Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Treatment
2.3. Rheological Measurements
2.4. Particle Size Measurements
2.5. Fourier Transform Infrared (FTIR) Analysis
2.6. Sodium Dodecyl Sulphide Polyacrylamide Gel Electrophoresis (SDS PAGE)
2.7. Inductively Coupled Plasma Emission Spectrometric (ICP-OES) Analysis
2.8. Statistical Analysis
3. Results
3.1. Particle Size Distribution and Zeta Potential of MPC Suspensions upon Addition of κ-Carrageenan at Different Concentrations
3.2. Mineral Distribution of MPCs upon Addition of κ-Carrageenan at Different Concentrations
3.3. Rheological Properties of MPCs upon Addition of κ-Carrageenan at Different Concentrations
3.4. Interactions and Aggregation of Proteins as Observed by SDS-PAGE Analysis upon the Addition of κ-Carrageenan at Different Concentrations
3.5. Conformational Properties of MPC System with Added k-Carrageenan
4. Discussion
4.1. Effect of κ-Carrageenan Concentration on Chocolate-Flavoured MPC Dispersions at 20 °C
4.2. Effect of Heating on Chocolate-Flavoured MPC Dispersions with Varying Levels of κ-Carrageenan
4.3. Effect of Combined Heat and Shear on Chocolate-Flavoured MPC Dispersions with Varying Levels of κ-Carrageenan
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cockburn, E.; Stevenson, E.; Hayes, P.R.; Robson-Ansley, P.; Howatson, G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2010, 35, 270–277. [Google Scholar] [CrossRef]
- Pandalaneni, K.; Amamcharla, J.; Marella, C.; Metzger, L. Influence of milk protein concentrates with modified calcium content on enteral dairy beverage formulations: Physicochemical properties. J. Dairy Sci. 2018, 101, 9714–9724. [Google Scholar] [CrossRef] [PubMed]
- Bixler, H.J.; Johndro, K.; Falshaw, R. Kappa-2 carrageenan: Structure and performance of commercial extracts: II. Performance in two simulated dairy applications. Food Hydrocoll. 2001, 15, 619–630. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V. A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends Food Sci. Technol. 2019, 86, 199–208. [Google Scholar] [CrossRef]
- Bourriot, S.; Garnier, C.; Doublier, J.-L. Micellar-casein–κ-carrageenan mixtures. I. Phase separation and ultrastructure. Carbohydr. Polym. 1999, 40, 145–157. [Google Scholar] [CrossRef]
- Tziboula, A.; Horne, D.S. Influence of milk proteins on κ-carrageenan gelation. Int. Dairy J. 1999, 9, 359–364. [Google Scholar] [CrossRef]
- Sedlmeyer, F.; Kulozik, U. Impact of processing conditions and protein concentration on the assembly of carrageenan milk protein weak gels. Food Hydrocoll. 2007, 21, 756–764. [Google Scholar] [CrossRef]
- Ramesh, K.; Singh, J.; Goyal, G. Effect of stabilizers on heat stability of coffee flavored drink during sterilization process. Indian J. Anim. Sci. 1993, 63, 785–786. [Google Scholar]
- Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 2011, 18, 951–957. [Google Scholar] [CrossRef]
- Mediwaththe, A.; Chandrapala, J.; Huppertz, T.; Vasiljevic, T. Heat-induced changes of milk protein concentrate suspensions as affected by addition of calcium sequestering salts and shearing. Int. Dairy J. 2023, 149, 105829. [Google Scholar] [CrossRef]
- Prakash, S.; Huppertz, T.; Karvchuk, O.; Deeth, H. Ultra-high-temperature processing of chocolate flavored milk. J. Food Eng. 2010, 96, 179–184. [Google Scholar] [CrossRef]
- Bisig, W.; Kelly, A.L. Liquid Milk Products: Flavored Milks; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Singh, J.; Prakash, S.; Bhandari, B.; Bansal, N. Ultra high temperature (UHT) stability of casein-whey protein mixtures at high protein content: Heat induced protein interactions. Food Res. Int. 2019, 116, 103–113. [Google Scholar] [CrossRef]
- Liyanaarachchi, W.; Ramchandran, L.; Vasiljevic, T. Controlling heat induced aggregation of whey proteins by casein inclusion in concentrated protein dispersions. Int. Dairy J. 2015, 44, 21–30. [Google Scholar] [CrossRef]
- Childs, P. Introduction to Rotating Flow. In Rotating Flow; Butterworth-Heinemann: Oxford, UK, 2011. [Google Scholar]
- Griffin, M.C.A.; Griffin, W.G. A simple turbidimetric method for the determination of the refractive index of large colloidal particles applied to casein micelles. J. Colloid Interface Sci. 1985, 104, 409–415. [Google Scholar] [CrossRef]
- Mediwaththe, A.; Bogahawaththa, D.; Grewal, M.K.; Chandrapala, J.; Vasiljevic, T. Structural changes of native milk proteins subjected to controlled shearing and heating. Food Res. Int. 2018, 114, 151–158. [Google Scholar] [CrossRef]
- Grewal, M.K. Understanding and Predicting Storage Stability of UHT Milk. Ph.D. Dissertation, Victoria University, Melbourne, VIC, Australia, 2018. [Google Scholar]
- Rahaman, M. Processing Induced Conformational Changes of Food Proteins in Relation to Antigenicity. Ph.D. Dissertation, Victoria University, Melbourne, VIC, Australia, 2016. [Google Scholar]
- Mediwaththe, A.; Chandrapala, J.; Vasiljevic, T. Shear-induced behavior of native milk proteins heated at temperatures above 80 °C. Int. Dairy J. 2018, 77, 29–37. [Google Scholar] [CrossRef]
- Chandrapala, J.; Duke, M.C.; Gray, S.R.; Zisu, B.; Weeks, M.; Palmer, M.; Vasiljevic, T. Properties of acid whey as a function of pH and temperature. J. Dairy Sci. 2015, 98, 4352–4363. [Google Scholar] [CrossRef]
- Martinie, G.D.; Schilt, A.A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Morris, E.R. Interactions between carrageenans and casein micelles: Electrophoretic and hydrodynamic properties of the particles. Food Hydrocoll. 1988, 2, 311–320. [Google Scholar] [CrossRef]
- Spagnuolo, P.A.; Dalgleish, D.; Goff, H.; Morris, E. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll. 2005, 19, 371–377. [Google Scholar] [CrossRef]
- Puvanenthiran, A.; Goddard, S.J.; McKinnon, I.R.; Augustin, M.A. Milk-based gels made with κ-carrageenan. J. Food Sci. 2003, 68, 137–141. [Google Scholar] [CrossRef]
- Gaucheron, F. The Minerals of Milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- de la Fuente, M.A.; Juárez, M. Milk and Dairy Products. In Handbook of Mineral Elements in Food; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 645–668. [Google Scholar]
- Pedro, N.A.; De Oliveira, E.; Cadore, S. Study of the mineral content of chocolate-flavored beverages. Food Chem. 2006, 95, 94–100. [Google Scholar] [CrossRef]
- Grindrod, J.; Nickerson, T. Effect of various gums on skim milk and purified milk proteins. J. Dairy Sci. 1968, 51, 834–841. [Google Scholar] [CrossRef]
- Langendorff, V.; Cuvelier, G.; Launay, B.; Parker, A. Gelation and Flocculation of Casein Micelle/Carrageenan Mixtures. Food Hydrocoll. 1997, 11, 35–40. [Google Scholar] [CrossRef]
- Langendorff, V.; Cuvelier, G.; Launay, B.; Michon, C.; Parker, A.; De Kruif, C. Casein micelle/ι-carrageenan interactions in milk: Influence of temperature. Food Hydrocoll. 1999, 13, 211–218. [Google Scholar] [CrossRef]
- Snoeren, T.; Payens, A.; Jeunink, J.; Both, P. Electrostatic interaction between κ-carrageenan and κ-casein. Milchwiss.-Milk Sci. Int. 1975, 30, 393–396. [Google Scholar]
- Drohan, D.; Tziboula, A.; McNulty, D.; Horne, D. Milk protein-carrageenan interactions. Food Hydrocoll. 1997, 11, 101–107. [Google Scholar] [CrossRef]
- Rochas, C.; Rinaudo, M. Mechanism of Gel Formation in κ-Carrageenan. Biopolym. Orig. Res. Biomol. 1984, 23, 735–745. [Google Scholar] [CrossRef]
- Doyle, J.; Giannouli, P.; Philip, K.; Morris, E.R. Effect of K and Ca Cations on Gelation of κ-Carrageenan. In Gums and Stabilisers for the Food Industry; Williams, P.A., Phillips, G.O., Eds.; Royal Society of Chemistry: London, UK, 2002; Volume 11, pp. 158–164. [Google Scholar]
- Dickinson, E. Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends Food Sci. Technol. 1998, 9, 347–354. [Google Scholar] [CrossRef]
- Dickinson, E.; Pawlowsky, K. Influence of κ-carrageenan on the properties of a protein-stabilized emulsion. Food Hydrocoll. 1998, 12, 417–423. [Google Scholar] [CrossRef]
- Yanes, M.; Durán, L.; Costell, E. Effect of hydrocolloid type and concentration on flow behavior and sensory properties of milk beverage model systems. Food Hydrocoll. 2002, 16, 605–611. [Google Scholar] [CrossRef]
- Snoeren, T.H.; Payens, T. On the sol-gel transition in solutions of kappa-carrageenan. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1976, 437, 264–272. [Google Scholar] [CrossRef]
- Ji, S.; Corredig, M.; Goff, H. Aggregation of casein micelles and κ-carrageenan in reconstituted skim milk. Food Hydrocoll. 2008, 22, 56–64. [Google Scholar] [CrossRef]
- Rao, M.A.; Steffe, J.F. Viscoelastic Properties of Foods; Elsevier Science Publishers: Essex, UK, 1992. [Google Scholar]
- Bhattacharya, S.; Das, H.; Bose, A. Rheological behavior during extrusion of blends of minced fish and wheat flour. J. Food Eng. 1992, 15, 123–137. [Google Scholar] [CrossRef]
- Maskan, M.; Göğüş, F. Effect of sugar on the rheological properties of sunflower oil–water emulsions. J. Food Eng. 2000, 43, 173–177. [Google Scholar] [CrossRef]
- Piculell, L. Gelling carrageenans. In Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006; pp. 239–288. [Google Scholar]
- Nilsson, S.; Piculell, L. Helix-coil transitions of ionic polysaccharides analyzed within the Poisson-Boltzmann cell model. 4. Effects of site-specific counterion binding. Macromolecules 1991, 24, 3804–3811. [Google Scholar] [CrossRef]
- Morris, E.R.; Rees, D.A.; Robinson, G. Cation-Specific Aggregation of Carrageenan Helices: Domain Model of Polymer Gel Structure. J. Mol. Biol. 1980, 138, 349–362. [Google Scholar] [CrossRef]
- Lynch, M.; Mulvihill, D. The influence of caseins on the rheology of ι-carrageenan gels. Food Hydrocoll. 1994, 8, 317–329. [Google Scholar] [CrossRef]
- Tziboula, A.; Horne, D. Effect of heat treatment on κ-carrageenan gelation in milk. In Gums and Stabilizers for the Food Industry 10; Elsevier: Amsterdam, The Netherlands, 2000; pp. 211–220. [Google Scholar]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Li-Chan, E.C. Vibrational spectroscopy applied to the study of milk proteins. Lait 2007, 87, 443–458. [Google Scholar] [CrossRef]
- Tziboula, A.; Horne, D. Influence of Whey Protein Denaturation on κ-Carrageenan Gelation. Colloids Surf. B Biointerfaces 1999, 12, 299–308. [Google Scholar] [CrossRef]
- Williams, P.A.; Phillips, G.O. Gums and Stabilisers for the Food Industry 10; Woodhead Publishing: Cambridge, UK, 2000; Volume 10. [Google Scholar]
- Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; De Kruif, C.G. Complexation of Whey Proteins with Carrageenan. J. Agric. Food Chem. 2004, 52, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.J.H.; Jayaraman, P.; Fryer, P.J. The Effect of Temperature and Shear Rate upon the Aggregation of Whey Protein and Its Implications for Milk Fouling. J. Food Eng. 2007, 79, 517–528. [Google Scholar] [CrossRef]
- Kim, J.; Kramer, T.A. Improved Orthokinetic Coagulation Model for Fractal Colloids: Aggregation and Breakup. Chem. Eng. Sci. 2006, 61, 45–53. [Google Scholar] [CrossRef]
- Bekard, I.B.; Dunstan, D.E. Shear-induced deformation of bovine insulin in Couette flow. J. Phys. Chem. B 2009, 113, 8453–8457. [Google Scholar] [CrossRef]
- Walstra, P. Physical Chemistry of Foods; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Bekard, I.B.; Asimakis, P.; Bertolini, J.; Dunstan, D.E. The effects of shear flow on protein structure and function. Biopolymers 2011, 95, 733–745. [Google Scholar] [CrossRef]
- Bekard, I.B.; Barnham, K.J.; White, L.R.; Dunstan, D.E. α-Helix unfolding in simple shear flow. Soft Matter 2011, 7, 203–210. [Google Scholar] [CrossRef]
- Blakemore, W.R.; Harpell, A.R. Carrageenan. In Food Stabilisers, Thickeners and Gelling Agents; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 73–94. [Google Scholar]
κ-CG (%) | Temp. (°C) | Average Particle Size (nm) | Zeta Potential (mV) | ||||
---|---|---|---|---|---|---|---|
0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | ||
0 | 20 | 227 C | −20.8 AB | ||||
90 | 159 Gb | 154 Eb | 163 Ea | −24.4 BCDa | −22.8 Ca | −22.5 Aa | |
121 | 166 FGb | 171 Da | 171 Da | −22.5 ABCa | −23.9 Ca | −22.0 Aa | |
0.01 | 20 | 211 D | −27.9 D | ||||
90 | 177 EFa | 179 Da | 185 Ca | −21.5 ABCa | −21.6 BCa | −20.9 Aa | |
121 | 172 EFGb | 199 Ca | 173 Db | −20.5 Aa | −17.5 Aa | −20.0 Aa | |
0.03 | 20 | 269 B | −24.6 CD | ||||
90 | 179 EFb | 197 Ca | 167 Dc | −20.4 Aa | −21.6 BCa | −23.3 Aa | |
121 | 177 EFc | 226 Aa | 209 Ab | −23.1 ABCa | −18.5 ABa | −21.4 Aa | |
0.05 | 20 | 297 A | −23.5 ABC | ||||
90 | 185 Ec | 205 Ba | 193 Bb | −22.6 ABCb | −21.7 BCa | −21.0 Aa | |
121 | 182 EFc | 203 Ba | 198 ABa | −24.8 CDb | −22.9 Cab | −21.9 Aa | |
SEM * | 2.57 | −0.70 |
κ-CG (%) | Temp (°C) | Mineral Concentration (mM) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | K | Mg | P | ||||||||||
0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | ||
0 | 20 | 5.84 A | 10.19 D | 17.05 A | 7.47 A | ||||||||
90 | 5.76 Ac | 7.45 Ab | 7.85 Aa | 9.27 Eb | 9.61 Db | 10.58 Ea | 16.54 Ab | 18.10 Aa | 18.33 Aa | 6.84 ABb | 9.06 Aa | 9.23 Aa | |
121 | 4.96 Bc | 6.68 Bb | 7.29 Ba | 8.97 Fb | 7.79 Fc | 14.73 Aa | 16.00 Bc | 17.21 Bb | 18.57 Aa | 6.64 ABb | 8.67 Aa | 8.30 Ba | |
0.01 | 20 | 4.08 C | 12.87 A | 14.56 C | 6.26 ABC | ||||||||
90 | 3.70 Cb | 3.75 Db | 3.83 Db | 10.62 Cc | 11.10 Bb | 12.40 Ba | 14.93 Cb | 15.15 Dab | 15.60 Ca | 4.87 DEb | 5.59 Ca | 6.10 Ca | |
121 | 3.11 Db | 4.82 Ca | 4.81 Ca | 6.31 Gc | 9.40 Db | 10.19 Fa | 16.58 b | 16.58 Cb | 17.22 Ba | 4.57 DEc | 6.38 Bb | 8.53 ABa | |
0.03 | 20 | 3.70 C | 11.30 B | 13.79 D | 6.06 BCD | ||||||||
90 | 3.60 Ca | 3.42 Dab | 2.92 Eb | 12.84 Aa | 10.21 Cc | 11.18 Cb | 16.93 Aa | 16.54 Cab | 10.21 Cb | 5.80 CDa | 5.02 Db | 5.35 Cb | |
121 | 2.63 Eb | 3.01 Da | 2.80 Eab | 12.58 Aa | 12.02 Ab | 10.79 Dc | 14.54 Cb | 15.07 Da | 14.44 Db | 5.92 BCDa | 5.89 Ca | 5.37 Cb | |
0.05 | 20 | 2.37 EF | 12.23 A | 13.67 D | 5.01 CDE | ||||||||
90 | 2.34 EFa | 2.30 Ea | 2.10 Fa | 11.58 Ba | 11.19 Bab | 10.87 Db | 14.65 Cb | 15.38 Da | 14.60 Db | 5.06 CDEa | 4.87 Ea | 4.21 Db | |
121 | 1.97 Fa | 1.77 Fa | 1.56 Ga | 9.52 Ea | 8.70 Eb | 8.23 Gc | 13.93 Da | 12.85 Eb | 12.49 Eb | 3.84 Ea | 3.14 Fb | 2.22 Ec | |
SEM * | 0.05 | 0.08 | 0.12 | 0.07 |
κ-CG (%) | Temp. (°C) | Consistency Factor (Pa.sn) | Flow Behaviour Index (-) | ||||
---|---|---|---|---|---|---|---|
0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | ||
0 | 20 | 0.011 HI | 0.91 B | ||||
90 | 0.006 IJb | 0.007 Gab | 0.008 Fa | 0.98 Aa | 0.98 Aa | 0.97 Aa | |
121 | 0.005 Jb | 0.006 Ga | 0.007 Fa | 0.96 Aa | 0.96 Aa | 0.95 Ba | |
0.01 | 20 | 0.028 G | 0.82 D | ||||
90 | 0.014 Ha | 0.014 Fa | 0.015 Ea | 0.87 Ca | 0.87 Ba | 0.86 Ca | |
121 | 0.021 Gb | 0.022 Eb | 0.028 Da | 0.84 Da | 0.84 Ca | 0.81 Db | |
0.03 | 20 | 0.170 E | 0.65 F | ||||
90 | 0.089 Fc | 0.103 Db | 0.119 Ca | 0.67 Ea | 0.67 Da | 0.67 Ea | |
121 | 0.236 Dc | 0.370 Bb | 0.641 Ba | 0.60 Ga | 0.61 Ga | 0.50 Fb | |
0.05 | 20 | 0.763 A | 0.49 I | ||||
90 | 0.243 Cc | 0.367 Cb | 0.709 Aa | 0.58 Ga | 0.57 Fa | 0.47 Gb | |
121 | 0.622 Bc | 0.634 Ab | 0.641 Ba | 0.51 Ha | 0.51 Ga | 0.46 Fb | |
SEM * | 0.0017 | 0.0061 |
κ-CG (%) | Temp. (°C) | αs-CN | β-CN | κ-CN | β-LG | α-LA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | ||
0 | 20 | 4.5 CD | 8.9 CD | 43.6 H | 99.5 A | 98.9 A | ||||||||||
90 | 4.7 BCb | 6.4 Aa | 6.7 Aa | 12.0 Bb | 14.5 Ba | 14.9 Ba | 44.7 Gb | 47.7 Ea | 48.1 Da | 75.3 Hb | 80.4 Aa | 80.9 Aa | 85.3 Cc | 88.5 Aa | 87.1 Ab | |
121 | 4.8 Bb | 5.3 Bab | 5.9 Aa | 16.4 Ac | 17.7 Ab | 23.7 Aa | 48.3 Ec | 51.6 Db | 53.8 Ba | 68.1 Kc | 75.2 Cb | 77.2 Ca | 63.1 Kc | 75.9 Cb | 76.8 Ba | |
0.01 | 20 | 4.0 E | 8.4 D | 32.6 I | 97.4 B | 94.4 B | ||||||||||
90 | 4.7 BCa | 4.2 Cbc | 3.9 Cc | 9.0 CDa | 7.7 Db | 5.7 Dc | 59.6 Ba | 57.1 Cb | 49.6 Cc | 82.6 Fa | 80.7 Ab | 79.9 Bc | 80.1 Ea | 80.3 Ba | 75.4 Bb | |
121 | 5.3 Ab | 5.6 Ba | 4.5 BCc | 9.7 Ca | 8.9 Cb | 8.0 Cc | 64.4 Aa | 46.7 Fb | 16.8 Hc | 73.5 Ia | 66.8 Eb | 60.2 Gc | 73.6 Ga | 53.2 Gb | 45.2 Gc | |
0.03 | 20 | 3.6 F | 5.5 FG | 16.6 J | 95.9 C | 82.7 D | ||||||||||
90 | 4.3 Da | 3.9 Cb | 3.3 Cc | 6.3 EFa | 6.1 Eab | 5.7 Db | 64.4 Ab | 66.8 Aa | 60.7 Ac | 87.3 Da | 77.3 Bb | 74.8 Dc | 77.7 Fa | 75.5 Cb | 71.0 Cc | |
121 | 5.4 Aa | 5.6 Ba | 4.9 Bb | 7.2 Ea | 6.7 Eb | 5.9 Dc | 53.8 Cb | 60.6 Ba | 36.6 Ec | 75.7 Ha | 74.8 Cb | 69.5 Fc | 66.7 Ib | 68.8 Da | 64.9 Dc | |
0.05 | 20 | 2.1 I | 3.6 H | 16.0 K | 84.3 E | 64.2 J | ||||||||||
90 | 2.5 Ha | 2.2 Eb | 2.0 Eb | 4.0 Ha | 3.9 Ga | 3.1 Fb | 47.6 Fa | 43.7 Gb | 33.2 Fc | 79.5 Ga | 75.1 Cb | 70.4 Ec | 71.2 Ha | 63.8 Eb | 58.9 Ec | |
121 | 3.3 Ga | 3.1 Dab | 2.7 Db | 5.1 Ga | 4.9 Fa | 4.3 Eb | 49.8 Da | 42.4 Hb | 22.5 Gc | 72.1 Ja | 67.9 Db | 60.7 Gc | 62.1 La | 55.5 Fb | 54.3 Fc | |
SEM * | 0.081 | 0.278 | 0.133 | 0.158 | 0.163 |
κ-Carrageenan Addition (%) | Temp. (°C) | Intramolecular β-Sheets (1615–1637) | Random Coils (1638–1645) | α-Helix (1646–1664) | β-Turns (1665–1681) | Aggregated β-Sheets (1682–1700) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | 0 s−1 | 100 s−1 | 1000 s−1 | ||
0 | 20 | 50.41 A | 6.41 H | 31.01 A | 8.15 I | 3.51 J | ||||||||||
90 | 38.89 Da | 31.45 Bb | 25.49 Bc | 5.87 Ic | 7.87 Eb | 11.05 Fa | 22.59 Ha | 17.62 Eb | 12.87 Ec | 24.62 Dc | 25.71 Bb | 30.41 Ba | 5.13 Ia | 4.72 Fb | 3.33 Hc | |
121 | 33.93 Ha | 31.94 Bb | 25.14 Bc | 8.06 Fc | 9.17 Db | 12.17 Da | 13.02 Ja | 12.95 Ga | 11.70 Fb | 31.39 Ac | 33.09 Ab | 37.43 Aa | 6.82 Fa | 5.54 Eb | 4.14 Gc | |
0.01 | 20 | 43.88 B | 10.47 A | 29.20 B | 16.45 H | 5.84 H | ||||||||||
90 | 30.51 Ia | 28.53 Eb | 23.85 Dc | 8.00 Gc | 9.73 Bb | 11.35 Ea | 20.07 Ia | 16.25 Fb | 10.03 Gc | 18.35 Ga | 17.49 Fb | 16.12 Ec | 6.18 Gc | 6.74 Db | 7.81 Fa | |
121 | 23.74 La | 23.73 Fa | 19.86 Fb | 3.60 Jc | 6.19 Fb | 11.12 Fa | 10.27 Ka | 9.27 Hb | 7.78 Hc | 19.39 Fa | 18.91 Eb | 17.23 Dc | 7.82 Cc | 8.18 Cb | 9.32 Ea | |
0.03 | 20 | 39.01 C | 10.14 B | 28.16 C | 19.61 F | 6.73 F | ||||||||||
90 | 35.03 Ga | 33.46 Ab | 24.08 Cc | 8.14 Ec | 9.54 Cb | 12.29 Da | 24.63 Fa | 21.04 Db | 19.63 Dc | 24.63 Da | 19.96 Db | 17.51 Dc | 7.92 Cc | 8.92 Bb | 10.01 Ba | |
121 | 30.90 Ia | 29.46 Db | 23.06 Ec | 3.49 Kc | 9.59 Cb | 12.97 Ca | 25.08 Ea | 24.79 Aa | 22.28 Ab | 26.67 Ca | 24.16 Cb | 19.67 Cc | 8.17 Bc | 8.99 Bb | 9.52 Da | |
0.05 | 20 | 37.74 E | 10.13 B | 26.67 D | 18.45 G | 7.15 E | ||||||||||
90 | 36.02 Fa | 30.11 Cb | 27.75 Ac | 9.25 Cc | 10.46 Ab | 13.76 Ba | 25.69 Ea | 23.24 Bb | 21.72 Bc | 21.03 Ea | 18.65 Eb | 15.76 Fc | 7.58 Dc | 8.22 Cb | 9.83 Ca | |
121 | 29.61 Ja | 21.72 Gb | 19.14 Fc | 8.25 Dc | 9.15 Db | 14.78 Aa | 23.56 Ga | 22.09 Cb | 20.34 Cc | 28.57 Ba | 17.86 Fb | 10.73 Gc | 8.34 Ac | 9.81 Ab | 10.74 Aa | |
SEM * | 0.025 | 0.013 | 0.045 | 0.037 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mediwaththe, A.; Huppertz, T.; Chandrapala, J.; Vasiljevic, T. Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing. Foods 2023, 12, 4404. https://doi.org/10.3390/foods12244404
Mediwaththe A, Huppertz T, Chandrapala J, Vasiljevic T. Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing. Foods. 2023; 12(24):4404. https://doi.org/10.3390/foods12244404
Chicago/Turabian StyleMediwaththe, Anushka, Thom Huppertz, Jayani Chandrapala, and Todor Vasiljevic. 2023. "Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing" Foods 12, no. 24: 4404. https://doi.org/10.3390/foods12244404
APA StyleMediwaththe, A., Huppertz, T., Chandrapala, J., & Vasiljevic, T. (2023). Heat-Induced Changes in κ-Carrageenan-Containing Chocolate-Flavoured Milk Protein Concentrate Suspensions under Controlled Shearing. Foods, 12(24), 4404. https://doi.org/10.3390/foods12244404