A General Review of Methodologies Used in the Determination of Cholesterol (C27H46O) Levels in Foods
Abstract
:1. Introduction
2. Cholesterol Determination Methods in Foods
2.1. Detection of Cholesterol Using Enzymatic and Non-Enzymatic Methods
2.2. Determination of Cholesterol in Foods by Enzymatic Methods
2.3. Detection of Cholesterol in Foods by Chromatographic Methods
2.3.1. Detection of Cholesterol in Foods with HPLC
2.3.2. Detection of Cholesterol in Foods with GC-MS
2.3.3. Electrospray Ionization Tandem Mass Spectrometer (ESI)
2.3.4. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI)
2.3.5. Ambient Ionization Mass Spectrometer
2.3.6. Removal of Cholesterol from Foods by Nonenzymatic Methods
2.4. Electrochemical Sensors
Nanomaterial-Based Electrochemical Sensors
2.5. Possibilities of Using Biosensors in Measuring Cholesterol in Foods
Metal Nanoparticle (MNP)-Based Cholesterol Biosensors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Süt Teknolojisi Sütün Bileşimi Ve İşlenmesi—Mustafa Metin|Nadir Kitap. Available online: https://www.nadirkitap.com/sut-teknolojisi-sutun-bilesimi-ve-islenmesi-mustafa-metin-kitap26632213.html (accessed on 20 October 2023).
- Wang, H.H.; Li, T.; Portincasa, P.; Ford, D.A.; Neuschwander-Tetri, B.A.; Tso, P.; Wang, D.Q.-H. New Insights into the Role of Lith Genes in the Formation of Cholesterol-Supersaturated Bile. Liver Res. 2017, 1, 42–53. [Google Scholar] [CrossRef]
- Ahmadalinezhad, A.; Chen, A. High-Performance Electrochemical Biosensor for the Detection of Total Cholesterol. Biosens. Bioelectron. 2011, 26, 4508–4513. [Google Scholar] [CrossRef]
- Hayat, A.; Haider, W.; Raza, Y.; Marty, J.L. Colorimetric Cholesterol Sensor Based on Peroxidase like Activity of Zinc Oxide Nanoparticles Incorporated Carbon Nanotubes. Talanta 2015, 143, 157–161. [Google Scholar] [CrossRef]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified Graphene Based Molecular Imprinted Polymer for Electrochemical Non-Enzymatic Cholesterol Biosensor. Eur. Polym. J. 2017, 86, 106–116. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, L.; Xue, Y.; Zhang, S.; Zhu, N.; Liang, J.; Li, G. Ultrasensitive Cholesterol Biosensor Based on Enzymatic Silver Deposition on Gold Nanoparticles Modified Screen-Printed Carbon Electrode. Mater. Sci. Eng. C 2017, 77, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huff, T.; Boyd, B.; Jialal, I. Physiology, Cholesterol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Andersen, C.J. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018, 10, 764. [Google Scholar] [CrossRef] [PubMed]
- Derina, K.V.; Korotkova, E.I.; Dorozhko, E.V.; Voronova, O.A. Voltammetric Determination of Cholesterol in Human Blood Serum. J. Anal. Chem. 2017, 72, 904–910. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Barek, J. Non-Enzymatic Electrochemical Approaches to Cholesterol Determination. J. Pharm. Biomed. Anal. 2020, 191, 113538. [Google Scholar] [CrossRef] [PubMed]
- Pandrangi, S.L.; Chittineedi, P.; Chikati, R.; Mosquera, J.A.N.; Llaguno, S.N.S.; Mohiddin, G.J.; Lanka, S.; Chalumuri, S.S.; Maddu, N. Role of Lipoproteins in the Pathophysiology of Breast Cancer. Membranes 2022, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Aravamudhan, S.; Ramgir, N.S.; Bhansali, S. Electrochemical Biosensor for Targeted Detection in Blood Using Aligned Au Nanowires. Sens. Actuators B Chem. 2007, 127, 29–35. [Google Scholar] [CrossRef]
- Shen, J.; Liu, C.-C. Development of a Screen-Printed Cholesterol Biosensor: Comparing the Performance of Gold and Platinum as the Working Electrode Material and Fabrication Using a Self-Assembly Approach. Sens. Actuators B Chem. 2007, 120, 417–425. [Google Scholar] [CrossRef]
- Saxena, U.; Chakraborty, M.; Goswami, P. Covalent Immobilization of Cholesterol Oxidase on Self-Assembled Gold Nanoparticles for Highly Sensitive Amperometric Detection of Cholesterol in Real Samples. Biosens. Bioelectron. 2011, 26, 3037–3043. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Liu, A.-L.; Li, G.-W.; Chen, W.; Lin, X.-H. Chemiluminescent Cholesterol Sensor Based on Peroxidase-like Activity of Cupric Oxide Nanoparticles. Biosens. Bioelectron. 2013, 43, 1–5. [Google Scholar] [CrossRef]
- Mayer, J.; Donnelly, T.M. (Eds.) Front Matter. In Clinical Veterinary Advisor; W.B. Saunders: Saint Louis, MO, USA, 2013; pp. i–iii. ISBN 978-1-4160-3969-3. [Google Scholar]
- Pan, X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. In Sphingolipid Metabolism and Metabolic Disease; Jiang, X.-C., Ed.; Advances in Experimental Medicine and Biology; Springer Nature: Singapore, 2022; pp. 119–143. ISBN 978-981-19039-4-6. [Google Scholar]
- Gylling, H. Cholesterol Metabolism and Its Implications for Therapeutic Interventions in Patients with Hypercholesterolaemia. Int. J. Clin. Pract. 2004, 58, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Griffin, B. Dietary Cholesterol, Eggs and Coronary Heart Disease Risk in Perspective. Nutr. Bull. 2006, 31, 21–27. [Google Scholar] [CrossRef]
- Alderton, B.A.; Ball, J.W.; Barbon, A.R.; Batchelder, M.; Beaufrère, H.; Bingley, M.; Blanco, M.C.; Bays, T.B.; Brown, C.J.; Burgdorf-Moisuk, A.; et al. Contributors. In Clinical Veterinary Advisor; Mayer, J., Donnelly, T.M., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2013; pp. ix–xii. ISBN 978-1-4160-3969-3. [Google Scholar]
- Motonaka, J.; Faulkner, L.R. Determination of Cholesterol and Cholesterol Ester with Novel Enzyme Microsensors. Anal. Chem. 1993, 65, 3258–3261. [Google Scholar] [CrossRef] [PubMed]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.F.; Vagin, M.Y. Cholesterol Self-Powered Biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef] [PubMed]
- Şanlıdere Aloğlu, H.; Öner, Z.; Demir Özer, E.; Uz, E. Gıda Kaynaklı Mayaların in Vitroda Kolesterolü Asimile Etme Özelliklerinin Belirlenmesi ve Yüksek Kolestorel Içeren Diyabetle Sıçanlarda Kolesterolü Düşürücü Ajan Olarak Kullanılabilirliğinin Araştırılması. Undefined 2013, 1–73. Available online: https://search.trdizin.gov.tr/tr/yayin/detay/613058/ (accessed on 29 July 2022).
- An Overview on Electrochemical Determination of Cholesterol—Amiri—2020—Electroanalysis—Wiley Online Library. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/elan.201900669 (accessed on 20 October 2023).
- Li, Y.; Cai, J.; Liu, F.; Yang, H.; Lin, Y.; Li, S.; Huang, X.; Lin, L. Construction of a Turn Off-on Fluorescent Nanosensor for Cholesterol Based on Fluorescence Resonance Energy Transfer and Competitive Host-Guest Recognition. Talanta 2019, 201, 82–89. [Google Scholar] [CrossRef]
- Zampelas, A.; Magriplis, E. New Insights into Cholesterol Functions: A Friend or an Enemy? Nutrients 2019, 11, 1645. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Crescenti, A. Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients 2020, 12, 1488. [Google Scholar] [CrossRef]
- Eng, J.M.; Estall, J.L. Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol. Cells 2021, 10, 1805. [Google Scholar] [CrossRef] [PubMed]
- Demirci, M.; Güldaş, M.; Başoğlu, F. Gıdalardan Kolesterol Azaltılabilir mi? GIDA 1996, 21, 149–152. [Google Scholar]
- Huber, W.; Molero, A.; Pereyra, C.; Martínez de la Ossa, E. Dynamic Supercritical CO2 Extraction for Removal of Cholesterol from Anhydrous Milk Fat. Int. J. Food Sci. Technol. 1996, 31, 143–151. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Akinwunmi, I.; Thompson, L.d.; Ramsey, C.b. Marbling, Fat Trim and Doneness Effects on Sensory Attributes, Cooking Loss and Composition of Cooked Beef Steaks. J. Food Sci. 1993, 58, 242–244. [Google Scholar] [CrossRef]
- Nirala, N.R.; Abraham, S.; Kumar, V.; Bansal, A.; Srivastava, A.; Saxena, P.S. Colorimetric Detection of Cholesterol Based on Highly Efficient Peroxidase Mimetic Activity of Graphene Quantum Dots. Sens. Actuators B Chem. 2015, 218, 42–50. [Google Scholar] [CrossRef]
- Nirala, N.R.; Saxena, P.S.; Srivastava, A. Colorimetric Detection of Cholesterol Based on Enzyme Modified Gold Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 506–512. [Google Scholar] [CrossRef]
- Okazaki, M.; Usui, S.; Nakamura, M.; Yamashita, S. Evaluation of an HPLC Method for LDL-Cholesterol Determination in Patients with Various Lipoprotein Abnormalities in Comparison with Beta-Quantification. Clin. Chim. Acta 2008, 395, 62–67. [Google Scholar] [CrossRef]
- Wu, W.-F.; Wang, Q.-H.; Zhang, T.; Mi, S.-H.; Liu, Y.; Wang, L.-Y. Gas Chromatography Analysis of Serum Cholesterol Synthesis and Absorption Markers Used to Predict the Efficacy of Simvastatin in Patients with Coronary Heart Disease. Clin. Biochem. 2013, 46, 993–998. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Oliveira, M.B.P.P.; Sanches-Silva, A.; Costa, H.S. Cholesterol Determination in Foods: Comparison between High Performance and Ultra-High Performance Liquid Chromatography. Food Chem. 2016, 193, 18–25. [Google Scholar] [CrossRef]
- Sun, Q.; Fang, S.; Fang, Y.; Qian, Z.; Feng, H. Fluorometric Detection of Cholesterol Based on β-Cyclodextrin Functionalized Carbon Quantum Dots via Competitive Host-Guest Recognition. Talanta 2017, 167, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, S.; Ding, W.; Yao, Y.; Yang, X.; Yao, C. Fluorescence Detection of Cholesterol Using a Nitrogen-Doped Graphene Quantum Dot/Chromium Picolinate Complex-Based Sensor. J. Mater. Chem. B 2017, 5, 9006–9014. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, J.; Khataee, A. Ultrasensitive Chemiluminescent Biosensor for the Detection of Cholesterol Based on Synergetic Peroxidase-like Activity of MoS2 and Graphene Quantum Dots. Talanta 2018, 178, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Daneshfar, A.; Khezeli, T.; Lotfi, H.J. Determination of Cholesterol in Food Samples Using Dispersive Liquid–Liquid Microextraction Followed by HPLC–UV. J. Chromatogr. B 2009, 877, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Haeckel, R.; Sonntag, O.; Külpmann, W.R.; Feldmann, U. Comparison of 9 Methods for the Determination of Cholesterol. J. Clin. Chem. Clin. Biochem. 1979, 17, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tan, J.; Cui, L.; Zhou, Z.; Zhou, S.; Zhang, Z.; Zheng, R.; Xue, Y.; Zhang, M.; Li, S.; et al. Graphene and Au NPs Co-Mediated Enzymatic Silver Deposition for the Ultrasensitive Electrochemical Detection of Cholesterol. Biosens. Bioelectron. 2018, 102, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Kotani, A.; Hakamata, H.; Nakayama, N.; Kusu, F. Picomole Level Determination of Cholesterol by HPLC with Electrochemical Detection Using Boron-Doped Diamond Electrode after Performance Assessment Based on the FUMI Theory. Electroanalysis 2011, 23, 2709–2715. [Google Scholar] [CrossRef]
- Becker, S.; Röhnike, S.; Empting, S.; Haas, D.; Mohnike, K.; Beblo, S.; Mütze, U.; Husain, R.A.; Thiery, J.; Ceglarek, U. LC–MS/MS-Based Quantification of Cholesterol and Related Metabolites in Dried Blood for the Screening of Inborn Errors of Sterol Metabolism. Anal. Bioanal. Chem. 2015, 407, 5227–5233. [Google Scholar] [CrossRef]
- Barua, S.; Gogoi, S.; Khan, R. Fluorescence Biosensor Based on Gold-Carbon Dot Probe for Efficient Detection of Cholesterol. Synth. Met. 2018, 244, 92–98. [Google Scholar] [CrossRef]
- Aryal, K.P.; Ekanayaka, T.K.; Gilbert, S.; Dowben, P.A.; Jeong, H.K. Fluorescent Detection of Cholesterol Using P-Sulfonatocalix[4]Arene Functionalized Carbon Nanotubes and Thermally Reduced Graphite Oxide Composites. Chem. Phys. Lett. 2020, 738, 136856. [Google Scholar] [CrossRef]
- Gundogdu, A.; Gazoglu, G.; Kahraman, E.; Yildiz, E.; Candir, G.; Yalcin, D.; Koç, A.; Şen, F. Bıosensors: Types, applıcatıons, and future advantages. JSR-A 2023, 52, 457–481. [Google Scholar] [CrossRef]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors 2023, 13, 40. [Google Scholar] [CrossRef]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical Biosensors: A Decade in Review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and Their Applications—A Review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef]
- Nanda, P.K.; Bhattacharya, D.; Das, J.K.; Bandyopadhyay, S.; Ekhlas, D.; Lorenzo, J.M.; Dandapat, P.; Alessandroni, L.; Das, A.K.; Gagaoua, M. Emerging Role of Biosensors and Chemical Indicators to Monitor the Quality and Safety of Meat and Meat Products. Chemosensors 2022, 10, 322. [Google Scholar] [CrossRef]
- Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors 2018, 8, 23. [Google Scholar] [CrossRef]
- Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; de Wael, K.; Cristea, C. Tackling the Problem of Sensing Commonly Abused Drugs Through Nanomaterials and (Bio)Recognition Approaches. Front. Chem. 2020, 8, 561638. [Google Scholar] [CrossRef]
- Phetsang, S.; Jakmunee, J.; Mungkornasawakul, P.; Laocharoensuk, R.; Ounnunkad, K. Sensitive Amperometric Biosensors for Detection of Glucose and Cholesterol Using a Platinum/Reduced Graphene Oxide/Poly(3-Aminobenzoic Acid) Film-Modified Screen-Printed Carbon Electrode. Bioelectrochemistry 2019, 127, 125–135. [Google Scholar] [CrossRef]
- Saxena, U.; Das, A.B. Nanomaterials towards Fabrication of Cholesterol Biosensors: Key Roles and Design Approaches. Biosens. Bioelectron. 2016, 75, 196–205. [Google Scholar] [CrossRef]
- Cohen, A.; Hertz, H.S.; Mandel, J.; Paule, R.C.; Schaffer, R.; Sniegoski, L.T.; Sun, T.; Welch, M.J.; White, E. Total Serum Cholesterol by Isotope Dilution/Mass Spectrometry: A Candidate Definitive Method. Clin. Chem. 1980, 26, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Sugiyama, Y.; Suzuki, J.; Oohashi, T.; Takahashi, Y. Determination of Bovine Serum Low-Density Lipoprotein Cholesterol Using the N-Geneous Method. Vet. Res. Commun. 2006, 30, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Srivastava, S.K.; Nirala, N.R.; Prakash, R. A Chitosan-Based Polyaniline–Au Nanocomposite Biosensor for Determination of Cholesterol. Anal. Methods 2014, 6, 817–824. [Google Scholar] [CrossRef]
- Tyagi, M.; Chandran, A.; Joshi, T.; Prakash, J.; Agrawal, V.V.; Biradar, A.M. Self Assembled Monolayer Based Liquid Crystal Biosensor for Free Cholesterol Detection. Appl. Phys. Lett. 2014, 104, 154104. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Chen, S.; Ruo, Y.; Zhong, X.; Wu, X. Bi-Pseudoenzyme Synergetic Catalysis to Generate a Coreactant of Peroxydisulfate for an Ultrasensitive Electrochemiluminescence-Based Cholesterol Biosensor. Biosens. Bioelectron. 2014, 57, 71–76. [Google Scholar] [CrossRef]
- Morzycki, J.W.; Sobkowiak, A. Electrochemical Oxidation of Cholesterol. Beilstein J. Org. Chem. 2015, 11, 392–402. [Google Scholar] [CrossRef]
- Steckhan, E. Indirect Electroorganic Syntheses—A Modern Chapter of Organic Electrochemistry [New Synthetic Methods (59)]. Angew. Chem. Int. Ed. Engl. 1986, 25, 683–701. [Google Scholar] [CrossRef]
- Kowalski, J.; Płoszyńska, J.; Sobkowiak, A.; Morzycki, J.W.; Wilczewska, A.Z. Direct Electrochemical Acetoxylation of Cholesterol at the Allylic Position. J. Electroanal. Chem. 2005, 585, 275–280. [Google Scholar] [CrossRef]
- Hosokawa, Y.-Y.; Hakamata, H.; Murakami, T.; Aoyagi, S.; Kuroda, M.; Mimaki, Y.; Ito, A.; Morosawa, S.; Kusu, F. Electrochemical Oxidation of Cholesterol in Acetonitrile Leads to the Formation of Cholesta-4,6-Dien-3-One. Electrochim. Acta 2009, 54, 6412–6416. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Owen, W.E.; Thatcher, M.L.; Crabtree, K.J.; Greer, R.W.; Strathmann, F.G.; Straseski, J.A.; Genzen, J.R. Body Fluid Matrix Evaluation on a Roche Cobas 8000 System. Clin. Biochem. 2015, 48, 911–914. [Google Scholar] [CrossRef]
- Amundson, D.M.; Zhou, M. Fluorometric Method for the Enzymatic Determination of Cholesterol. J. Biochem. Biophys. Methods 1999, 38, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.E.d.S.; França, C.N.; Correr, C.J.; Zucker, M.L.; Andriolo, A.; Scartezini, M. Clinical Correlation between a Point-of-Care Testing System and Laboratory Automation for Lipid Profile. Clin. Chim. Acta 2015, 446, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, D.; Semedo, R.; Castilho, M.d.C.; Silva, J.M.; Ramos, F. Selection of the Derivatization Reagent—The Case of Human Blood Cholesterol, Its Precursors and Phytosterols GC–MS Analyses. J. Chromatogr. B 2011, 879, 3806–3811. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C. Chemistry and Biology of Vitamin E. Mol. Nutr. Food Res. 2005, 49, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Mestre Prates, J.A.; Gonçalves Quaresma, M.A.; Branquinho Bessa, R.J.; Andrade Fontes, C.M.G.; Mateus Alfaia, C.M.P. Simultaneous HPLC Quantification of Total Cholesterol, Tocopherols and β-Carotene in Barrosã-PDO Veal. Food Chem. 2006, 94, 469–477. [Google Scholar] [CrossRef]
- Hamill, T.W.; Soliman, A.M. Determination of Cholesterol by P-Nitrobenzoate Derivatization and Liquid Chromatography. J. AOAC Int. 1994, 77, 1190–1196. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Jeong, I.-S.; Kwak, B.-M.; Leem, D.; Yoon, T.; Yoon, C.; Jeong, J.; Park, J.-M.; Kim, J.-M. Rapid Determination of Cholesterol in Milk Containing Emulsified Foods. Food Chem. 2012, 135, 2411–2417. [Google Scholar] [CrossRef]
- Bavisetty, S.C.B.; Narayan, B. An Improved RP-HPLC Method for Simultaneous Analyses of Squalene and Cholesterol Especially in Aquatic Foods. J. Food Sci. Technol. 2015, 52, 6083–6089. [Google Scholar] [CrossRef]
- Lioe, H.; Setianingrum, T.; Anggraeni, R. Method Validation of Cholesterol Analysis in Egg Using HPLC-ELSD. J. Ilmu Pertan. Indones. 2013, 18, 178–185. [Google Scholar]
- Park, J.; Jeong, I.-S.; Kwak, B.-M.; Ahn, J.-H.; Leem, D.; Jeong, J.; Kim, J.-M. Application of Rapid Sample Preparation Method and Monitoring for Cholesterol Content in Chicken Egg and Egg Powder. Korean J. Food Sci. Anim. Resour. 2013, 33, 672–677. [Google Scholar] [CrossRef]
- Souza, H.A.L.; Mariutti, L.R.B.; Bragagnolo, N. Microwave Assisted Direct Saponification for the Simultaneous Determination of Cholesterol and Cholesterol Oxides in Shrimp. J. Steroid Biochem. Mol. Biol. 2017, 169, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Stroher, G.L.; Rodrigues, A.C.; Dias, L.F.; Pedrão, M.R.; de Paula, L.N.; Visentainer, J.V.; Souza, N.E. de Comparative Analysis and Validation Methodologies of GC and HPLC for Analysis of Cholesterol in Meat Products. Am. J. Anal. Chem. 2012, 3, 306–311. [Google Scholar] [CrossRef]
- Ramalho, H.M.M.; Casal, S.; Oliveira, M.B.P.P. Total Cholesterol and Desmosterol Contents in Raw, UHT, Infant Formula Powder and Human Milks Determined by a New Fast Micro-HPLC Method. Food Anal. Methods 2011, 4, 424–430. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; Thompson, L.D.; Galyean, M.L.; Brooks, J.C.; Patterson, K.Y.; Boylan, L.M. Cholesterol Content and Methods for Cholesterol Determination in Meat and Poultry. Compr. Rev. Food Sci. Food Saf. 2011, 10, 269–289. [Google Scholar] [CrossRef]
- Shimada, K.; Mitamura, K.; Higashi, T. Gas Chromatography and High-Performance Liquid Chromatography of Natural Steroids. J. Chromatogr. A 2001, 935, 141–172. [Google Scholar] [CrossRef]
- Gao, X.; Lin, X.; Xin, Y.; Zhu, X.; Li, X.; Chen, M.; Huang, Z.; Guo, H. Dietary Cholesterol Drives the Development of Nonalcoholic Steatohepatitis by Altering Gut Microbiota Mediated Bile Acid Metabolism in High-Fat Diet Fed Mice. J. Nutr. Biochem. 2023, 117, 109347. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Borkovcová, I.; Janoušková, E.; Dračková, M.; Janštová, B.; Vorlová, L. Determination of Sterols in Dairy Products and Vegetable Fats by HPLC and GC Methods. Czech J. Food Sci. 2009, 27, S217–S219. [Google Scholar] [CrossRef]
- Kolarič, L.; Šimko, P. The Comparison of HPLC and Spectrophotometric Method for Cholesterol Determination. Potravin. Slovak J. Food Sci. 2020, 14, 118–124. [Google Scholar] [CrossRef]
- Fenton, M. Chromatographic Separation of Cholesterol in Foods. J. Chromatogr. A 1992, 624, 369–388. [Google Scholar] [CrossRef] [PubMed]
- KANAI, M. Gas Chromatographic Separation of Sterols and Its Clinical Application. J. Biochem. 1964, 56, 266–272. [Google Scholar] [CrossRef] [PubMed]
- AOAC 994.10-1994(2010), Cholesterol in Foods. Direct Saponificat—$14.30: AOAC Official Method. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=186 (accessed on 20 October 2023).
- Thompson, R.H.; Merola, G.V. A Simplified Alternative to the AOAC Official Method for Cholesterol in Multicomponent Foods. J. AOAC Int. 1993, 76, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Binder, M.; Schifferer, R.; Langmann, T.; Schulz, B.; Schmitz, G. High Throughput Quantification of Cholesterol and Cholesteryl Ester by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS). Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2006, 1761, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Hanyu, N.; Sugano, M.; Kawasaki, K.; Yamauchi, K.; Katsuyama, T. Analysis of Human Serum Lipoprotein Lipid Composition Using MALDI-TOF Mass Spectrometry. Ann. Clin. Lab. Sci. 2007, 37, 213–221. [Google Scholar] [PubMed]
- Hsu, C.-C.; Dorrestein, P.C. Visualizing Life with Ambient Mass Spectrometry. Curr. Opin. Biotechnol. 2015, 31, 24–34. [Google Scholar] [CrossRef]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Lee, W.-C.; Kim, K.-B.; Gurudatt, N.G.; Hussain, K.K.; Choi, C.S.; Park, D.-S.; Shim, Y.-B. Comparison of Enzymatic and Non-Enzymatic Glucose Sensors Based on Hierarchical Au-Ni Alloy with Conductive Polymer. Biosens. Bioelectron. 2019, 130, 48–54. [Google Scholar] [CrossRef]
- Saha, M.; Das, S. Fabrication of a Nonenzymatic Cholesterol Biosensor Using Carbon Nanotubes from Coconut Oil. J. Nanostruct. Chem. 2014, 4, 94. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, J.-Y. Nonenzymatic Free-Cholesterol Detection via a Modified Highly Sensitive Macroporous Gold Electrode with Platinum Nanoparticles. Biosens. Bioelectron. 2010, 26, 1353–1358. [Google Scholar] [CrossRef]
- Nawaz, M.A.H.; Majdinasab, M.; Latif, U.; Nasir, M.; Gokce, G.; Anwar, M.W.; Hayat, A. Development of a Disposable Electrochemical Sensor for Detection of Cholesterol Using Differential Pulse Voltammetry. J. Pharm. Biomed. Anal. 2018, 159, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Barthelmebs, L.; Sassolas, A.; Marty, J.-L. An Electrochemical Immunosensor Based on Covalent Immobilization of Okadaic Acid onto Screen Printed Carbon Electrode via Diazotization-Coupling Reaction. Talanta 2011, 85, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Borisova, B.; Sánchez, A.; Jiménez-Falcao, S.; Martín, M.; Salazar, P.; Parrado, C.; Pingarrón, J.M.; Villalonga, R. Reduced Graphene Oxide-Carboxymethylcellulose Layered with Platinum Nanoparticles/PAMAM Dendrimer/Magnetic Nanoparticles Hybrids. Application to the Preparation of Enzyme Electrochemical Biosensors. Sens. Actuators B Chem. 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Samdani, K.J.; Joh, D.W.; Rath, M.K.; Lee, K.T. Electrochemical Mediatorless Detection of Norepinephrine Based on MoO3 Nanowires. Electrochim. Acta 2017, 252, 268–274. [Google Scholar] [CrossRef]
- Settu, K.; Liu, J.-T.; Chen, C.-J.; Tsai, J.-Z. Development of Carbon−graphene-Based Aptamer Biosensor for EN2 Protein Detection. Anal. Biochem. 2017, 534, 99–107. [Google Scholar] [CrossRef]
- David, M.; Barsan, M.M.; Brett, C.M.A.; Florescu, M. Improved Glucose Label-Free Biosensor with Layer-by-Layer Architecture and Conducting Polymer Poly(3,4-Ethylenedioxythiophene). Sens. Actuators B Chem. 2018, 255, 3227–3234. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wu, L.-P.; Chou, T.-T.; Hsieh, Y.-Z. Functional Magnetic Nanoparticles–Assisted Electrochemical Biosensor for Eosinophil Cationic Protein in Cell Culture. Sens. Actuators B Chem. 2018, 257, 672–677. [Google Scholar] [CrossRef]
- Hernández, D.M.; González, M.A.; Astudillo, P.D.; Hernández, L.S.; González, F.J. Modification of Carbon Electrodes by Anodic Oxidation of Organic Anions. Procedia Chem. 2014, 12, 3–8. [Google Scholar] [CrossRef]
- Yao, C.; Sun, H.; Fu, H.-F.; Tan, Z.-C. Sensitive Simultaneous Determination of Nitrophenol Isomers at Poly(p-Aminobenzene Sulfonic Acid) Film Modified Graphite Electrode. Electrochim. Acta 2015, 156, 163–170. [Google Scholar] [CrossRef]
- Wang, W.; Bai, H.; Li, H.; Lv, Q.; Zhang, Q.; Bao, N. Carbon Tape Coated with Gold Film as Stickers for Bulk Fabrication of Disposable Gold Electrodes to Detect Cr(VI). Sens. Actuators B Chem. 2016, 236, 218–225. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. TrAC Trends Anal. Chem. 2016, 76, 15–29. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Taishibekova, Y.; Salkeeva, L.; Kratochvil, B.; Barek, J. Electrochemical Nonenzymatic Sensor for Cholesterol Determination in Food. Anal. Bioanal. Chem. 2018, 410, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Mehtab, S.; Zaidi, M.G.H.; Joshi, P. Metal Nanoparticles Based Electrochemical Biosensors for Cholesterol. J. Nanomed. Nanotechnol. 2020, 11, 540. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel Paper-Based Cholesterol Biosensor Using Graphene/Polyvinylpyrrolidone/Polyaniline Nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Roychoudhury, A.; Srivastava, M.; Solanki, P.R.; Lee, D.W.; Lee, S.H.; Malhotra, B.D. A Dual Enzyme Functionalized Nanostructured Thulium Oxide Based Interface for Biomedical Application. Nanoscale 2013, 6, 1195–1208. [Google Scholar] [CrossRef]
- Souza, T.T.L.; Moraes, M.L.; Ferreira, M. Use of Hemoglobin as Alternative to Peroxidases in Cholesterol Amperometric Biosensors. Sens. Actuators B Chem. 2013, 178, 101–106. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Khodadadian, M. Amperometric Cholesterol Biosensor Based on the Direct Electrochemistry of Cholesterol Oxidase and Catalase on a Graphene/Ionic Liquid-Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2014, 53, 472–478. [Google Scholar] [CrossRef]
- Ferri, T.; Poscia, A.; Santucci, R. Direct Electrochemistry of Membrane-Entrapped Horseradish Peroxidase.: Part I. A Voltammetric and Spectroscopic Study. Bioelectrochemistry Bioenerg. 1998, 44, 177–181. [Google Scholar] [CrossRef]
- Santucci, R.; Bongiovanni, C.; Marini, S.; Del Conte, R.; Tien, M.; Banci, L.; Coletta, M. Redox Equilibria of Manganese Peroxidase from Phanerochaetes Chrysosporium: Functional Role of Residues on the Proximal Side of the Haem Pocket. Biochem. J. 2000, 349, 85–90. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-Generation Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors: A Review. TrAC Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
- Raj, V.; Jaime, R.; Astruc, D.; Sreenivasan, K. Detection of Cholesterol by Digitonin Conjugated Gold Nanoparticles. Biosens. Bioelectron. 2011, 27, 197–200. [Google Scholar] [CrossRef]
- Giri, A.K.; Charan, C.; Saha, A.; Shahi, V.K.; Panda, A.B. An Amperometric Cholesterol Biosensor with Excellent Sensitivity and Limit of Detection Based on an Enzyme-Immobilized Microtubular ZnO@ZnS Heterostructure. J. Mater. Chem. A 2014, 2, 16997–17004. [Google Scholar] [CrossRef]
- Komathi, S.; Muthuchamy, N.; Lee, K.-P.; Gopalan, A.-I. Fabrication of a Novel Dual Mode Cholesterol Biosensor Using Titanium Dioxide Nanowire Bridged 3D Graphene Nanostacks. Biosens. Bioelectron. 2016, 84, 64–71. [Google Scholar] [CrossRef]
- Dey, R.S.; Raj, C.R. Enzyme-Integrated Cholesterol Biosensing Scaffold Based on in Situ Synthesized Reduced Graphene Oxide and Dendritic Pd Nanostructure. Biosens. Bioelectron. 2014, 62, 357–364. [Google Scholar] [CrossRef]
- Wang, T.; Du, K.; Liu, W.; Zhang, J.; Li, M. Electrochemical Sensors Based on Molybdenum Disulfide Nanomaterials. Electroanalysis 2015, 27, 2091–2097. [Google Scholar] [CrossRef]
Foods | Cholesterol (mg/100 g) |
---|---|
Brain | 2353 |
Egg yolk | 1260 |
Kidney | 803 |
Egg | 396 |
Liver | 360 |
Butter | 240 |
Cheese | 160 |
Cream | 109 |
Veal | 100 |
Chicken meat | 98 |
Beef | 60 |
Breast milk | 25 |
Cow’s milk | 12.3 |
Yogurt | 12.2 |
Skim milk | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndhlala, A.R.; Kavaz Yüksel, A.; Çelebi, N.; Doğan, H.Ö. A General Review of Methodologies Used in the Determination of Cholesterol (C27H46O) Levels in Foods. Foods 2023, 12, 4424. https://doi.org/10.3390/foods12244424
Ndhlala AR, Kavaz Yüksel A, Çelebi N, Doğan HÖ. A General Review of Methodologies Used in the Determination of Cholesterol (C27H46O) Levels in Foods. Foods. 2023; 12(24):4424. https://doi.org/10.3390/foods12244424
Chicago/Turabian StyleNdhlala, Ashwell R., Arzu Kavaz Yüksel, Neslihan Çelebi, and Hülya Öztürk Doğan. 2023. "A General Review of Methodologies Used in the Determination of Cholesterol (C27H46O) Levels in Foods" Foods 12, no. 24: 4424. https://doi.org/10.3390/foods12244424
APA StyleNdhlala, A. R., Kavaz Yüksel, A., Çelebi, N., & Doğan, H. Ö. (2023). A General Review of Methodologies Used in the Determination of Cholesterol (C27H46O) Levels in Foods. Foods, 12(24), 4424. https://doi.org/10.3390/foods12244424