0.099 | 0.304 | 2.602 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; González-Paramás, A.M.; Vallejo-Pascual, M.-E.; Adanero-Jorge, F.; García-Fernández, C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023, 12, 4337. https://doi.org/10.3390/foods12234337
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Vallejo-Pascual M-E, Adanero-Jorge F, García-Fernández C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods. 2023; 12(23):4337. https://doi.org/10.3390/foods12234337
Chicago/Turabian StyleRendueles, Eugenia, Elba Mauriz, Javier Sanz-Gómez, Ana M. González-Paramás, María-E. Vallejo-Pascual, Félix Adanero-Jorge, and Camino García-Fernández. 2023. "Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain" Foods 12, no. 23: 4337. https://doi.org/10.3390/foods12234337
APA StyleRendueles, E., Mauriz, E., Sanz-Gómez, J., González-Paramás, A. M., Vallejo-Pascual, M. -E., Adanero-Jorge, F., & García-Fernández, C. (2023). Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods, 12(23), 4337. https://doi.org/10.3390/foods12234337