Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of L. barbarum Seed Meal
2.3. Preparation of L. barbarum Seed Meal Hydrolysate (LSH)
2.4. Preparation of MRPs
2.5. Determination of Main Components of L. barbarum Seed Meal
2.6. pH Determination of MRPs
2.7. Determination of Browning Degree
2.8. UV Absorption Spectroscopy
2.9. FI-IR Spectroscopy
2.10. Analysis of Free Amino Acid
2.11. Determination of MW Distribution
2.12. GC-MS Analysis of Volatile Compound Composition
2.13. GC-IMS Analysis of Volatile Compound Composition
2.14. Sensory Evaluation
2.15. Data Analysis
3. Results
3.1. Basic Components of L. barbarum Seed Meal
3.2. pH and Browning Degree
3.3. UV Spectroscopy and FT-IR Spectroscopy
3.4. Free Amino Acid Content and MW Distribution
3.5. GC-MS Analysis of Flavor Components in MRPs
3.6. GC-IMS Analysis of Flavor Components in MRPs
3.7. Fingerprinting and Content Variation of Volatile Compounds in MRPs
3.8. Principal Component Analysis (PCA) of Volatile Compounds in MRPs
3.9. Comparison of GC-MS and GC-IMS Results
3.10. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Oğuz, İ.; Oğuz, H.İ.; Kafkas, N.E. Evaluation of fruit characteristics of various organically-grown goji berry (Lycium barbarum L., Lycium chinense Miller) species during ripening stages. J. Food Compos. Anal. 2021, 101, 103846. [Google Scholar] [CrossRef]
- Skenderidis, P.; Lampakis, D.; Giavasis, I.; Leontopoulos, S.; Petrotos, K.; Hadjichris-todoulou, C.; Tsakalof, A. Chemical Properties, Fatty-Acid Composition, and Antioxidant Activity of Goji Berry (Lycium barbarum L. and Lycium chinense Mill.). Fruits Antioxid. 2019, 8, 60. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Quan, J.; An, W.; Zhao, J.; Xi, W. Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes. Int. J. Food Props 2017, 20 (Suppl. S1), S214–S227. [Google Scholar] [CrossRef]
- Shang, Y.F.; Cao, H.; Wei, C.K.; Thakur, K.; Liao, A.M.; Huang, J.H.; Wei, Z.J. Effect of sugar types on structural and flavor properties of peony seed derived Maillard reaction products. J. Food Process. Preserv. 2020, 44, 1–12. [Google Scholar] [CrossRef]
- Ni, Z.J.; Liu, X.; Xia, B.; Hu, L.T.; Thakur, K.; Wei, Z.J. Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem. X 2021, 11, 100127. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Wei, C.-K.; Ni, Z.-J.; Thakur, K.; Liao, A.-M.; Huang, J.-H.; Wei, Z.-J. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: Effect of cysteine, initial pH, and thermal treatment. Int. J. Food Props 2019, 22, 84–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Elfalleh, W.; He, S.; Tang, M.; Zhao, J.; Wu, Z.; Sun, H. Heating and cysteine effect on physicochemical and flavor properties of soybean peptide Maillard reaction products. Int. J. Biol. Macromol. 2018, 120, 2137–2146. [Google Scholar] [CrossRef]
- Xia, B.; Ni, Z.; Hu, L.; Elam, E.; Thakur, K.; Zhang, J.; Wei, Z. Development of meat flavors in peony seed-derived Maillard reaction products with the addition of chicken fat prepared under different conditions. Food Chem. 2021, 363, 130276. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Xu, Y.; Wang, M.; Wang, F. Comparison of chemical characterization and oxidative stability of Lycium barbarum seed oils: A comprehensive study based on processing methods. J. Food Sci. 2022, 87, 3888–3899. [Google Scholar] [CrossRef]
- Xia, A.N.; Tang, X.J.; Dong, G.Z.; Lei, S.M.; Liu, Y.G.; Tian, X.M. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS. LWT Food Sci. Tech. 2021, 151, 112153. [Google Scholar] [CrossRef]
- ISO 2171:2007; Cereals, Pulses and By-Products—Determination of Ash Yield by Incineration. ISO: Geneva, Switzerland, 2007; Fourth Edition.
- Rybicka, I.; Kiewlicz, J.; Kowalczewski, P.Ł.; Gliszczyńska-Świgło, A. Selected dried fruits as a source of nutrients. Eur. Food Res. Technol. 2021, 247, 2409–2419. [Google Scholar] [CrossRef]
- Dursun Capar, T.; Yalcin, H. Protein/polysaccharide conjugation via Maillard Reactions in an aqueous media: Impact of protein type, reaction time and temperature. LWT 2021, 152, 112252. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, L.T.; Xia, B.; Ni, Z.J.; Elam, E.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem. 2021, 365, 130463. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chem. 2018, 243, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.T.; Takahashi, K.; Kaido, T.; Kasukawa, M.; Okazaki, E.; Osako, K. Relationship among pH, generation of free amino acids, and Maillard browning of dried Japanese common squid Todarodes pacificus meat. Food Chem. 2019, 283, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Arsa, S.; Puechkamutr, Y. Pyrazine yield and functional properties of rice bran protein hydrolysate formed by the Maillard reaction at varying pH. J. Food Sci. Tech. 2022, 59, 890–897. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Sun, H.; Zhu, Y.; Zhao, J.; Tang, M.; Cao, Y. Contributions of temperature and l-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and d-xylose Maillard reaction system. Ind. Crop. Prod. 2019, 128, 455–463. [Google Scholar] [CrossRef]
- Hu, L.T.; Elam, E.; Ni, Z.J.; Shen, Y.; Xia, B.; Thakur, K.; Jiang, L.; Zhang, J.G.; Wei, Z.J. The structure and flavor of low sodium seasoning salts in combination with different sesame seed meal protein hydrolysate derived Maillard recation products. Food Chem. X 2021, 12, 100148. [Google Scholar] [CrossRef]
- Jin, W.; Du, Y.; Pei, J.; Zhao, J.; Tang, Y.; Shang, W.; Wu, H.; Zhu, B. Characterization and antioxidant activity of Maillard reaction products from a scallop (Patinopecten yessoensis) gonad hydrolysates-sugar model system. J. Food Measure Charact. 2018, 12, 2883–2891. [Google Scholar] [CrossRef]
- Chen, X.; Zou, Y.; Wang, D.; Xiong, G.; Xu, W. Effects of ultrasound pretreatment on the extent of Maillard reaction and the structure, taste and volatile compounds of chicken liver protein. Food Chem. 2020, 331, 127369. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Rao, P.S.; Sharma, V.; Arora, S. Physico-chemical aspects of lactose hydrolysed milk system along with detection and mitigation of Maillard reaction products. Trends Food Sci. Technol. 2021, 107, 57–67. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, S.; Ren, X.; Olayemi, O.A.; Lu, F.; Ma, H. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein hydrolysate from grass carp (Ctenopharyngodon idella). Ultrason. Sonochem. 2020, 64, 104964. [Google Scholar] [CrossRef]
- Liu, H.M.; Han, Y.F.; Wang, N.N.; Zheng, Y.Z.; Wang, X.D. Formation and Antioxidant Activity of Maillard reaction Products Derived from Different Sugar-amino Acid Aqueous Model Systems of Sesame Roasting. J. Oleo Sci. 2020, 69, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Xue, Y.; Ruan, S.; Zhou, A.; Huang, S.; Cai, S. The Preparation and Identification of Characteristic Flavour Compounds of Maillard Reaction Products of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Bone. J. Food Qual. 2021, 1–14. [Google Scholar] [CrossRef]
- Sun, A.; Chen, L.; Wu, W.; Soladoye, O.P.; Zhang, Y.; Fu, Y. The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res. Int. 2023, 165, 112512. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Cui, H.; Xia, S.; Zhang, X.; Yang, B. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard reaction Products Derived from Mushroom Hydrolysate. Molecules 2018, 23, 247. [Google Scholar] [CrossRef]
- Wei, C.K.; Thakur, K.; Liu, D.H.; Zhang, J.G.; Wei, Z.J. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chem. 2018, 263, 186–193. [Google Scholar] [CrossRef]
- Nagai, C.; Noda, K.; Kirihara, A.; Tomita, Y.; Murata, M. A Low Molecular Weight Maillard Pigment from Beer was Identified as Perlolyrine, a Maillard reaction Product from Tryptophan. Food Sci. Tech. Res. 2019, 25, 81–88. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of different thermal treatment temperatures on volatile flavour compounds of water-boiled salted duck after packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Hou, L.; Xie, J.; Zhao, J.; Zhao, M.; Fan, M.; Xiao, Q.; Liang, J.; Chen, F. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems. Food Chem. 2017, 232, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jo, Y.J.; Kim, Y.S. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars. J. Agric. Food Chem. 2010, 58, 3116–3124. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Kang, L.; Yang, C.; Song, H.; Liu, Y. Flavour precursor peptide from an enzymatic beef hydrolysate Maillard reaction-II: Mechanism of the synthesis of flavour compounds from a sulphur-containing peptide through a Maillard reaction. LWT 2019, 110, 8–18. [Google Scholar] [CrossRef]
- Raza, A.; Song, H.; Raza, J.; Li, P.; Li, K.; Yao, J. Formation of beef-like odorants from glutathione-enriched yeast extract via Maillard reaction. Food Funct. 2020, 11, 8583–8601. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T.; Dai, Y.; Jiang, G.; Peng, Y.; Wang, J.; Ding, Z. Effects of probiotics on antioxidant activity, flavor compounds and sensory evaluation of Rosa roxburghii Tratt. LWT 2023, 179, 114664. [Google Scholar] [CrossRef]
- Bui, A.T.H.; Cozzolino, D.; Zisu, B.; Chandrapala, J. Influence of Fat Concentration on the Volatile Production in Model Whey Protein Systems as Affected by Low Frequency Ultrasound. Food Bioprocess. Technol. 2021, 14, 1169–1183. [Google Scholar] [CrossRef]
- Habinshuti, I.; Zhang, M.; Sun, H.N.; Mu, T.H. Comparative study of an-tioxidant and flavour characteristics of Maillard reaction products from five types of protein hydrolysates. Int. J. Food Sci. Technol. 2022, 57, 3652–3664. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.Q.; Wang, H.; Xi, B.; Li, W. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography–ion mobility spectrometry (GC–IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, C.; Gao, L.L.; Zhuang, H.; Feng, T.; Xu, G. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. J. Food Biochem. 2021, 46, 6. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Song, J.; Shao, Y.; Yan, Y.; Li, X.; Peng, J.; Guo, L. Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA. LWT 2021, 146, 111292. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J. Chromatogr. A 2019, 1610, 460584. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, H.; Tian, H.; Zou, J.; Li, J. Correlation analysis of the age of brandy and volatiles in brandy by gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Microchem. J. 2020, 157, 104948. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, C.; Zhuang, H.; Liu, Y.; Feng, T.; Nie, B.; Lucarini, M. Characterization of Volatile Component Changes in Peas under Different Treatments by GC-IMS and GC-MS. J. Food Qual. 2021, 2021, 6533083. [Google Scholar] [CrossRef]
Amino Acid | LSH | X-MRPs | G-MRPs | A-MRPs | Ga-MRPs | F-MRPs | Xo-MRPs |
---|---|---|---|---|---|---|---|
Asp | 0.34 ± 0.042 b | 0.37 ± 0.035 b | 0.31 ± 0.014 d | 0.32 ± 0.028 c | 0.27 ± 0.035 | 0.28 ± 0.35 e | 0.34 ± 0.070 a |
Thr | 0.74 ± 0.085 a | 0.53 ± 0.071 b | 0.46 ± 0.035 de | 0.49 ± 0.021 c | 0.45 ± 0.021 e | 0.43 ± 0.021 f | 0.46 ± 0.071 d |
Ser | 0.34 ± 0.057 c | 0.44 ± 0.028 b | 0.47 ± 0.092 a | 0.33 ± 0.037 d | 0.32 ± 0.064 d | 0.29 ± 0.028 e | 0.43 ± 0.051 b |
Glu | 1.43 ± 0.13 a | 1.42 ± 0.042 d | 1.12 ± 0.106 a | 1.23 ± 0.071 c | 1.25 ± 0.18 c | 1.13 ± 0.11 d | 1.35 ± 0.13 b |
Gly | 0.15 ± 0.0071 a | 0.11 ± 0.47 d | 0.12 ± 0.014 c | 0.12 ± 0.42 b | 0.092 ± 0.028 e | 0.092 ± 0.014 e | 0.11 ± 0.014 c |
Ala | 0.38 ± 0.035 a | 0.37 ± 0.014 b | 0.34 ± 0.028 c | 0.36 ± 0.049 b | 0.29 ± 0.064 d | 0.29 ± 0.064 d | 0.33 ± 0.028 c |
Cys | 0.041 ± 0.042 g | 0.86 ± 0.070 f | 1.71 ± 0.042 b | 1.47 ± 0.34 d | 1.87 ± 0.053 a | 0.67 ± 0.099 e | 1.57 ± 0.28 c |
Val | 0.72 ± 0.070 a | 0.54 ± 0.099 d | 0.57 ± 0.021 c | 0.56 ± 0.078 c | 0.53 ± 0.12 d | 0.47 ± 0.13 e | 0.59 ± 0.113 b |
Met | 0.35 ± 0.092 a | 0.26 ± 0.13 bc | 0.26 ± 0.078 bc | 0.24 ± 0.043 c | 0.24 ± 0.21 c | 0.21 ± 0.11 d | 0.28 ± 0.085 b |
Ile | 0.66 ± 0.042 a | 0.39 ± 0.071 c | 0.39 ± 0.0042 cd | 0.36 ± 0.12 de | 0.33 ± 0.014 ef | 0.32 ± 0.30 f | 0.47 ± 0.092 b |
Leu | 1.49 ± 0.0073 a | 1.02 ± 0.0073 bc | 1.02 ± 0.021 c | 0.87 ± 0.20 de | 0.91 ± 0.40 d | 0.84 ± 0.51 e | 1.08 ± 0.091 b |
Tyr | 0.85 ± 0.13 a | 0.86 ± 0.028 a | 0.90 ± 0.078 a | 0.83 ± 0.17 a | 0.78 ± 1.91 a | 0.87 ± 0.41 a | 0.81 ± 0.042 a |
Phe | 2.12 ± 0.064 a | 1.65 ± 0.021 d | 1.67 ± 0.085 cd | 1.73 ± 0.18 bc | 1.77 ± 0.30 b | 1.61 ± 0.54 d | 1.54 ± 0.078 e |
Lys | 0.68 ± 0.0028 a | 0.51 ± 0.19 de | 0.54 ± 0.035 bcd | 0.52 ± 0.071 cde | 0.55 ± 0.13 bc | 0.58 ± 0.33 b | 0.48 ± 0.064 e |
His | 0.47 ± 0.15 a | 0.39 ± 0.38 b | 0.39 ± 0.042 b | 0.30 ± 0.057 c | 0.38 ± 0.11 b | 0.33 ± 0.32 c | 0.29 ± 0.072 c |
Arg | 2.00 ± 0.11 a | 0.94 ± 0.78 e | 1.65 ± 0.76 b | 1.58 ± 0.19 b | 1.49 ± 0.11 c | 1.37 ± 0.42 d | 1.32 ± 0.59 d |
Pro | 0.89 ± 0.26 a | 0.55 ± 0.86 bc | 0.57 ± 0.12 bc | 0.56 ± 0.049 bc | 0.53 ± 0.085 c | 0.55 ± 0.92 bc | 0.58 ± 0.23 b |
Total | 13.63 ± 0.28 b | 11.17 ± 0.96 e | 12.50 ± 0.12 c | 15.00 ± 0.66 a | 12.08 ± 2.67 d | 10.34 ± 1.74 f | 12.07 ± 0.66 d |
EAA | 6.75 ± 0.19 a | 4.91 ± 0.32 b | 4.91 ± 0.027 b | 4.77 ± 0.46 d | 4.79 ± 0.83 c | 4.47 ± 1.15 e | 4.91 ± 0.38 b |
UAA | 1.77 ± 0.13 a | 1.78 ± 0.053 a | 1.42 ± 0.11 e | 1.55 ± 0.068 c | 1.52 ± 0.15 d | 1.41 ± 0.10 f | 1.72 ± 0. 042 b |
BAA | 6.52 ± 0.15 a | 4.97 ± 0.24 c | 4.97 ± 0.34 c | 4.87 ± 0.57 d | 4.88 ± 2.02 d | 4.70 ± 1.39 e | 5.09 ± 0.16 b |
SAA | 0.38 ± 0.094 g | 1.12 ± 0.16 e | 1.98 ± 0.25 b | 1.70 ± 0.21 d | 2.11 ± 0.15 a | 0.88 ± 0.026 f | 1.85 ± 0.26 c |
Sample | MW | ||||
---|---|---|---|---|---|
<128 Da | 128–500 Da | 500–1000 Da | 1000–3000 Da | >3000 Da | |
LSH | 24.35 ± 0.92 a | 51.55 ± 0.43 a | 2.68 ± 0.24 g | 14.04 ± 0.28 c | 7.38 ± 0.26 b |
X-MRPs | 8.33 ± 0.32 f | 38.27 ± 0.52 b | 36.96 ± 0.36 b | 2.48 ± 0.20 e | 13.96 ± 0.14 a |
G-MRPs | 13.33 ± 0.77 c | 36.14 ± 0.42 c | 32.47 ± 0.27 d | 4.04 ± 0.28 d | 14.02 ± 0.26 a |
A-MRPs | 9.12 ± 0.66 d | 31.37 ± 0.36 c | 25.50 ± 0.37 e | 20.02 ± 0.33 a | 13.99 ± 0.075 a |
Ga-MRPs | 9.21 ± 0.41 d | 34.74 ± 0.42 bc | 24.63 ± 0.25 f | 17.33 ± 0.24 b | 14.09 ± 0.15 a |
F-MRPs | 8.56 ± 0.24 e | 37.53 ± 0.26 b | 37.36 ± 0.42 a | 2.53 ± 0.17 e | 14.02 ± 0.05 a |
Xo-MRPs | 18.39 ± 0.91 b | 25.64 ± 0.25 d | 34.67 ± 0.41 c | 7.10 ± 0.25 d | 14.20 ± 0.35 a |
Volatile Compounds | GC-MS | GC-IMS |
---|---|---|
Sulfur-containing compounds | 3-Methyl-2-thiophenecarboxaldegyde | 2-furanmethanethiol |
5-Methyl-2-thiophenecarboxaldegyde | 2-methylfuran-3-thiol | |
3-methyl-thiophene | 4-Methyl-thiazole | |
2-thiophene acetic acid | — | |
thioalcohol | — | |
2-pentanethiol | — | |
2-methyl-3-furanthiol | — | |
2-Methyl-3-pentanethiol | — | |
Bis(2-furfuryl)disulfide | — | |
Bis(2-methyl-3-furyl)disulphide | — | |
2-furyl-2-methyl-3-furyl disulfide | — | |
Nitrogen-containing compounds | Pyridine-N-oxide | 2,5-dimethylpyrazine |
3-carboxylic acid | 2-ethyl-6-methylpyrazine | |
3-1-methylbutyl | 2-Acetylpyridine | |
2-pyrrolidine methanol | 2-acetylpyrrole | |
2-methyl-pyrazine | Aniline | |
Tetramethylpyrazine | 2,6-Dimethylaniline | |
— | Triethylenediamine | |
— | Triethylamine | |
Alcohols | Benzyl alcohol | n-propanol |
Phenethyl alcohol | Isopropanol | |
1,2-benzenediol | benzyl alcohol | |
1-Hexanol | Z-3-Hexenol | |
1-pentanol | 2-methylbutanol | |
1-butanol | Linalool | |
1-decanol | 1-Propanol | |
1-octen-3-ol | 2-Phenylethanol | |
2,7-dimethyl-1-octanol | 2-methylpropan-1-ol | |
1,3-pentanediol | 2-Heptanol | |
Hexaethylene glycol | hexan-2-ol | |
2-Hexadecanol | 1-Octanol | |
Octaethylene glycil | 1-Hexanol | |
Heptaethylene glycil | 1-Hexen-1-ol | |
— | 1-Octanol | |
— | n-Heptanol | |
— | 2-furanmethanethiol | |
— | 2-methylfuran-3-thiol | |
Aldehydes | Hexanal | 2-methylpropanal |
Benzaldehyde | 2-Butenal | |
Decanal | Phenylacetaldehyde | |
2,4-dimethylbenzaldehyde | Pentanal | |
5-methylhexanal | (E,E)-2,4-hexadienal | |
Nonanal | 3-methylbutanal | |
— | 2-Methyl-2-propenal | |
— | 3-Methyl-2-butenal | |
— | Hexanal | |
— | Butanal | |
— | (E)-2-Pentenal | |
— | Nonanal | |
— | n-Heptanal | |
— | Octanal | |
— | (E,E)-2,4-Nonadienal | |
Ketones | 2-heptanone | 2-heptanone |
Acetone | 2-Pentanone | |
2-pentanone | 3-Pentanone | |
2-Nonanone | Cyclohexanone | |
— | 2,6-dimethyl-4-heptanone | |
— | 2-Nonanone | |
— | Octan-2-one | |
— | 5-Nonanone | |
— | 3-Nonanone | |
— | 3(2H)-Furanone | |
Esters | Ethyl laurate | Methyl acetate |
Methyl eicosanoate | Methyl heptanoate | |
Isopropyl palmitate | ethyl isovalerate | |
Diisooctyl diphosphate | Ethyl butyrate | |
— | Butyl formate | |
— | butyl butanoate | |
— | ethyl heptanoate | |
— | Ethyl isopentanoate | |
— | amyl acetate | |
— | Methyl benzoate | |
— | ethyl octanoate | |
— | Butyl acetate | |
— | Pentyl butyrate | |
— | Ethyl acetate | |
— | isopentyl acetate | |
Hydrocarbons | 2,4-dimethyl-1-heptene | Triethylamine |
2-pentene | Isoprene | |
— | β-Myrcene | |
— | Styrene | |
— | Limonene | |
— | α-Pinene | |
— | 2,2,4,6,6-Pentamethylheptane | |
Acids | — | acetic acid |
— | 3-Methylbutanoic acid | |
— | Butanoic acid | |
— | 2-Methylpropanoic acid | |
Furan | 5-benzofuran ethylamine | THF (tetrahydrofuran) |
2-[(2-Ethoxy-3,4-dimethyl-2-cyclohexen-1-ylidene)methyl]furan | 2-ethyl furan | |
5-chloro-n-(furan-2-ylmethyl)-2-nitroaniline | Furan | |
2-Furfurylthiol | — | |
2-Acetylfuran | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wei, C.-K.; Li, T.; Zhang, H.-L.; Ni, Z.-J.; Khan, M.R.; Wei, Z.-J. Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal. Foods 2023, 12, 4346. https://doi.org/10.3390/foods12234346
Chen T, Wei C-K, Li T, Zhang H-L, Ni Z-J, Khan MR, Wei Z-J. Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal. Foods. 2023; 12(23):4346. https://doi.org/10.3390/foods12234346
Chicago/Turabian StyleChen, Tao, Chao-Kun Wei, Tong Li, Hui-Lin Zhang, Zhi-Jing Ni, Mohammad Rizwan Khan, and Zhao-Jun Wei. 2023. "Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal" Foods 12, no. 23: 4346. https://doi.org/10.3390/foods12234346
APA StyleChen, T., Wei, C. -K., Li, T., Zhang, H. -L., Ni, Z. -J., Khan, M. R., & Wei, Z. -J. (2023). Effects of Reducing Sugars on the Structural and Flavor Properties of the Maillard Reaction Products of Lycium barbarum Seed Meal. Foods, 12(23), 4346. https://doi.org/10.3390/foods12234346