Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Red Propolis Extract
2.2. Determination of the Antioxidant Capacity of the Red Propolis Extract
2.2.1. Determination of the Total Phenolic Content
2.2.2. ABTS Radical Cation (ABTS) Decolorization Test
2.2.3. DPPH
2.3. Sausage Formulation and Processing
- –
- EN150 (control, BF + 500 mg/kg sodium erythorbate and 150 mg/kg sodium nitrite);
- –
- EN75 (BF + 500 mg/kg sodium erythorbate and 75 mg/kg sodium nitrite);
- –
- P1N75 (without the addition of erythorbate, BF + 1800 mg/kg propolis extract and 75 mg/kg sodium nitrite);
- –
- P2N75 (without the addition of erythorbate, BF + 3600 mg/kg propolis extract and 75 mg/kg sodium nitrite).
2.4. Physico-Chemical Evaluation of Fresh Sausages
2.4.1. Proximate Composition
2.4.2. pH and Color Profile
2.4.3. Weight Loss on Cooking
2.4.4. Texture Profile (TPA)
2.4.5. Lipid Oxidation (TBARS)
2.4.6. Free Fatty Acids
2.4.7. Determination of the Peroxide Index
2.4.8. Residual Nitrite
2.5. Microbiology Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Capacity of Red Propolis
3.2. Proximal Composition of Fresh Lamb Sausages
3.3. pH and Color Profile of Lamb Sausages
3.4. TBARS
3.5. Index of Peroxide
3.6. Texture
3.7. Residual Nitrite
3.8. Free Fatty Acids
3.9. Microbiology Analysis
3.10. Sensory Acceptance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis (3-ethylbenzothiazolin) 6-acidosulfonic acid |
AOAC | Association of Official Agricultural Chemists |
BOD | Biochemical oxygen demand |
CAAE | Certificate of Presentation of Ethical Review |
CFU | Colony forming unit |
CTP | Total psychrotrophic count |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
FFAs | Free fatty acids |
FZEA | School of Animal Science and Food Engineering |
GAE | Gallic acid equivalent |
MDA | Malonaldehyde |
MUFAs | Monounsaturated fatty acids |
PUFAs | Polyunsaturated fatty acids |
SAS | Statistical Analysis System |
SFAs | Saturated fatty acid |
TBARS | Thiobarbituric acid |
TPA | Texture profile |
TEP | 1,1,3,3-Tetraethoxypropane |
USP | University of São Paulo |
WLC | Weight loss to cooking |
References
- Lorenzo, J.M.; Pateiro, M.; Fontán, M.C.G.; Carballo, J. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver paté. Food Chem. 2014, 155, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Manzoor, A.; Dar, A.H.; Pandey, V.K.; Shams, R.; Khan, S.; Panesar, P.S.; Kennedy, J.F.; Fayaz, U.; Khan, S.A. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int. J. Biol. Macromol. 2022, 213, 987–1006. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent Progress in Pharmacological Research of Propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef]
- Frozza, C.O.; Santos, D.A.; Rufatto, L.C.; Minetto, L.; Scariot, F.J.; Echeverrigarayc, S.; Piche, C.T.; Moura, S.; Padilha, F.F.; Borsuk, S.; et al. Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomed. Pharmacother. 2017, 91, 951–963. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Ferández-López, J.; Pérez-Álvares, J.A. Funcional proprieties of honey, propolis and royal jelly. J. Food Sci. 2008, 73, R117–R124. [Google Scholar] [CrossRef]
- Piccinelli, A.L.; Lotti, C.; Campone, L.; Cuesta-Rubio, O.; Fernandez, M.C.; Rastrelli, L. Cuban and Brazilian red propolis: Botanical origin and comparative analysis by high-performance liquid chromatography-photodiode array detection/ electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2011, 59, 6484–6491. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.-J.; Barba, F.J. Fermentation in fish and by-products processing: An overview of current research and future prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Rosa, T.A.M.; Degáspari, C.H. Quantitative determination of nitrate and nitrite in Italian salami sausages sold in the city of colombo—Paraná. Acad. Vis. 2013, 14, 73–83. [Google Scholar] [CrossRef]
- Bryan, N.S.; van Grinsven, H. The role of nitrate in human health. Adv. Agron. 2013, 119, 153–182. [Google Scholar]
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Food Chain Evaluation Consortium. Study on the Monitoring of the Implementation of Directive 2006/52/EC as Regards the Use of Nitrites by Industry in Different Categories of Meat Products; Final Report; Agra CEAS Consulting: Why, UK, 2016. [Google Scholar]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; EFSA Panel on Food Additives and Nutrient Sources added to Food; et al. Scientific Opinion on the re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J. 2017, 15, 4786. [Google Scholar]
- Schwert, R.; Verlindo, R.; Soares, J.M.; Silva, P.F.; Cansian, R.L.; Steffens, C. Effect of liquid smoke extract on the oxidative stability, benzopyrene and sensory quality of Calabrian sausage. Curr. Nutr. Food Sci. 2020, 16, 343–353. [Google Scholar] [CrossRef]
- Nori, M.P.; Favaro-Trindade, C.S.; Alencar, S.M.; Thomazini, M.; Balieiro, J.C.; Contreras-Castillo, C.J. Microencapsulation of propolis extract by complex coacervation. LWT Food Sci. Technol. 2011, 44, 429–435. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants using the folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity using an improved ABTS cation radical scavenging assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; AOAC—Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Fontan, R.C.I.; Rebouças, K.H.; Veríssimo, L.A.A.; Machado, A.A.F.; Fontan, G.C.R.; Bonomo, R.C.F. Influence of meat type, addition of phosphate and texturized soy protein on weight loss by cooking and size reduction of hamburgers. Foods Nutr. Araraquara 2011, 22, 429–434. [Google Scholar]
- García, M.L.; Calvo Marta, M.; Selgas, M. Dolores. Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in thricloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. Leinf. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Vicentini-Polette, C.M.V.; Ramos, P.R.; Gonçalves, C.B.; Oliveira, A.L. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem. 2021, 12, 100166. [Google Scholar] [CrossRef] [PubMed]
- Pearson, D. Index of oils and rancidity. In Laboratory Techniques for Food Analysis; Acribia: Zaragoza, Spain, 1976; Chapter 5; pp. 137–139. [Google Scholar]
- Adolfo Lutz Institute. Analytical Standards of the Adolfo Lutz Institute. In Chemical and Physical Methods for Food Analysis, 3rd ed.; IMESP: São Paulo, Brazil, 1985; pp. 97–98. [Google Scholar]
- Silva, N.; Junqueira, V.C.A.; Silveira, N.F.A.; Taniwaki, M.H.; Gomes, R.A.R.; Okazaki, M.M. Manual of Methods for Microbiological Analysis of Food and Water, 5th ed.; Blucher: São Paulo, Brazil, 2017. [Google Scholar]
- Villanueva, N.D.M.; Trindade, M.A. Estimating the sensory shelf life of chocolate and carrot cupcakes using acceptance tests. J. Sens. Stud. 2010, 25, 260–279. [Google Scholar] [CrossRef]
- Mendonça, L.S.; Mendonça, F.M.R.; Araújo, Y.L.F.M.; Araújo, E.D.; Ramalho, S.A.; Narain, N.; Jain, S.; Orellana, S.C.; Padilha, F.F.; Cardoso, J.C. Chemical markers and antifungal activity of red propolis from Sergipe, Brazil. Food Sci. Technol. 2015, 35, 291–298. [Google Scholar] [CrossRef]
- Mafra, J.F.; Santana, T.S.; Cruz, A.I.C.; Ferreira, M.A.; Miranda, F.M.; Araújo, F.M.; Ribeiro, P.R.; Evangelista-Barreto, N.S. Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chem. 2022, 394, 133502. [Google Scholar] [CrossRef] [PubMed]
- Calegari, M.A.; Prasniewski, A.C.; Silva, C.; Sado, R.Y.; Maia, F.M.C.; Tonial, L.S.M.; Oldoni, T.L.C. Propolis from Southwest of Parana produced by selected bees: Influence of seasonality and food supplementation on antioxidant activity and phenolic profile. Ann. Braz. Acad. Sci. 2017, 89, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Biscaia, D.; Ferreira, R.S. Propolis Extracts Obtained by Low Pressure Methods and Supercritical Fluid Extraction. J. Supercrit. Fluids 2009, 51, 17–23. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Silva, R.P.D.; Barreto, G.A.; Costa, S.S.; Silva, D.F.; Brandão, H.N. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef]
- Rufatto, L.C.; Santos, D.A.; Marinho, F.; Henriques, J.A.P.; Ely, M.R.; Moura, S. Red propolis: Chemical composition and pharmacological activity. Asian Pac. J. Trop. Biomed. 2017, 7, 591–598. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmada, S.; Yousuf, B. Effect of bioactive-rich mango peel extract on physicochemical, antioxidant and functional characteristics of chicken sausage. Appl. Food Res. 2022, 2, 10018. [Google Scholar] [CrossRef]
- Ghafouri-Oskuei, H.; Javadi, A.; Asla, M.R.A.; Azadmard-Damirchic, S.; Armine, M. Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Sci. 2020, 161, 107957. [Google Scholar] [CrossRef]
- Carvalho, F.A.L.; Munekata, P.E.S.; Oliveira, A.L.; Pateiro, M.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Res. Int. 2020, 136, 109487. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Lorenzo, J.M. Guarana seed extracts as a useful strategy to extend the shelf life of pork burgers: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.E.; Cumuze, T.H. Relationship between TBARS numbers and inexperienced panelists’ assessments of oxidized flavour in cooked beef. J. Food Sci. 1981, 47, 52–54. [Google Scholar] [CrossRef]
- Ozogul, Y.; Uçar, Y. The Effects of Natural Extracts on the Quality Changes of Frozen Chub Mackerel (Scomber japonicus) Burgers. Food Bioprocess Technol. 2013, 6, 1550–1560. [Google Scholar] [CrossRef]
- Armenteros, M.; Morcuende, d.; Ventanas, S.; Estévez, M. Application of Natural Antioxidants from Strawberry Tree (Arbutus unedo L.) and Dog Rose (Rosa canina L.) to Frankfurters. J. Integr. Agric. 2013, 12, 1972–1981. [Google Scholar] [CrossRef]
- Kumar, Y.; Kairam, N.; Ahmad, T.; Yadav, D.N. Physico chemical, microstructural and sensory characteristics of low-fat meat emulsion containing aloe gel as potential fat replacer. Int. J. Food Sci. Technol. 2016, 51, 309–316. [Google Scholar] [CrossRef]
- Møller, J.K.S.; Skibsted, L.H. Nitric Oxide and Myoglobins. Chem. Rev. 2002, 102, 1167–1178. [Google Scholar] [CrossRef]
- Deda, J.G.; Bloukas, G.A. Fista. Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Sci. 2007, 76, 501–508. [Google Scholar] [CrossRef]
- Gangolli, S.D.; Brandt, P.A.; Feron, V.J.; Janzowsky, C.; Koeman, J.H.; Speijers, G.J.A.; Spiegelhalder, B.; Walker, R.; Wishnok, J.S. Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 1994, 292, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Technical Regulation for the Assignment of Additive Functions and Their Maximum Use Limits for Category 8—Meat and Meat Products; Ordinance No. 1.004, of December 11, 1998; Federal Official Gazette: Brasília, Brazil, 1998.
- Phillips, W.E.J. Naturally Occurring Nitrate and Nitrite in Foods in Relation to Infant Methaemoglobinaemia. Food Cosmet. Toxicol. 1971, 9, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R. Meat and cancer. Meat Sci. 2010, 84, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues. Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Safari, R.; Yosefian, M. Changes in TVN (total volatile nitrogen) and psychrotrophic bacteria in Persian sturgeon (Acipenser persicus) caviar during processing and cold storage. J. Appl. Ichthyol. 2006, 22, 416–441. [Google Scholar] [CrossRef]
- National Health Surveillance Agency. Normative Instruction—In = of July 1, 2022—Establishes the Microbiological Standards for Food and RDC nº 724, of July 1, 2022, the Lists of Microbiological Standards for Food; National Health Surveillance Agency: São Paulo, Brazil, 2022.
- Vargas-Sanchez, P.R.D.; Torrescano-Urrutia, G.R.; Félix, E.A.; Carvajal-Millan, E.; Gonzalez-Cordova, A.F.; Vallejo-Galland, B.; Torres-Llanez, M.J.; Sanchez-Escalante, A. Antioxidant and Antimicrobial Activity of Commercial Propolis Extract in Beef. J. Food Sci. 2014, 79, C1499–C1504. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; Munekata, P.E.S.; de Melo, M.P. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
Composition (%) | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. |
---|---|---|---|---|---|---|
Moisture | 63.17 | 67.07 | 64.49 | 64.81 | 0.2368 | ns |
Fat | 15.19 b | 14.67 b | 12.52 a | 13.12 a | 0.2573 | * |
Protein | 17.82 | 18.08 | 18.57 | 18.27 | 0.1416 | ns |
Ash | 2.22b | 2.19 ab | 2.13 ab | 2.04 a | 0.0219 | * |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Days | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. | |
pH | 0 | 5.84 A | 5.83 A | 5.81 A | 5.81 A | 0.0072 | ns |
7 | 5.85 bA | 5.80 bA | 5.71 aB | 5.70 aB | 0.0106 | * | |
14 | 5.46 B | 5.37 B | 5.42 C | 5.39 C | 0.0271 | ns | |
21 | 5.29 B | 5.30 B | 5.24 D | 5.24 D | 0.0112 | ns | |
SE | 0.0135 | 0.0117 | 0.0090 | 0.0085 | - | - | |
Sig. | *** | ** | ** | *** | - | - |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Days | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. | |
L* | 0 | 34.00 AB | 34.75 B | 33.79 | 34.65 | 0.4695 | ns |
7 | 31.16a bA | 29.50 aA | 33.77 b | 33.21 b | 0.4579 | * | |
14 | 34.57 B | 33.55 B | 33.28 | 36.07 | 0.4653 | ns | |
21 | 35.65 B | 34.79 B | 34.81 | 35.68 | 0.3505 | ns | |
SE | 0.4521 | 0.4398 | 0.4550 | 0.4057 | - | - | |
Sig. | * | ** | ns | ns | - | - | |
a* | 0 | 4.81 bA | 4.27 bA | 2.91 aA | 3.82 abA | 0.1486 | ** |
7 | 5.55 abAB | 5.33 abA | 4.75 aB | 6.15 bB | 0.1611 | * | |
14 | 6.21 abB | 6.75 bB | 5.46 aB | 6.74b BC | 0.1652 | * | |
21 | 6.22 aB | 6.62 abB | 7.07 abC | 7.58 bC | 0.1562 | * | |
SE | 0.1660 | 0.1556 | 0.1600 | 0.1495 | - | - | |
Sig. | * | * | ** | ** | - | - | |
b* | 0 | 8.33 | 8.16 B | 7.88 AB | 8.93 | 0.2146 | ns |
7 | 7.73 ab | 6.74 aAB | 8.28 bB | 8.90 b | 0.1784 | * | |
14 | 8.12 | 7.49 B | 7.42 AB | 8.26 | 0.1763 | ns | |
21 | 6.93 ab | 5.88 aA | 6.74 abA | 7.74 b | 0.1783 | ** | |
SE | 0.1955 | 0.1864 | 0.197 | 0.1701 | - | - | |
Sig. | ** | *** | ** | ** | - | - |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Days | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. | |
TBARs | 0 | 0.29 A | 0.33 A | 0.28 A | 0.36 B | 0.0123 | ns |
7 | 0.22 A | 0.26 A | 0.20 A | 0.24 A | 0.0123 | ns | |
14 | 0.36 A | 0.43 B | 0.37 AB | 0.39 B | 0.0115 | ns | |
21 | 0.81 bB | 0.51 aB | 0.41 aB | 0.39 aB | 0.0355 | * | |
SE | 0.0343 | 0.0123 | 0.0148 | 0.0121 | - | - | |
Sig. | ** | *** | ** | ** | - | - |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Days | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. | |
Hardness (N) | 0 | 66.07 | 66.43 | 72.95 B | 65.23 | 1.2211 | ns |
21 | 61.48 | 64.00 | 55.78 A | 61.11 | 1.2273 | ns | |
SE | 1.8429 | 2.0135 | 1.6753 | 1.3163 | - | - | |
Sig. | ns | ns | *** | ns | - | - | |
Elasticity | 0 | 0.74 | 0.74 B | 0.74 B | 0.73 | 0.0110 | ns |
(mm) | 21 | 0.70 | 0.67 A | 0.65 A | 0.70 | 0.0080 | ns |
SE | 0.0111 | 0.0176 | 0.0109 | 0.0140 | - | - | |
Sig. | ns | * | ** | ns | - | - | |
Cohesiveness | 0 | 0.52 | 0.52 | 0.53 | 0.52 | 0.0056 | ns |
21 | 0.50 | 0.53 | 0.54 | 0.53 | 0.0060 | ns | |
SE | 0.0079 | 0.0098 | 0.0085 | 0.0064 | - | - | |
Sig. | ns | ns | ns | ns | - | - | |
Chewability | 0 | 29.59 B | 30.21 | 33.00 B | 29.40 | 0.8690 | ns |
(N. mm) | 21 | 24.83 A | 25.78 | 22.28 A | 26.40 | 0.6278 | ns |
SE | 0.9195 | 1.3132 | 0.8979 | 1.1050 | - | - | |
Sig. | * | ns | *** | ns | - | - | |
Weight loss | 0 | 26.64 a | 28.87 abA | 32.25 b | 26.96 aA | 0.4991 | ** |
To cooking | 21 | 26.89 a | 34.01 bB | 31.57 a | 33.65 bB | 0.7663 | * |
(%) | SE | 0.4838 | 1.1205 | 0.9867 | 0.9394 | - | - |
Sig. | ns | * | ns | ** | - | - |
Free Fatty Acids | Treatments | ||||||
---|---|---|---|---|---|---|---|
Mean Peak Area (%) | Day | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. |
C14:0 | 0 | 2.26 b | 1.87 abA | 1.65 a | 1.94 ab | 0.09 | * |
(myristic acid) | 21 | 2.12 ab | 2.18 bB | 1.81 ab | 1.75 a | 0.09 | * |
Sig. | ns | * | ns | ns | - | - | |
C16:0 | 0 | 23.30 b | 18.52 a | 19.03 ab | 20.95 ab | 1.10 | * |
(palmitic acid) | 21 | 21.32 | 21.48 | 20.07 | 20.99 | 1.10 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C16:1n-7 | 0 | 3.93 | 3.79 | 3.46 | 4.02 | 0.34 | ns |
(palmitoleic acid) | 21 | 3.86 | 3.62 | 3.71 | 4.26 | 0.34 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C18:0 | 0 | 15.06 | 18.84 | 13.44 | 15.49 | 1.54 | ns |
(Stearic acid) | 21 | 16.93 | 15.21 | 16.43 | 16.00 | 1.54 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C18:1n-9c | 0 | 41.45 | 42.57 | 47.81 | 42.36 | 1.90 | ns |
(oleic acid) | 21 | 43.22 | 41.61 | 43.97 | 41.85 | 1.90 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C18:1n-9t | 0 | 2.66 | 3.19 | 4.00 | 4.08 | 0.64 | ns |
(elaidic acid) | 21 | 3.00 | 2.86 | 3.33 | 3.81 | 0.64 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C18:3n-6 | 0 | 9.11 | 9.73 | 8.80 | 9.32 | 0.57 | ns |
(α-linolenic acid) | 21 | 8.20 | 8.06 | 9.28 | 9.78 | 0.57 | ns |
Sig. | ns | ns | ns | ns | - | - | |
C18:3n-3 | 0 | 2.23 B | 1.51 | 1.82 | 1.83 | 0.31 | ns |
(linolenic acid) | 21 | 1.17 A | 1.09 | 1.40 | 1.55 | 0.31 | ns |
Sig. | * | ns | ns | ns | - | - | |
SFAs | 0 | 40.63 | 39.23 | 34.13 | 38.38 | 1.64 | ns |
21 | 40.36 | 38.85 | 38.31 | 38.74 | 1.64 | ns | |
Sig. | ns | ns | ns | ns | - | ||
MUFAs | 0 | 48.04 | 49.56 | 55.26 | 50.47 | 2.19 | ns |
21 | 50.08 | 48.08 | 51.01 | 49.92 | 2.19 | ns | |
Sig. | ns | ns | ns | ns | - | - | |
PUFAs | 0 | 11.33 | 11.24 | 10.61 | 11.15 | 0.70 | ns |
21 | 9.38 | 9.15 | 10.68 | 11.34 | 0.70 | ns | |
Sig. | ns | ns | ns | ns | - | - |
Total Psychrotrophic Count (CTP- log10 UFC/g) | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. |
---|---|---|---|---|---|---|
Day 0 | 4.39 A | 4.24 A | 4.32 A | 4.22 A | 0.51 | ns |
Day 7 | 4.67 A | 4.34 A | 5.07 AB | 4.98 AB | 0.52 | ns |
Day 14 | 5.60 AB | 5.92 AB | 6.10 AB | 6.17 AB | 0.51 | ns |
Day 21 | 6.83 B | 6.68 B | 6.40 B | 6.76 B | 0.52 | ns |
SE | 0.51 | 0.52 | 0.51 | 0.52 | - | - |
Sig. | * | * | * | * | - | - |
Acceptance Test | EN150 | EN75 | P1N75 | P2N75 | SE | Sig. |
---|---|---|---|---|---|---|
Aroma | 7.37 | 7.06 | 7.06 | 7.06 | 0.114 | ns |
Texture | 7.63 b | 7.37 ab | 7.21 a | 7.41 ab | 0.102 | * |
Flavor | 7.74 b | 7.43 ab | 7.08 a | 7.17 a | 0.105 | * |
Juiciness | 7.61 b | 7.42 ab | 7.21 a | 7.33 ab | 0.380 | * |
Overall acceptance | 7.66 b | 7.35 ab | 7.16 a | 7.13 a | 0.108 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotardo, L.R.M.; Carvalho, F.A.L.d.; Gomes Quirino, D.J.; Favaro-Trindade, C.S.; Alencar, S.M.d.; Oliveira, A.L.d.; Trindade, M.A. Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract. Foods 2023, 12, 4419. https://doi.org/10.3390/foods12244419
Gotardo LRM, Carvalho FALd, Gomes Quirino DJ, Favaro-Trindade CS, Alencar SMd, Oliveira ALd, Trindade MA. Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract. Foods. 2023; 12(24):4419. https://doi.org/10.3390/foods12244419
Chicago/Turabian StyleGotardo, Luciana Ruggeri Menezes, Francisco Allan Leandro de Carvalho, Dannaya Julliethy Gomes Quirino, Carmen Sílvia Favaro-Trindade, Severino Mathias de Alencar, Alessandra Lopes de Oliveira, and Marco Antonio Trindade. 2023. "Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract" Foods 12, no. 24: 4419. https://doi.org/10.3390/foods12244419
APA StyleGotardo, L. R. M., Carvalho, F. A. L. d., Gomes Quirino, D. J., Favaro-Trindade, C. S., Alencar, S. M. d., Oliveira, A. L. d., & Trindade, M. A. (2023). Study of the Oxidative and Microbiological Stability of Nitrite-Reduced, Vacuum-Packed, Refrigerated Lamb Sausages Supplemented with Red Propolis Extract. Foods, 12(24), 4419. https://doi.org/10.3390/foods12244419